Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 304 papers

Novel neuronal proteolipid protein isoforms encoded by the human myelin proteolipid protein 1 gene.

  • C Sarret‎ et al.
  • Neuroscience‎
  • 2010‎

The human myelin proteolipid protein 1 gene (hPLP1), which encodes the major structural myelin proteins of the central nervous system (CNS), is classically described as expressed in the oligodendrocytes, the CNS myelinating cells. We identified two new exons in the intron 1 of the hPLP1 gene that lead to the expression of additional mRNA and protein isoforms mainly expressed in neurons instead of oligodendrocytes. Those novel neuronal PLP isoforms are detected as soon as human fetal development and their concomitant expression is specific of the human species. As classical PLP proteins, the novel protein isoforms seem to be addressed to the plasma membrane. These results suggest for the first time that PLP may have functions in humans not only in oligodendrocytes but also in neurons and could be implicated in axono-glial communication. Moreover, this neuronal expression of the hPLP1 gene might explain the neuronal dysfunctions in patients carrying hPLP1 gene mutations.


T cell recognition of myelin proteolipid protein and myelin proteolipid protein peptides in the peripheral blood of multiple sclerosis and control subjects.

  • J L Trotter‎ et al.
  • Journal of neuroimmunology‎
  • 1998‎

Myelin proteolipid protein (PLP) is a prime candidate autoantigen for multiple sclerosis. In order to define potential immunodominant epitopes, T cell lines (TCL) from the peripheral blood of HLA-DR 15(2) MS patients were established which responded to the intact molecule of PLP. These TCL were then tested in individual proliferation assays with a variety of PLP peptides spanning most of the PLP molecule. Multiple peptides were recognized by TCL from the MS population, with more than one peptide often recognized by lines from the same individual. Three immunodominant peptides were identified which were recognized by the majority of MS patients. Estimated frequency analyses were then performed on the peripheral blood of HLA-DR15(2)-positive MS and control subjects using TCL initiated by the three immunodominant peptides, 40-60, 95-117, and 185-206. TCL from HLA-DR15 MS subjects recognized peptide 95-117 significantly more often than TCL from control subjects.


Human myelin proteolipid protein structure and lipid bilayer stacking.

  • Salla Ruskamo‎ et al.
  • Cellular and molecular life sciences : CMLS‎
  • 2022‎

The myelin sheath is an essential, multilayered membrane structure that insulates axons, enabling the rapid transmission of nerve impulses. The tetraspan myelin proteolipid protein (PLP) is the most abundant protein of compact myelin in the central nervous system (CNS). The integral membrane protein PLP adheres myelin membranes together and enhances the compaction of myelin, having a fundamental role in myelin stability and axonal support. PLP is linked to severe CNS neuropathies, including inherited Pelizaeus-Merzbacher disease and spastic paraplegia type 2, as well as multiple sclerosis. Nevertheless, the structure, lipid interaction properties, and membrane organization mechanisms of PLP have remained unidentified. We expressed, purified, and structurally characterized human PLP and its shorter isoform DM20. Synchrotron radiation circular dichroism spectroscopy and small-angle X-ray and neutron scattering revealed a dimeric, α-helical conformation for both PLP and DM20 in detergent complexes, and pinpoint structural variations between the isoforms and their influence on protein function. In phosphatidylcholine membranes, reconstituted PLP and DM20 spontaneously induced formation of multilamellar myelin-like membrane assemblies. Cholesterol and sphingomyelin enhanced the membrane organization but were not crucial for membrane stacking. Electron cryomicroscopy, atomic force microscopy, and X-ray diffraction experiments for membrane-embedded PLP/DM20 illustrated effective membrane stacking and ordered organization of membrane assemblies with a repeat distance in line with CNS myelin. Our results shed light on the 3D structure of myelin PLP and DM20, their structure-function differences, as well as fundamental protein-lipid interplay in CNS compact myelin.


Proteolipid protein-deficient myelin promotes axonal mitochondrial dysfunction via altered metabolic coupling.

  • Xinghua Yin‎ et al.
  • The Journal of cell biology‎
  • 2016‎

Hereditary spastic paraplegia (HSP) is a neurological syndrome characterized by degeneration of central nervous system (CNS) axons. Mutated HSP proteins include myelin proteolipid protein (PLP) and axon-enriched proteins involved in mitochondrial function, smooth endoplasmic reticulum (SER) structure, and microtubule (MT) stability/function. We characterized axonal mitochondria, SER, and MTs in rodent optic nerves where PLP is replaced by the peripheral nerve myelin protein, P0 (P0-CNS mice). Mitochondrial pathology and degeneration were prominent in juxtaparanodal axoplasm at 1 mo of age. In wild-type (WT) optic nerve axons, 25% of mitochondria-SER associations occurred on extensions of the mitochondrial outer membrane. Mitochondria-SER associations were reduced by 86% in 1-mo-old P0-CNS juxtaparanodal axoplasm. 1-mo-old P0-CNS optic nerves were more sensitive to oxygen-glucose deprivation and contained less adenosine triphosphate (ATP) than WT nerves. MT pathology and paranodal axonal ovoids were prominent at 6 mo. These data support juxtaparanodal mitochondrial degeneration, reduced mitochondria-SER associations, and reduced ATP production as causes of axonal ovoid formation and axonal degeneration.


Overexpression of the myelin proteolipid protein leads to accumulation of cholesterol and proteolipid protein in endosomes/lysosomes: implications for Pelizaeus-Merzbacher disease.

  • Mikael Simons‎ et al.
  • The Journal of cell biology‎
  • 2002‎

Duplications and overexpression of the proteolipid protein (PLP) gene are known to cause the dysmyelinating disorder Pelizaeus-Merzbacher disease (PMD). To understand the cellular response to overexpressed PLP in PMD, we have overexpressed PLP in BHK cells and primary cultures of oligodendrocytes with the Semliki Forest virus expression system. Overexpressed PLP was routed to late endosomes/lysosomes and caused a sequestration of cholesterol in these compartments. Similar results were seen in transgenic mice overexpressing PLP. With time, the endosomal/lysosomal accumulation of cholesterol and PLP led to an increase in the amount of detergent-insoluble cellular cholesterol and PLP. In addition, two fluorescent sphingolipids, BODIPY-lactosylceramide and -galactosylceramide, which under normal conditions are sorted to the Golgi apparatus, were missorted to perinuclear structures. This was also the case for the lipid raft marker glucosylphosphatidylinositol-yellow fluorescence protein, which under normal steady-state conditions is localized on the plasma membrane and to the Golgi complex. Taken together, we show that overexpression of PLP leads to the formation of endosomal/lysosomal accumulations of cholesterol and PLP, accompanied by the mistrafficking of raft components. We propose that these accumulations perturb the process of myelination and impair the viability of oligodendrocytes.


Ethanol down regulates the expression of myelin proteolipid protein in the rat hippocampus.

  • Dong Hoon Lee‎ et al.
  • Anatomy & cell biology‎
  • 2010‎

It is well known that chronic ethanol treatment affects the synthesis of RNA and protein in the brain and the maintenance and function of nervous system. The changes in myelination-related genes are most prominent in human alcoholics. Previously, our cDNA microarray study showed altered Proteolipid protein (PLP), a major protein of central myelin. The present study aimed to gain more understanding of the expression of PLP after chronic ethanol treatment. Male Sprague-Dawley rats were daily treated with ethanol (15% in saline, 3 g/kg, i.p.) or saline for 14 days. Messenger RNAs from hippocampus of each group were subjected to cDNA expression array hybridization to determine the differential gene expressions. Among many ethanol responsive genes, PLP was negatively regulated by ethanol treatment, which is one of the most abundant proteins in the CNS and has an important role in the stabilization of myelin sheath. Using northern blot and immunohistochemical analysis, we showed the change in expression level of PLP mRNA and protein after ethanol treatment. PLP mRNA and protein were decreased in hippocampus of rat with chronic ethanol exposure, suggesting that ethanol may affect the stabilization of myelin sheath through the modulation of PLP expression and induce the pathophysiology of alcoholic brain.


Monoclonal antibodies against myelin proteolipid protein: identification and characterization of two major determinants.

  • T Yamamura‎ et al.
  • Journal of neurochemistry‎
  • 1991‎

This report describes the preparation and characterization of a panel of monoclonal antibodies (mAbs) against the myelin proteolipid protein (PLP). A Lewis rat was immunized with bovine proteolipid apoprotein and 27 mAbs were selected based on their reactivity against bovine PLP on enzyme-linked immunosorbent assays. Eleven mAbs recognized the PLP carboxyl-terminal sequence when tested against a panel of synthetic peptides in a solid-phase assay. A carboxyl-terminal pentapeptide (residues 272-276) was sufficient for antibody binding and the terminal phenylalanine residue was found particularly important. Deletion, modification, or replacement of this residue markedly reduced or obliterated antigen-antibody interaction. Nine mAbs reacted with a second antigenic determinant, residues 209-217, but these could be identified only by competitive immunoassays. This peptide was a more effective inhibitor than the longer peptides 202-217 and 205-221, suggesting that flanking residues may interfere with peptide-antibody interaction. Seven antibodies did not react with any of the synthetic peptides tested and their determinants remain unidentified. Immunoblot analysis showed that the mAbs reacted with both the PLP and the DM-20 isoforms. Twenty-three of the mAbs were of the immunoglobulin G2a or b isotype; the remaining antibodies were immunoglobulin M and all of these were specific for residues 209-217. Cultured murine oligodendrocytes were stained by most of the mAbs tested, but the most intense reactivity was observed with the carboxyl-terminus-specific mAbs. The immunocytochemical analyses demonstrate that the mAbs react with the native PLP in situ and show their potential usefulness for studies of the cell biology of myelin and oligodendrocytes.


YY1 negatively regulates mouse myelin proteolipid protein (Plp1) gene expression in oligodendroglial cells.

  • Olga E Zolova‎ et al.
  • ASN neuro‎
  • 2011‎

YY1 (Yin and Yang 1) is a multifunctional, ubiquitously expressed, zinc finger protein that can act as a transcriptional activator, repressor, or initiator element binding protein. Previous studies have shown that YY1 modulates the activity of reporter genes driven by the myelin PLP (proteolipid protein) (PLP1/Plp1) promoter. However, it is known that Plp1 intron 1 DNA contains regulatory elements that are required for the dramatic increase in gene activity, coincident with the active myelination period of CNS (central nervous system) development. The intron in mouse contains multiple prospective YY1 target sites including one within a positive regulatory module called the ASE (anti-silencer/enhancer) element. Results presented here demonstrate that YY1 has a negative effect on the activity of a Plp1-lacZ fusion gene [PLP(+)Z] in an immature oligodendroglial cell line (Oli-neu) that is mediated through sequences present in Plp1 intron 1 DNA. Yet YY1 does not bind to its alleged site in the ASE (even though the protein is capable of recognizing a target site in the promoter), indicating that the down-regulation of PLP(+)Z activity by YY1 in Oli-neu cells does not occur through a direct interaction of YY1 with the ASE sequence. Previous studies with Yy1 conditional knockout mice have demonstrated that YY1 is essential for the differentiation of oligodendrocyte progenitors. Nevertheless, the current study suggests that YY1 functions as a repressor (not an activator) of Plp1 gene expression in immature oligodendrocytes. Perhaps YY1 functions to keep the levels of PLP in check in immature cells before vast quantities of the protein are needed in mature myelinating oligodendrocytes.


Novel B cell-dependent multiple sclerosis model using extracellular domains of myelin proteolipid protein.

  • Alexander W Boyden‎ et al.
  • Scientific reports‎
  • 2020‎

Therapeutic success of B cell-targeting approaches in multiple sclerosis (MS) has intensified research into the pathogenic and regulatory roles these cells play in demyelinating disease. Dissecting the function of B cells in the MS mouse model experimental autoimmune encephalomyelitis (EAE) is largely confined to induction with either the myelin oligodendrocyte glycoprotein epitope MOG35-55 or the full-length recombinant human MOG protein, the latter representing the most-used B cell-dependent EAE model. There is a clear need to investigate B cell function in additional myelin antigen contexts. Unlike MOG35-55, where lack of B cells yields more severe disease, we show here that the immunodominant myelin proteolipid protein epitope (PLP178-191) elicited identical EAE in WT and μMT mice, suggesting an absence of B cell engagement by this peptide. We hypothesized that a longer PLP antigen may better engage B cells and designed a peptide encompassing the extracellular domains (ECD) of PLP. We demonstrate here that PLPECD-immunized B cell-deficient mice failed to exhibit EAE. In contrast, PLPECD induced EAE not only in WT mice, but in B cell-sufficient mice incapable of secreting antibodies, suggesting a predominant antigen presentation role. These results establish a novel, efficient B cell-dependent EAE model.


Assembly of myelin by association of proteolipid protein with cholesterol- and galactosylceramide-rich membrane domains.

  • M Simons‎ et al.
  • The Journal of cell biology‎
  • 2000‎

Myelin is a specialized membrane enriched in glycosphingolipids and cholesterol that contains a limited spectrum of proteins. We investigated the assembly of myelin components by oligodendrocytes and analyzed the role of lipid-protein interactions in this process. Proteolipid protein (PLP), the major myelin protein, was recovered from cultured oligodendrocytes from a low-density CHAPS-insoluble membrane fraction (CIMF) enriched in myelin lipids. PLP associated with the CIMF after leaving the endoplasmic reticulum but before exiting the Golgi apparatus, suggesting that myelin lipid and protein components assemble in the Golgi complex. The specific association of PLP with myelin lipids in CIMF was supported by the finding that it was efficiently cross-linked to photoactivable cholesterol, but not to phosphatidylcholine, which is underrepresented in both myelin and CIMF. Furthermore, depletion of cholesterol or inhibition of sphingolipid synthesis in oligodendrocytes abolished the association of PLP with CIMF. Thus, PLP may be recruited to myelin rafts, represented by CIMF, via lipid-protein interactions. In contrast to oligodendrocytes, after transfection in BHK cells, PLP is absent from isolated CIMF, suggesting that PLP requires specific lipids for raft association. In mice deficient in the enzyme ceramide galactosyl transferase, which cannot synthesize the main myelin glycosphingolipids, a large fraction of PLP no longer associates with rafts. Formation of a cholesterol- and galactosylceramide-rich membrane domain (myelin rafts) may be critical for the sorting of PLP and assembly of myelin in oligodendrocytes.


Pathogenic myelin-specific antibodies in multiple sclerosis target conformational proteolipid protein 1-anchored membrane domains.

  • Gregory P Owens‎ et al.
  • The Journal of clinical investigation‎
  • 2023‎

B cell clonal expansion and cerebrospinal fluid (CSF) oligoclonal IgG bands are established features of the immune response in multiple sclerosis (MS). Clone-specific recombinant monoclonal IgG1 Abs (rAbs) derived from MS patient CSF plasmablasts bound to conformational proteolipid protein 1 (PLP1) membrane complexes and, when injected into mouse brain with human complement, recapitulated histologic features of MS pathology: oligodendrocyte cell loss, complement deposition, and CD68+ phagocyte infiltration. Conformational PLP1 membrane epitopes were complex and governed by the local cholesterol and glycolipid microenvironment. Abs against conformational PLP1 membrane complexes targeted multiple surface epitopes, were enriched within the CSF compartment, and were detected in most MS patients, but not in inflammatory and noninflammatory neurologic controls. CSF PLP1 complex Abs provide a pathogenic autoantibody biomarker specific for MS.


Mutation in the myelin proteolipid protein gene alters BK and SK channel function in the caudal medulla.

  • Catherine A Mayer‎ et al.
  • Respiratory physiology & neurobiology‎
  • 2009‎

Proteolipid protein (Plp) gene mutation in rodents causes severe CNS dysmyelination, early death, and lethal hypoxic ventilatory depression (Miller et al., 2004). To determine if Plp mutation alters neuronal function critical for control of breathing, the nucleus tractus solitarii (nTS) of four rodent strains were studied: myelin deficient rats (MD), myelin synthesis deficient (Plp(msd)), and Plp(null) mice, as well as shiverer (Mbp(shi)) mice, a myelin basic protein mutant. Current-voltage relationships were analyzed using whole-cell patch-clamp in 300 microm brainstem slices. Voltage steps were applied, and inward and outward currents quantified. MD, Plp(msd), and Plp(null), but not Mbp(shi) neurons exhibited reduced outward current in nTS at P21. Apamin blockade of SK calcium-dependent currents and iberiotoxin blockade of BK calcium-dependent currents in the P21 MD rat demonstrated reduced outward current due to dysfunction of these channels. These results provide evidence that Plp mutation specifically alters neuronal excitability through calcium-dependent potassium channels in nTS.


Anti-Myelin Proteolipid Protein Peptide Monoclonal Antibodies Recognize Cell Surface Proteins on Developing Neurons and Inhibit Their Differentiation.

  • Raymond A Sobel‎ et al.
  • Journal of neuropathology and experimental neurology‎
  • 2019‎

Using a panel of monoclonal antibodies (mAbs) to myelin proteolipid protein (PLP) peptides, we found that in addition to CNS myelin, mAbs to external face but not cytoplasmic face epitopes immunostained neurons in immature human CNS tissues and in adult hippocampal dentate gyrus and olfactory bulbs, that is neural stem cell niches (NSCN). To explore the pathobiological significance of these observations, we assessed the mAb effects on neurodifferentiation in vitro. The mAbs to PLP 50-69 (IgG1κ and IgG2aκ), and 178-191 and 200-219 (both IgG1κ) immunostained live cell surfaces and inhibited neurite outgrowth of E18 rat hippocampal precursor cells and of PC12 cells, which do not express PLP. Proteins immunoprecipitated from PC12 cell extracts and captured by mAb-coated magnetic beads were identified by GeLC-MS/MS. Each neurite outgrowth-inhibiting mAb captured a distinct set of neurodifferentiation molecules including sequence-similar M6 proteins and other unrelated membrane and extracellular matrix proteins, for example integrins, Eph receptors, NCAM-1, and protocadherins. These molecules are expressed in adult human NSCN and are implicated in the pathogenesis of many chronic CNS disease processes. Thus, diverse anti-PLP epitope autoantibodies may inhibit neuronal precursor cell differentiation via multispecific recognition of cell surface molecules thereby potentially impeding endogenous neuroregeneration in NSCN and in vivo differentiation of exogenous neural stem cells.


Correlation Between Anti-Myelin Proteolipid Protein (PLP) Antibodies and Disease Severity in Multiple Sclerosis Patients With PLP Response-Permissive HLA Types.

  • Judith M Greer‎ et al.
  • Frontiers in immunology‎
  • 2020‎

The most prominent pathological features of multiple sclerosis (MS) are demyelination and neurodegeneration. The exact pathogenesis of MS is unknown, but it is generally regarded as a T cell-mediated autoimmune disease. Increasing evidence, however, suggests that other components of the immune system, particularly B cells and antibodies, contribute to the cumulative CNS damage and worsening disability that characterize the disease course in many patients. We have previously described strongly elevated T cell reactivity to an extracellular domain of the most abundant CNS myelin protein, myelin proteolipid protein (PLP) in people with MS. The current paper addresses the question of whether this region of PLP is also a target of autoantibodies in MS. Here we show that serum levels of isotype-switched anti-PLP181-230 specific antibodies are significantly elevated in patients with MS compared to healthy individuals and patients with other neurological diseases. These anti-PLP181-230 antibodies can also live-label PLP-transfected cells, confirming that they can recognize native PLP expressed at the cell surface. Importantly, the antibodies are only elevated in patients who carry HLA molecules that allow strong T cell responses to PLP. In that subgroup of patients, there is a positive correlation between the levels of anti-PLP181-230 antibodies and the severity of MS. These results demonstrate that anti-PLP antibodies have potentially important roles to play in the pathogenesis of MS.


Autopathogenic T helper cell type 1 (Th1) and protective Th2 clones differ in their recognition of the autoantigenic peptide of myelin proteolipid protein.

  • M P Das‎ et al.
  • The Journal of experimental medicine‎
  • 1997‎

We previously generated a panel of T helper cell 1 (Th1) clones specific for an encephalitogenic peptide of myelin proteolipid protein (PLP) peptide 139-151 (HSLGKWLGHPDKF) that induces experimental autoimmune encephalomyelitis (EAE) upon adoptive transfer. In spite of the differences in their T cell receptor (TCR) gene usage, all these Th1 clones required W144 as the primary and most critical TCR contact residue for the activation. In this study, we determined the TCR contact residues of a panel of Th2/Th0 clones specific for the PLP peptide 139-151 generated either by immunization with the PLP 139-151 peptide with anti- B7-1 antibody or by immunization with an altered peptide Q144. Using alanine-substituted peptide analogues of the native PLP peptide, we show that the Th2 clones have shifted their primary contact residue to the NH2-terminal end of the peptide. These Th2 cells do not show any dependence on the W144, but show a critical requirement for L141/G142 as their major TCR contact residue. Thus, in contrast with the Th1 clones that did not proliferate to A144-substituted peptide, the Th2 clones tolerated a substitution at position 144 and proliferated to A144 peptide. This alternative A144 reactive repertoire appears to have a critical role in the regulation of autoimmune response to PLP 139-151 because preimmunization with A144 to expand the L141/G142-reactive repertoire protects mice from developing EAE induced with the native PLP 139-151 peptide. These data suggest that a balance between two different T cell repertoires specific for same autoantigenic epitope can determine disease phenotype, i.e., resistance or susceptibility to an autoimmune disease.


Different proteolipid protein mutants exhibit unique metabolic defects.

  • Maik Hüttemann‎ et al.
  • ASN neuro‎
  • 2009‎

PMD (Pelizaeus-Merzbacher disease), a CNS (central nervous system) disease characterized by shortened lifespan and severe neural dysfunction, is caused by mutations of the PLP1 (X-linked myelin proteolipid protein) gene. The majority of human PLP1 mutations are caused by duplications; almost all others are caused by missense mutations. The cellular events leading to the phenotype are unknown. The same mutations in non-humans make them ideal models to study the mechanisms that cause neurological sequelae. In the present study we show that mice with Plp1 duplications (Plp1tg) have major mitochondrial deficits with a 50% reduction in ATP, a drastically reduced mitochondrial membrane potential and increased numbers of mitochondria. In contrast, the jp (jimpy) mouse with a Plp1 missense mutation exhibits normal mitochondrial function. We show that PLP in the Plp1tg mice and in Plp1-transfected cells is targeted to mitochondria. PLP has motifs permissive for insertion into mitochondria and deletions near its N-terminus prevent its co-localization to mitochondria. These novel data show that Plp1 missense mutations and duplications of the native Plp1 gene initiate uniquely different cellular responses.


Proteolipid protein dimerization at cysteine 108: Implications for protein structure.

  • Gurdip Daffu‎ et al.
  • Neuroscience research‎
  • 2012‎

Proteolipid protein (PLP) and its alternatively spliced isoform DM20 comprise ∼50% of central nervous system (CNS) myelin protein. The two proteins are identical in sequence except for the presence of a 35 amino sequence within the intracellular loop of PLP that is absent in DM20. In this work, we compared the expression of PLP/DM20 in transfected cells, oligodendrocytes and brain. In all 3 tissues, PLP exists as both a monomer and a disulfide-linked dimer; in contrast, DM20 is found mainly as a monomer. PLP dimers were increased by both chemical crosslinking and incubation with hydrogen peroxide, and were mediated by a cysteine at amino acid 108, located within the proximal intracellular loop of both PLP and DM20. The PLP-specific sequence thus influences the accessibility of this cysteine to chemical modification, perhaps as a result of altering protein structure. Consistent with these findings, several mutant PLPs known to cause Pelizaeus-Merzbacher disease form predominantly disulfide-linked, high molecular weight aggregates in transfected COS7 cells that are arrested in the ER and are associated with increased expression of CHOP, a part of the cellular response to unfolded proteins. In contrast, the same mutations in DM20 accumulate fewer high molecular weight disulfide-linked species that are expressed at the cell surface, and are not associated with increased CHOP. Taken together, these data suggest that mutant PLP multimerization, mediated in part by way of cysteine 108, may be part of the pathogenesis of Pelizaeus-Merzbacher disease.


Proteolipid protein 1 gene sequencing of hereditary spastic paraplegia.

  • Yu Gao‎ et al.
  • Neural regeneration research‎
  • 2012‎

PCR amplification and sequencing of whole blood DNA from an individual with hereditary spastic paraplegia, as well as family members, revealed a fragment of proteolipid protein 1 (PLP1) gene exon 1, which excluded the possibility of isomer 1 expression for this family. The fragment sequence of exon 3 and exon 5 was consistent with the proteolipid protein 1 sequence at NCBI. In the proband samples, a PLP1 point mutation in exon 4 was detected at the basic group of position 844, T→C, phenylalanine→leucine. In proband samples from a male cousin, the basic group at position 844 was C, but gene sequencing signals revealed mixed signals of T and C, indicating possible mutation at this locus. Results demonstrated that changes in PLP1 exon 4 amino acids were associated with onset of hereditary spastic paraplegia.


High frequency of autoreactive myelin proteolipid protein-specific T cells in the periphery of naive mice: mechanisms of selection of the self-reactive repertoire.

  • A C Anderson‎ et al.
  • The Journal of experimental medicine‎
  • 2000‎

The autoreactive T cells that escape central tolerance and form the peripheral self-reactive repertoire determine both susceptibility to autoimmune disease and the epitope dominance of a specific autoantigen. SJL (H-2(s)) mice are highly susceptible to the induction of experimental autoimmune encephalomyelitis (EAE) with myelin proteolipid protein (PLP). The two major encephalitogenic epitopes of PLP (PLP 139-151 and PLP 178-191) bind to IA(s) with similar affinity; however, the immune response to the PLP 139-151 epitope is always dominant. The immunodominance of the PLP 139-151 epitope in SJL mice appears to be due to the presence of expanded numbers of T cells (frequency of 1/20,000 CD4(+) cells) reactive to PLP 139-151 in the peripheral repertoire of naive mice. Neither the PLP autoantigen nor infectious environmental agents appear to be responsible for this expanded repertoire, as endogenous PLP 139-151 reactivity is found in both PLP-deficient and germ-free mice. The high frequency of PLP 139-151-reactive T cells in SJL mice is partly due to lack of thymic deletion to PLP 139-151, as the DM20 isoform of PLP (which lacks residues 116-150) is more abundantly expressed in the thymus than full-length PLP. Reexpression of PLP 139-151 in the embryonic thymus results in a significant reduction of PLP 139-151-reactive precursors in naive mice. Thus, escape from central tolerance, combined with peripheral expansion by cross-reactive antigen(s), appears to be responsible for the high frequency of PLP 139-151-reactive T cells.


Suppression of proteolipid protein rescues Pelizaeus-Merzbacher disease.

  • Matthew S Elitt‎ et al.
  • Nature‎
  • 2020‎

Mutations in PLP1, the gene that encodes proteolipid protein (PLP), result in failure of myelination and neurological dysfunction in the X-chromosome-linked leukodystrophy Pelizaeus-Merzbacher disease (PMD)1,2. Most PLP1 mutations, including point mutations and supernumerary copy variants, lead to severe and fatal disease. Patients who lack PLP1 expression, and Plp1-null mice, can display comparatively mild phenotypes, suggesting that PLP1 suppression might provide a general therapeutic strategy for PMD1,3-5. Here we show, using CRISPR-Cas9 to suppress Plp1 expression in the jimpy (Plp1jp) point-mutation mouse model of severe PMD, increased myelination and restored nerve conduction velocity, motor function and lifespan of the mice to wild-type levels. To evaluate the translational potential of this strategy, we identified antisense oligonucleotides that stably decrease the levels of Plp1 mRNA and PLP protein throughout the neuraxis in vivo. Administration of a single dose of Plp1-targeting antisense oligonucleotides in postnatal jimpy mice fully restored oligodendrocyte numbers, increased myelination, improved motor performance, normalized respiratory function and extended lifespan up to an eight-month end point. These results suggest that PLP1 suppression could be developed as a treatment for PMD in humans. More broadly, we demonstrate that oligonucleotide-based therapeutic agents can be delivered to oligodendrocytes in vivo to modulate neurological function and lifespan, establishing a new pharmaceutical modality for myelin disorders.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: