Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 264 papers

Investigating the Unbinding of Muscarinic Antagonists from the Muscarinic 3 Receptor.

  • Pedro J Buigues‎ et al.
  • Journal of chemical theory and computation‎
  • 2023‎

Patient symptom relief is often heavily influenced by the residence time of the inhibitor-target complex. For the human muscarinic receptor 3 (hMR3), tiotropium is a long-acting bronchodilator used in conditions such as asthma or chronic obstructive pulmonary disease (COPD). The mechanistic insights into this inhibitor remain unclear; specifically, the elucidation of the main factors determining the unbinding rates could help develop the next generation of antimuscarinic agents. Using our novel unbinding algorithm, we were able to investigate ligand dissociation from hMR3. The unbinding paths of tiotropium and two of its analogues, N-methylscopolamin and homatropine methylbromide, show a consistent qualitative mechanism and allow us to identify the structural bottleneck of the process. Furthermore, our machine learning-based analysis identified key roles of the ECL2/TM5 junction involved in the transition state. Additionally, our results point to relevant changes at the intracellular end of the TM6 helix leading to the ICL3 kinase domain, highlighting the closest residue L482. This residue is located right between two main protein binding sites involved in signal transduction for hMR3's activation and regulation. We also highlight key pharmacophores of tiotropium that play determining roles in the unbinding kinetics and could aid toward drug design and lead optimization.


The muscarinic antagonists scopolamine and atropine are competitive antagonists at 5-HT3 receptors.

  • Martin Lochner‎ et al.
  • Neuropharmacology‎
  • 2016‎

Scopolamine is a high affinity muscarinic antagonist that is used for the prevention of post-operative nausea and vomiting. 5-HT3 receptor antagonists are used for the same purpose and are structurally related to scopolamine. To examine whether 5-HT3 receptors are affected by scopolamine we examined the effects of this drug on the electrophysiological and ligand binding properties of 5-HT3A receptors expressed in Xenopus oocytes and HEK293 cells, respectively. 5-HT3 receptor-responses were reversibly inhibited by scopolamine with an IC50 of 2.09 μM. Competitive antagonism was shown by Schild plot (pA2 = 5.02) and by competition with the 5-HT3 receptor antagonists [(3)H]granisetron (Ki = 6.76 μM) and G-FL (Ki = 4.90 μM). The related molecule, atropine, similarly inhibited 5-HT evoked responses in oocytes with an IC50 of 1.74 μM, and competed with G-FL with a Ki of 7.94 μM. The reverse experiment revealed that granisetron also competitively bound to muscarinic receptors (Ki = 6.5 μM). In behavioural studies scopolamine is used to block muscarinic receptors and induce a cognitive deficit, and centrally administered concentrations can exceed the IC50 values found here. It is therefore possible that 5-HT3 receptors are also inhibited. Studies that utilise higher concentrations of scopolamine should be mindful of these potential off-target effects.


Novel long-acting antagonists of muscarinic ACh receptors.

  • Alena Randáková‎ et al.
  • British journal of pharmacology‎
  • 2018‎

The aim of this study was to develop potent and long-acting antagonists of muscarinic ACh receptors. The 4-hexyloxy and 4-butyloxy derivatives of 1-[2-(4-oxidobenzoyloxy)ethyl]-1,2,3,6-tetrahydropyridin-1-ium were synthesized and tested for biological activity. Antagonists with long-residence time at receptors are therapeutic targets for the treatment of several neurological and psychiatric human diseases. Their long-acting effects allow for reduced daily doses and adverse effects.


Discovery of new muscarinic acetylcholine receptor antagonists from Scopolia tangutica.

  • Nana Du‎ et al.
  • Scientific reports‎
  • 2017‎

Scopolia tangutica (S. tangutica) is a traditional Chinese medicinal plant used for antispasmodics, anesthesia, analgesia and sedation. Its pharmacological activities are mostly associated with the antagonistic activity at muscarinic acetylcholine receptors (mAchRs) of several known alkaloids such as atropine and scopolamine. With our recent identification of four hydroxycinnamic acid amides from S. tangutica, we hypothesized that this plant may contain previously unidentified alkaloids that may also contribute to its in vivo effect. Herein, we used a bioassay-guided multi-dimension separation strategy to discover novel mAchR antagonists from S. tangutica. The core of this approach is to use label-free cell phenotypic assay to first identify active fractions, and then to guide purification of active ligands. Besides four tropanes and six cinnamic acid amides that have been previously isolated from S. tangutica, we recently identified two new tropanes, one new cinnamic acid amide, and nine other compounds. Six tropane compounds purified from S. tangutica for the first time were confirmed to be competitive antagonists of muscarinic receptor 3 (M3), including the two new ones 8 and 12 with IC50 values of 1.97 μM and 4.47 μM, respectively. Furthermore, the cinnamic acid amide 17 displayed 15-fold selectivity for M1 over M3 receptors. These findings will be useful in designing lead compounds for mAchRs and elucidating mechanisms of action of S. tangutica.


Structure-guided development of selective M3 muscarinic acetylcholine receptor antagonists.

  • Hongtao Liu‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2018‎

Drugs that treat chronic obstructive pulmonary disease by antagonizing the M3 muscarinic acetylcholine receptor (M3R) have had a significant effect on health, but can suffer from their lack of selectivity against the M2R subtype, which modulates heart rate. Beginning with the crystal structures of M2R and M3R, we exploited a single amino acid difference in their orthosteric binding pockets using molecular docking and structure-based design. The resulting M3R antagonists had up to 100-fold selectivity over M2R in affinity and over 1,000-fold selectivity in vivo. The crystal structure of the M3R-selective antagonist in complex with M3R corresponded closely to the docking-predicted geometry, providing a template for further optimization.


Unbinding Kinetics of Muscarinic M3 Receptor Antagonists Explained by Metadynamics Simulations.

  • Francesca Galvani‎ et al.
  • Journal of chemical information and modeling‎
  • 2023‎

The residence time (RT), the time for which a drug remains bound to its biological target, is a critical parameter for drug design. The prediction of this key kinetic property has been proven to be challenging and computationally demanding in the framework of atomistic simulations. In the present work, we setup and applied two distinct metadynamics protocols to estimate the RTs of muscarinic M3 receptor antagonists. In the first method, derived from the conformational flooding approach, the kinetics of unbinding is retrieved from a physics-based parameter known as the acceleration factor α (i.e., the running average over time of the potential deposited in the bound state). Such an approach is expected to recover the absolute RT value for a compound of interest. In the second method, known as the tMETA-D approach, a qualitative estimation of the RT is given by the time of simulation required to drive the ligand from the binding site to the solvent bulk. This approach has been developed to reproduce the change of experimental RTs for compounds targeting the same target. Our analysis shows that both computational protocols are able to rank compounds in agreement with their experimental RTs. Quantitative structure-kinetics relationship (SKR) models can be identified and employed to predict the impact of a chemical modification on the experimental RT once a calibration study has been performed.


Long-Acting Muscarinic Antagonists Under Investigational to Treat Chronic Obstructive Pulmonary Disease.

  • Josuel Ora‎ et al.
  • Journal of experimental pharmacology‎
  • 2020‎

Bronchodilators are the cornerstone of chronic obstructive pulmonary disease (COPD) therapy and long-acting muscarinic antagonists (LAMAs) as a mono or combination treatment play a pivotal role. Several LAMAs are already available on the market in different formulations, but developing a new compound with a higher M3 receptor selectivity and a lower affinity to M2 receptors to increase the therapeutic effect and minimize the adverse effects is still a goal. Moreover, new formulations could improve adherence to therapy.


Muscarinic receptors and their antagonists in COPD: anti-inflammatory and antiremodeling effects.

  • George Karakiulakis‎ et al.
  • Mediators of inflammation‎
  • 2012‎

Muscarinic receptors are expressed by most cell types and mediate cellular signaling of their natural ligand acetylcholine. Thereby, they control numerous central and peripheral physiological organ responses to neuronal activity. In the human lung, muscarinic receptors are predominantly expressed by smooth muscle cells, epithelial cells, and fibroblasts. Antimuscarinic agents are used for the treatment of chronic obstructive pulmonary disease and to a lesser extent for asthma. They are primarily used as bronchodilators, but it is now accepted that they are also associated with anti-inflammatory, antiproliferative, and antiremodeling effects. Remodeling of the small airways is a major pathology in COPD and impairs lung function through changes of the extracellular matrix. Glycosaminoglycans, particularly hyaluronic acid, and matrix metalloproteases are among extracellular matrix molecules that have been associated with tissue inflammation and remodeling in lung diseases, including chronic obstructive pulmonary disease and asthma. Since muscarinic receptors have been shown to influence the homeostasis of glycosaminoglycans and matrix metalloproteases, these molecules may be proved valuable endpoint targets in clinical studies for the pharmacological exploitation of the anti-inflammatory and antiremodeling effects of muscarinic inhibitors in the treatment of chronic obstructive pulmonary disease and asthma.


The Impact of Muscarinic Receptor Antagonists on Airway Inflammation: A Systematic Review.

  • Luigino Calzetta‎ et al.
  • International journal of chronic obstructive pulmonary disease‎
  • 2021‎

Long-acting muscarinic receptor antagonists (LAMAs) are the cornerstone for the treatment of chronic obstructive pulmonary disease (COPD); furthermore, tiotropium is approved as add-on therapy in severe asthmatic patients. Accumulating evidence suggests that LAMAs may modulate airway contractility and airway hyperresponsiveness not only by blocking muscarinic acetylcholine receptors (mAchRs) expressed on airway smooth muscle but also via anti-inflammatory mechanisms by blocking mAchRs expressed on inflammatory cells, submucosal glands, and epithelial cells. The aim of this systematic review, performed according to the PRISMA-P guidelines, was to provide a synthesis of the literature on the anti-inflammatory impact of muscarinic receptor antagonists in the airways. Most of the current evidence originates from studies on tiotropium, that demonstrated a reduction in synthesis and release of cytokines and chemokines, as well as the number of total and differential inflammatory cells, induced by different pro-inflammatory stimuli. Conversely, few data are currently available for aclidinium and glycopyrronium, whereas no studies on the potential anti-inflammatory effect of umeclidinium have been reported. Overall, a large body of evidence supports the beneficial impact of tiotropium against airway inflammation. Further well-designed randomized controlled trials are needed to better elucidate the anti-inflammatory mechanisms leading to the protective effect of LAMAs against exacerbations via identifying suitable biomarkers.


Guanidine Derivatives: How Simple Structural Modification of Histamine H3R Antagonists Has Led to the Discovery of Potent Muscarinic M2R/M4R Antagonists.

  • Marek Staszewski‎ et al.
  • ACS chemical neuroscience‎
  • 2021‎

This article describes the discovery of novel potent muscarinic receptor antagonists identified during a search for more active histamine H3 receptor (H3R) ligands. The idea was to replace the flexible seven methylene linker with a semirigid 1,4-cyclohexylene or p-phenylene substituted group of the previously described histamine H3R antagonists ADS1017 and ADS1020. These simple structural modifications of the histamine H3R antagonist led to the emergence of additional pharmacological effects, some of which unexpectedly showed strong antagonist potency at muscarinic receptors. This paper reports the routes of synthesis and pharmacological characterization of guanidine derivatives, a novel chemotype of muscarinic receptor antagonists binding to the human muscarinic M2 and M4 receptors (hM2R and hM4R, respectively) in nanomolar concentration ranges. The affinities of the newly synthesized ADS10227 (1-{4-{4-{[4-(phenoxymethyl)cyclohexyl]methyl}piperazin-1-yl}but-1-yl}-1-(benzyl)guanidine) at hM2R and hM4R were 2.8 nM and 5.1 nM, respectively.


Effects of long-acting muscarinic antagonists on promoting ciliary function in airway epithelium.

  • Mineo Katsumata‎ et al.
  • BMC pulmonary medicine‎
  • 2022‎

Mucociliary clearance (MCC) is an essential defense mechanism in airway epithelia for removing pathogens from the respiratory tract. Impaired ciliary functions and MCC have been demonstrated in asthma and chronic obstructive pulmonary disease (COPD). Long-acting muscarinic antagonists (LAMAs) are a major class of inhaled bronchodilators, which are used for treating asthma and COPD; however, the effects of LAMAs on ciliary function remain unclear. This study aimed to identify the effects of LAMAs on airway ciliary functions.


Differential effects on [35S]GTPgammaS binding using muscarinic agonists and antagonists in the gerbil brain.

  • Fuencisla Pilar-Cuéllar‎ et al.
  • Journal of chemical neuroanatomy‎
  • 2005‎

In this work, we studied the in vitro G-protein activation induced by muscarinic agonists using [(35)S]guanylyl-5'-O-(gamma-thio)-triphosphate ([(35)S]GTPgammaS) autoradiographic methods to characterize the M(2) and M(4) muscarinic subtypes response. Thus, we describe a detailed characterization of the increases in [(35)S]GTPgammaS binding elicited by carbachol (Cch) and oxotremorine (OXO) (binding in the presence minus binding in the absence of agonist) throughout the gerbil brain (Meriones unguiculatus). For both agonists, the strongest stimulations were found in the superficial gray layer of the superior colliculus, the anteroventral and anteromedial thalamic nuclei, the anterior paraventricular thalamic nucleus, and the caudate-putamen. The comparative study using OXO and Cch suggested that OXO is able to detect differences in the response of structures enriched in M(4) muscarinic receptors, showing a lower potency to stimulate these brain areas. Furthermore, using increasing concentrations of selective M(2) (AF-DX 116) and M(1)/M(4) (pirenzepine) antagonists to inhibit specific Cch- or OXO-induced [(35)S]GTPgammaS binding, significant differences were observed in M(2)-enriched structures but not in M(4)-enriched ones such as the caudate-putamen. These data indicate that appropriate muscarinic agonist stimulation, together with selective inhibition of this effect using functional autoradiography, can be used as a tool to unravel the M(2)- and M(4)-muscarinic subtype-mediated response.


Muscarinic receptor antagonists activate ERK-CREB signaling to augment neurite outgrowth of adult sensory neurons.

  • Mohammad Golam Sabbir‎ et al.
  • Neuropharmacology‎
  • 2018‎

A major cellular effector activated by G protein coupled receptors is extracellular signal-regulated kinase (ERK). The ERK signaling cascade regulates a variety of cellular processes including growth and proliferation. Both G protein and β-arrestin-mediated signaling lead to ERK activation by phosphorylation through different kinases. Recently, we have shown muscarinic acetylcholine type 1 receptor (M1R) antagonists, muscarinic toxin 7 (MT7) and pirenzepine, elevated neurite outgrowth and protected from small and large fiber neuropathy in adult sensory neurons in various animal models. Thus, we tested the novel hypothesis that muscarinic antagonists could drive neurite outgrowth through altered M1R-ERK signaling. We have used two dimensional isoelectric focusing/SDS-PAGE combined with analysis using multiple phospho-epitope specific antibodies to study ERK1/2 phosphorylation and activation of its downstream nuclear effector cyclic response element binding protein (CREB). Activated CREB is known to exhibit neuroprotective and growth promoting effects. One hour of treatment with MT7 and pirenzepine activated ERK through M1R and induced a significant increase in levels of pCREB(S133) in cultured sensory neurons. Further, pharmacological blockade or siRNA based knockdown of ERK abolished the MT7 and pirenzepine mediated neuritogenic effect. In addition, we have shown drug-induced alterations of charged protein fractions that may possess additional post-translationally modified forms of ERK and CREB. For the first time we show that long-term treatment, e.g. 1 h, with muscarinic antagonists selective or specific for M1R can activate a biased β-arrestin dependent ERK-CREB signal cascade. Our study gives novel insight into muscarinic antagonist-mediated modulation of M1R-ERK-CREB signaling which could be exploited for therapy in neuropathic diseases.


Bis-Quinolinium Cyclophane Blockers of SK Potassium Channels Are Antagonists of M3 Muscarinic Acetylcholine Receptors.

  • Vladislav Bugay‎ et al.
  • Frontiers in pharmacology‎
  • 2020‎

Dequalinium is used as an antimicrobial compound for oral health and other microbial infections. Derivatives of dequalinium, the bis-quinolinium cyclophanes UCL 1684 and UCL 1848, are high affinity SK potassium channel antagonists. Here we investigated these compounds as M3 muscarinic receptor (mACHR) antagonists. We used the R-CEPIAer endoplasmic reticulum calcium reporter to functionally assay for Gq-coupled receptor signaling, and investigated the bis-quinolinium cyclophanes as antagonists of M3 mACHR activation in transfected CHO cells. Given mACHR roles in airway smooth muscle (ASM) contractility, we also tested the ability of UCL 1684 to relax ASM. We find that these compounds antagonized M3 mACHRs with an IC50 of 0.27 μM for dequalinium chloride, 1.5 μM for UCL 1684 and 1.0 μM for UCL 1848. UCL 1684 also antagonized M1 (IC50 0.12 μM) and M5 (IC50 0.52 μM) mACHR responses. UCL 1684 was determined to be a competitive antagonist at M3 receptors as it increased the EC50 for carbachol without a reduction in the maximum response. The Ki for UCL1684 determined from competition binding experiments was 909 nM. UCL 1684 reduced carbachol-evoked ASM contractions (>90%, IC50 0.43 μM), and calcium mobilization in rodent and human lung ASM cells. We conclude that dequalinium and bis-quinolinium cyclophanes antagonized M3 mACHR activation at sub- to low micromolar concentrations, with UCL 1684 acting as an ASM relaxant. Caution should be taken when using these compounds to block SK potassium channels, as inhibition of mACHRs may be a side-effect if excessive concentrations are used.


Efficacy and safety of muscarinic antagonists as add-on therapy for male lower urinary tract symptoms.

  • Jinhong Li‎ et al.
  • Scientific reports‎
  • 2014‎

Alpha-adrenoceptor antagonists (alpha-blockers) are widely prescribed to treat lower urinary tract symptoms (LUTS) in men but fail to ameliorate LUTS sufficiently, especially the storage symptoms related to frequency, urgency and nocturia. We performed a meta-analysis of randomised controlled trials (RCTs) comparing an alpha-blocker plus muscarinic antagonist with an alpha-blocker alone in male LUTS patients who were treated with alpha-blocker prior to randomisation. The review contained six randomised controlled trials (RCTs) that included a total of 2,208 male patients who were randomised to receive alpha-blocker plus muscarinic antagonist or alpha-blocker alone. The add-on group experienced significantly greater improvement in both total IPSS (International Prostate Symptom Score) and storage IPSS. Adverse events (AEs) were commonly experienced by both groups (41.6 vs. 33.3%) though they were not severe. Our meta-analysis indicated that muscarinic antagonists as add-on therapy alleviate LUTS, especially storage symptoms. The add-on therapy demonstrated safety and tolerability comparable with alpha-blocker monotherapy in male with LUTS.


Structure-based discovery of selective positive allosteric modulators of antagonists for the M2 muscarinic acetylcholine receptor.

  • Magdalena Korczynska‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2018‎

Subtype-selective antagonists for muscarinic acetylcholine receptors (mAChRs) have long been elusive, owing to the highly conserved orthosteric binding site. However, allosteric sites of these receptors are less conserved, motivating the search for allosteric ligands that modulate agonists or antagonists to confer subtype selectivity. Accordingly, a 4.6 million-molecule library was docked against the structure of the prototypical M2 mAChR, seeking molecules that specifically stabilized antagonist binding. This led us to identify a positive allosteric modulator (PAM) that potentiated the antagonist N-methyl scopolamine (NMS). Structure-based optimization led to compound '628, which enhanced binding of NMS, and the drug scopolamine itself, with a cooperativity factor (α) of 5.5 and a KB of 1.1 μM, while sparing the endogenous agonist acetylcholine. NMR spectral changes determined for methionine residues reflected changes in the allosteric network. Moreover, '628 slowed the dissociation rate of NMS from the M2 mAChR by 50-fold, an effect not observed at the other four mAChR subtypes. The specific PAM effect of '628 on NMS antagonism was conserved in functional assays, including agonist stimulation of [35S]GTPγS binding and ERK 1/2 phosphorylation. Importantly, the selective allostery between '628 and NMS was retained in membranes from adult rat hypothalamus and in neonatal rat cardiomyocytes, supporting the physiological relevance of this PAM/antagonist approach. This study supports the feasibility of discovering PAMs that confer subtype selectivity to antagonists; molecules like '628 can convert an armamentarium of potent but nonselective GPCR antagonist drugs into subtype-selective reagents, thus reducing their off-target effects.


Long-acting muscarinic antagonists for the treatment of asthma in children-a new kid in town.

  • Eckard Hamelmann‎
  • Allergo journal international‎
  • 2018‎

Asthma is the most prevalent chronic airway disease observed in children and adolescents, yet the variety of treatment options available for this age group is limited. With many factors influencing therapeutic efficacy including patient knowledge, adherence, and therapy choice as well as delivery device, it is important to have more options to tailor to individual patient needs.


EEG dissociation induced by muscarinic receptor antagonists: Coherent 40 Hz oscillations in a background of slow waves and spindles.

  • Santiago Castro-Zaballa‎ et al.
  • Behavioural brain research‎
  • 2019‎

Mesopontine and basal forebrain cholinergic neurons are involved in the control of behavioral states and cognitive functions. Animals treated with cholinergic muscarinic receptor antagonists display a dissociated state characterized by behavioral wakefulness (W) associated with high amplitude slow oscillations and spindles in the electroencephalogram (EEG), similar to those that occur during non-REM (NREM) sleep. Oscillations in the gamma frequency band (≈ 40 Hz) of the EEG also play a critical role during W and cognition. Hence, the present study was conducted to determine the effect of muscarinic antagonists on the EEG gamma band power and coherence. Five cats were implanted with electrodes in different cortices to monitor the EEG. The effects of atropine and scopolamine on power and coherence within the low gamma frequency band (30-45 Hz) from pairs of EEG recordings were analyzed and compared to gamma activity during sleep and W. Muscarinic antagonists induced a NREM sleep-like EEG profile that was accompanied by a large increase in gamma power and coherence. The values of gamma coherence were similar to that occurring during alert W (AW), and greater than in quiet W, NREM and REM sleep. We conclude that under atropine or scopolamine, functional interactions between cortical areas in the gamma frequency band remain high, as they are during AW. This significant functional connectivity at high frequency may explain why the animals remain awake in spite of the presence of slow waves and spindles.


Effects of tachykinin NK1 receptor antagonists on vagal hyperreactivity and neuronal M2 muscarinic receptor function in antigen challenged guinea-pigs.

  • R W Costello‎ et al.
  • British journal of pharmacology‎
  • 1998‎

1. The role of tachykinin NK1 receptors in the recruitment of eosinophils to airway nerves, loss of inhibitory neuronal M2 muscarinic receptor function and the development of vagal hyperreactivity was tested in antigen-challenged guinea-pigs. 2. In anaesthetized guinea-pigs, the muscarinic agonist, pilocarpine (1-100 microg kg(-1), i.v.), inhibited vagally induced bronchoconstriction, in control, but not in antigen-challenged guinea-pigs 24 h after antigen challenge. This indicates normal function of neuronal M2 muscarinic receptors in controls and loss of neuronal M2 receptor function in challenged guinea-pigs. Pretreatment of sensitized guinea-pigs with the NK1 receptor antagonists CP99994 (4 mg kg(-1), i.p.), SR140333 (1 mg kg(-1), s.c.) or CP96345 (15 mg kg(-1), i.p.) before antigen challenge, prevented M2 receptor dysfunction. 3. Neither administration of the NK1 antagonists after antigen challenge, nor pretreatment with an NK2 receptor antagonist, MEN10376 (5 micromol kg(-1), i.p.), before antigen challenge, prevented M2 receptor dysfunction. 4. Electrical stimulation of the vagus nerves caused a frequency-dependent (2-15 Hz, 10 V, 0.2 ms for 5 s) bronchoconstriction that was significantly increased following antigen challenge. Pretreatment with the NK1 receptor antagonists CP99994 or SR140333 before challenge prevented this increase. 5. Histamine (1-20 nmol kg(-1), i.v.) caused a dose-dependent bronchoconstriction, which was vagally mediated, and was significantly increased in antigen challenged guinea-pigs compared to controls. Pretreatment of sensitized animals with CP99994 before challenge prevented the increase in histamine-induced reactivity. 6. Bronchoalveolar lavage and histological studies showed that after antigen challenge significant numbers of eosinophils accumulated in the airways and around airway nerves. This eosinophilia was not altered by pretreatment with the NK1 receptor antagonist CP99994. 7. These data indicate that pretreatment of antigen-sensitized guinea-pigs with NK1, but not with NK2 receptor antagonists before antigen challenge prevented the development of hyperreactivity by protecting neuronal M2 receptor function. NK1 receptor antagonists do not inhibit eosinophil accumulation around airway nerves.


Discovery of subtype selective muscarinic receptor antagonists as alternatives to atropine using in silico pharmacophore modeling and virtual screening methods.

  • Apurba K Bhattacharjee‎ et al.
  • Bioorganic & medicinal chemistry‎
  • 2013‎

Muscarinic acetylcholine receptors (mAChRs) have five known subtypes which are widely distributed in both the peripheral and central nervous system for regulation of a variety of cholinergic functions. Atropine is a well known muscarinic subtype non-specific antagonist that competitively inhibits acetylcholine (ACh) at postganglionic muscarinic sites. Atropine is used to treat organophosphate (OP) poisoning and resulting seizures in the warfighter because it competitively inhibits acetylcholine (ACh) at the muscarinic cholinergic receptors. ACh accumulates due to OP inhibition of acetylcholinesterase (AChE), the enzyme that hydrolyzes ACh. However, atropine produces several unwanted side-effects including dilated pupils, blurred vision, light sensitivity, and dry mouth. To overcome these side-effects, our goal was to find an alternative to atropine that emphasizes M1 (seizure prevention) antagonism but has minimum M2 (cardiac) and M3 (e.g., eye) antagonism so that an effective less toxic medical countermeasure may be developed to protect the warfighter against OP and other chemical warfare agents (CWAs). We adopted an in silico pharmacophore modeling strategy to develop features that are characteristics of known M1 subtype-selective compounds and used the model to identify several antagonists by screening an in-house (WRAIR-CIS) compound database. The generated model for the M1 selectivity was found to contain two hydrogen bond acceptors, one aliphatic hydrophobic, and one ring aromatic feature distributed in a 3D space. From an initial identification of about five hundred compounds, 173 compounds were selected through principal component and cluster analyses and in silico ADME/Toxicity evaluations. Next, these selected compounds were evaluated in a subtype-selective in vitro radioligand binding assay. Twenty eight of the compounds showed antimuscarinic activity. Nine compounds showed specificity for M1 receptors and low specificity for M3 receptors. The pK(i) values of the compounds range from 4.5 to 8.5 nM in comparison to a value of 8.7 nM for atropine. 2-(diethylamino)ethyl 2,2-diphenylpropanoate (ZW62841) was found have the best desired selectivity. None of the newly found compounds were previously reported to exhibit antimuscarinic specificity. Both theoretical and experimental results are presented.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: