Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 987 papers

Thalamic-hippocampal-prefrontal disruption in relapsing-remitting multiple sclerosis.

  • Kyle C Kern‎ et al.
  • NeuroImage. Clinical‎
  • 2015‎

Cortical, thalamic and hippocampal gray matter atrophy in relapsing-remitting MS (RRMS) is associated cognitive deficits. However, the role of interconnecting white matter pathways including the fornix, cingulum, and uncinate fasciculus (UF) is less well studied.


Defective structural RNA processing in relapsing-remitting multiple sclerosis.

  • Charles F Spurlock‎ et al.
  • Genome biology‎
  • 2015‎

Surveillance of integrity of the basic elements of the cell including DNA, RNA, and proteins is a critical element of cellular physiology. Mechanisms of surveillance of DNA and protein integrity are well understood. Surveillance of structural RNAs making up the vast majority of RNA in a cell is less well understood. Here, we sought to explore integrity of processing of structural RNAs in relapsing remitting multiple sclerosis (RRMS) and other inflammatory diseases.


Natalizumab: A new treatment for relapsing remitting multiple sclerosis.

  • Michael Hutchinson‎
  • Therapeutics and clinical risk management‎
  • 2007‎

Natalizumab, a new disease-modifying therapy for relapsing remitting multiple sclerosis (RRMS), is a humanized monoclonal antibody which binds to alpha(4)beta(1)-integrin. In a Phase 3 trial, 2 years of natalizumab monotherapy reduced the mean annualized relapse rate (ARR) by 68% compared with placebo (p < 0.001) and the risk of sustained disability progression was reduced by 42% in the natalizumab group (hazard ratio [HR] 0.58; 95% confidence interval [CI] 0.43-0.77; p < 0.001). Natalizumab decreased the mean number of new or enlarging T2-hyperintense lesions by 83% over 2 years and the mean number of Gd+ lesions by 92% at 2 years (both p < 0.001). In another Phase 3 trial, natalizumab with interferon (IFN) beta-1a reduced the mean ARR by 55% at 2 years compared with IFNbeta-1a alone (p < 0.001) and risk of sustained disability progression was reduced by 24% (HR 0.76; 95% CI 0.61-0.96; p = 0.02). Six percent of patients developed persistent antinatalizumab antibodies with loss of efficacy. The risk of developing progressive multifocal leukoencephalopathy (PML) is been estimated at 1:1000 over 18 months; the longer term risk for PML is uncertain. The benefits and risks of natalizumab support its use as monotherapy for RRMS with high disease activity despite treatment with IFNbeta, and for patients with rapidly evolving severe RRMS.


Alemtuzumab: evidence for its potential in relapsing-remitting multiple sclerosis.

  • J William L Brown‎ et al.
  • Drug design, development and therapy‎
  • 2013‎

Alemtuzumab (previously known as Campath(®)) is a humanized monoclonal antibody directed against the CD52 antigen on mature lymphocytes that results in lymphopenia and subsequent modification of the immune repertoire. Here we explore evidence for its efficacy and safety in relapsing-remitting multiple sclerosis. One Phase II and two Phase III trials of alemtuzumab versus active comparator (interferon beta-1a) have been reported. Two of these rater-blinded randomized studies assessed clinical and radiological outcomes in treatment-naïve patients; one explored patients who had relapsed despite first-line therapy. Compared to interferon beta-1a, alemtuzumab reduced the relapse rate by 49%-74% (P < 0.0001), and in two studies it reduced the risk of sustained disability accumulation by 42%-71% (P < 0.01). In one study (Comparison of Alemtuzumab and Rebif Efficacy in Multiple Sclerosis; CARE-MS1), there was no significant difference compared to interferon, perhaps reflecting the surprisingly low frequency of disability events in the comparator group. After alemtuzumab, the Expanded Disability Status Scale score improved by 0.14-1.2 points, culminating in a net advantage with alemtuzumab of 0.41-0.77 points over interferon in the CAMMS223 and CARE-MS2 trials (both P < 0.001). Radiological markers of new lesion formation and brain atrophy following alemtuzumab were significantly improved when compared to interferon in all studies. Adverse events were more common following alemtuzumab than interferon beta-1a (7.2-8.66 versus 4.9-5.7 events per person-year). While infusion reactions are the most common, autoimmunity is the most concerning; within Phase III studies, thyroid disorders (17%-18% versus 5%-6%) and immune thrombocytopenic purpura (1% versus 0%) were reported in patients taking alemtuzumab and interferon beta-1a, respectively. All patients responded to conventional therapy. One patient taking alemtuzumab in the Phase II study suffered a fatal intracranial hemorrhage following immune thrombocytopenic purpura, heralding assiduous monitoring of all patients thereafter. Alemtuzumab has been submitted for licensing in relapsing-remitting multiple sclerosis in the United States and Europe.


Resting State Brain Entropy Alterations in Relapsing Remitting Multiple Sclerosis.

  • Fuqing Zhou‎ et al.
  • PloS one‎
  • 2016‎

Brain entropy (BEN) mapping provides a novel approach to characterize brain temporal dynamics, a key feature of human brain. Using resting state functional magnetic resonance imaging (rsfMRI), reliable and spatially distributed BEN patterns have been identified in normal brain, suggesting a potential use in clinical populations since temporal brain dynamics and entropy may be altered in disease conditions. The purpose of this study was to characterize BEN in multiple sclerosis (MS), a neurodegenerative disease that affects millions of people. Since currently there is no cure for MS, developing treatment or medication that can slow down its progression represents a high research priority, for which validating a brain marker sensitive to disease and the related functional impairments is essential. Because MS can start long time before any measurable symptoms and structural deficits, assessing the dynamic brain activity and correspondingly BEN may provide a critical way to study MS and its progression. Because BEN is new to MS, we aimed to assess BEN alterations in the relapsing-remitting MS (RRMS) patients using a patient versus control design, to examine the correlation of BEN to clinical measurements, and to check the correlation of BEN to structural brain measures which have been more often used in MS studies. As compared to controls, RRMS patients showed increased BEN in motor areas, executive control area, spatial coordinating area, and memory system. Increased BEN was related to greater disease severity as measured by the expanded disability status scale (EDSS) and greater tissue damage as indicated by the mean diffusivity. Patients also showed decreased BEN in other places, which was associated with less disability or fatigue, indicating a disease-related BEN re-distribution. Our results suggest BEN as a novel and useful tool for characterizing RRMS.


Systematic review of prediction models in relapsing remitting multiple sclerosis.

  • Fraser S Brown‎ et al.
  • PloS one‎
  • 2020‎

The natural history of relapsing remitting multiple sclerosis (RRMS) is variable and prediction of individual prognosis challenging. The inability to reliably predict prognosis at diagnosis has important implications for informed decision making especially in relation to disease modifying therapies. We conducted a systematic review in order to collate, describe and assess the methodological quality of published prediction models in RRMS. We searched Medline, Embase and Web of Science. Two reviewers independently screened abstracts and full text for eligibility and assessed risk of bias. Studies reporting development or validation of prediction models for RRMS in adults were included. Data collection was guided by the checklist for critical appraisal and data extraction for systematic reviews (CHARMS) and applicability and methodological quality assessment by the prediction model risk of bias assessment tool (PROBAST). 30 studies were included in the review. Applicability was assessed as high risk of concern in 27 studies. Risk of bias was assessed as high for all studies. The single most frequently included predictor was baseline EDSS (n = 11). T2 Lesion volume or number and brain atrophy were each retained in seven studies. Five studies included external validation and none included impact analysis. Although a number of prediction models for RRMS have been reported, most are at high risk of bias and lack external validation and impact analysis, restricting their application to routine clinical practice.


Erythrocyte microRNA sequencing reveals differential expression in relapsing-remitting multiple sclerosis.

  • Kira Groen‎ et al.
  • BMC medical genomics‎
  • 2018‎

There is a paucity of knowledge concerning erythrocytes in the aetiology of Multiple Sclerosis (MS) despite their potential to contribute to disease through impaired antioxidant capacity and altered haemorheological features. Several studies have identified an abundance of erythrocyte miRNAs and variable profiles associated with disease states, such as sickle cell disease and malaria. The aim of this study was to compare the erythrocyte miRNA profile of relapsing-remitting MS (RRMS) patients to healthy sex- and age-matched controls.


Coagulation/Complement Activation and Cerebral Hypoperfusion in Relapsing-Remitting Multiple Sclerosis.

  • Tatiana Koudriavtseva‎ et al.
  • Frontiers in immunology‎
  • 2020‎

Multiple sclerosis (MS) is a demyelinating disease of the central nervous system with an underlying immune-mediated and inflammatory pathogenesis. Innate immunity, in addition to the adaptive immune system, plays a relevant role in MS pathogenesis. It represents the immediate non-specific defense against infections through the intrinsic effector mechanism "immunothrombosis" linking inflammation and coagulation. Moreover, decreased cerebral blood volume (CBV), cerebral blood flow (CBF), and prolonged mean transit time (MTT) have been widely demonstrated by MRI in MS patients. We hypothesized that coagulation/complement and platelet activation during MS relapse, likely during viral infections, could be related to CBF decrease. Our specific aims are to evaluate whether there are differences in serum/plasma levels of coagulation/complement factors between relapsing-remitting (RR) MS patients (RRMS) in relapse and those in remission and healthy controls as well as to assess whether brain hemodynamic changes detected by MRI occur in relapse compared with remission. This will allow us to correlate coagulation status with perfusion and demographic/clinical features in MS patients.


Patterns of brain atrophy in recently-diagnosed relapsing-remitting multiple sclerosis.

  • Rozanna Meijboom‎ et al.
  • PloS one‎
  • 2023‎

Recurrent neuroinflammation in relapsing-remitting MS (RRMS) is thought to lead to neurodegeneration, resulting in progressive disability. Repeated magnetic resonance imaging (MRI) of the brain provides non-invasive measures of atrophy over time, a key marker of neurodegeneration. This study investigates regional neurodegeneration of the brain in recently-diagnosed RRMS using volumetry and voxel-based morphometry (VBM). RRMS patients (N = 354) underwent 3T structural MRI <6 months after diagnosis and 1-year follow-up, as part of the Scottish multicentre 'FutureMS' study. MRI data were processed using FreeSurfer to derive volumetrics, and FSL for VBM (grey matter (GM) only), to establish regional patterns of change in GM and normal-appearing white matter (NAWM) over time throughout the brain. Volumetric analyses showed a decrease over time (q<0.05) in bilateral cortical GM and NAWM, cerebellar GM, brainstem, amygdala, basal ganglia, hippocampus, accumbens, thalamus and ventral diencephalon. Additionally, NAWM and GM volume decreased respectively in the following cortical regions, frontal: 14 out of 26 regions and 16/26; temporal: 18/18 and 15/18; parietal: 14/14 and 11/14; occipital: 7/8 and 8/8. Left GM and NAWM asymmetry was observed in the frontal lobe. GM VBM analysis showed three major clusters of decrease over time: 1) temporal and subcortical areas, 2) cerebellum, 3) anterior cingulum and supplementary motor cortex; and four smaller clusters within the occipital lobe. Widespread GM and NAWM atrophy was observed in this large recently-diagnosed RRMS cohort, particularly in the brainstem, cerebellar GM, and subcortical and occipital-temporal regions; indicative of neurodegeneration across tissue types, and in accord with limited previous studies in early disease. Volumetric and VBM results emphasise different features of longitudinal lobar and loco-regional change, however identify consistent atrophy patterns across individuals. Atrophy measures targeted to specific brain regions may provide improved markers of neurodegeneration, and potential future imaging stratifiers and endpoints for clinical decision making and therapeutic trials.


Skeletonized mean diffusivity and neuropsychological performance in relapsing-remitting multiple sclerosis.

  • Magdalena Chylińska‎ et al.
  • Brain and behavior‎
  • 2022‎

Peak width of Skeletonized Mean Diffusivity (PSMD), as a novel marker of white matter (WM) microstructure damage, is associated with cognitive decline in several WM pathologies (i.e., small vessel disorders). We hypothesized that markers combining alterations in whole WM could be associated with cognitive dysfunction in relapsing-remitting multiple sclerosis (RRMS) patients.


Intensive Circuit Class Therapy in Patients with Relapsing-Remitting Multiple Sclerosis.

  • Jan Kocica‎ et al.
  • Journal of rehabilitation medicine‎
  • 2022‎

Long-term physiotherapy is of considerable benefit to patients with multiple sclerosis (MS) who have motor dysfunction or gait impairment. The aim of this study was to determine the effectiveness of a 12-week intensive circuit class therapy for patients with MS, with a wider focus on fatigue and gait ability.


Epigallocatechin Gallate in Relapsing-Remitting Multiple Sclerosis: A Randomized, Placebo-Controlled Trial.

  • Judith Bellmann-Strobl‎ et al.
  • Neurology(R) neuroimmunology & neuroinflammation‎
  • 2021‎

To assess the safety and efficacy of epigallocatechin-3-gallate (EGCG) add-on to glatiramer acetate (GA) in patients with relapsing-remitting multiple sclerosis (RRMS).


Polymorphonuclear Cell Functional Impairment in Relapsing Remitting Multiple Sclerosis Patients: Preliminary Data.

  • Valeria Allizond‎ et al.
  • PloS one‎
  • 2015‎

Multiple Sclerosis patients run an increased risk of microbial infections, which leads to high rates of hospitalization and infection-related mortality. Although immunotherapy may increase infection risk in some cases, data as to the relationship among microbial factors, immunotherapy and alterations in the innate immunity of these patients are still scanty. On these grounds, this interdisciplinary study aims at investigating the role the functional activity of polymorphonuclear cells (PMNs) play in relapsing remitting multiple sclerosis at different stages. The in vitro ability of PMNs from patients, either untreated or treated with immunosuppressant or immunomodulatory drugs to kill Klebsiella pneumonia or Candida albicans, were investigated and compared to PMNs from healthy subjects. The release of various cytokines was also assessed, as was the production of reactive oxygen species and their ability to regulate apoptosis after microbial stimulation. Our results indicate that although patients have a normal number of PMNs, they have a statistically significant (p<0.05) reduction in intracellular killing activity. Although variations are strongly related to the therapeutic management of patients, they are independent from their disease stage. As no statistically significant differences were observed between patients and controls in cytokine release values, reactive oxygen species production or apoptosis, we came to the conclusion that other factors may be involved. Supportive validation of these results from further studies might well help in identifying a subset of patients at high risk of infection who could benefit from a closer follow-up and/or antibiotic prophylaxis.


Immune Regulatory Cell Bias Following Alemtuzumab Treatment in Relapsing-Remitting Multiple Sclerosis.

  • Nicole Kashani‎ et al.
  • Frontiers in immunology‎
  • 2021‎

Alemtuzumab is a highly effective treatment for relapsing-remitting multiple sclerosis. It selectively targets the CD52 antigen to induce profound lymphocyte depletion, followed by recovery of T and B cells with regulatory phenotypes. We previously showed that regulatory T cell function is restored with cellular repletion, but little is known about the functional capacity of regulatory B-cells and peripheral blood monocytes during the repletion phase. In this study (ClinicalTrials.gov ID# NCT03647722) we simultaneously analyzed the change in composition and function of both regulatory lymphocyte populations and distinct monocyte subsets in cross-sectional cohorts of MS patients prior to or 6, 12, 18, 24 or 36 months after their first course of alemtuzumab treatment. We found that the absolute number and percentage of cells with a regulatory B cell phenotype were significantly higher after treatment and were positivity correlated with regulatory T cells. In addition, B cells from treated patients secreted higher levels of IL-10 and BDNF, and inhibited the proliferation of autologous CD4+CD25- T cell targets. Though there was little change in monocytes populations overall, following the second annual course of treatment, CD14+ monocytes had a significantly increased anti-inflammatory bias in cytokine secretion patterns. These results confirmed that the immune system in alemtuzumab-treated patients is altered in favor of a regulatory milieu that involves expansion and increased functionality of multiple regulatory populations including B cells, T cells and monocytes. Here, we showed for the first time that functionally competent regulatory B cells re-appear with similar kinetics to that of regulatory T-cells, whereas the change in anti-inflammatory bias of monocytes does not occur until after the second treatment course. These findings justify future studies of all regulatory cell types following alemtuzumab treatment to reveal further insights into mechanisms of drug action, and to identify key immunological predictors of durable clinical efficacy in alemtuzumab-treated patients.


Subcutaneous ofatumumab in patients with relapsing-remitting multiple sclerosis: The MIRROR study.

  • Amit Bar-Or‎ et al.
  • Neurology‎
  • 2018‎

To assess dose-response effects of the anti-CD20 monoclonal antibody ofatumumab on efficacy and safety outcomes in a phase 2b double-blind study of relapsing forms of multiple sclerosis (RMS).


Fingolimod and CSF neurofilament light chain levels in relapsing-remitting multiple sclerosis.

  • Jens Kuhle‎ et al.
  • Neurology‎
  • 2015‎

We assessed CSF levels of the light chain subunit of neurofilaments (NfL) at baseline and after fingolimod therapy or placebo in patients with relapsing-remitting multiple sclerosis (RRMS). Changes in NfL levels were also correlated with relapse and MRI outcomes.


A randomized study of natalizumab dosing regimens for relapsing-remitting multiple sclerosis.

  • Maria Trojano‎ et al.
  • Multiple sclerosis (Houndmills, Basingstoke, England)‎
  • 2021‎

REFINE was an exploratory, dose- and frequency-blinded, prospective, randomized, dose-ranging study in relapsing-remitting multiple sclerosis (RRMS) patients.


Dimethyl fumarate treatment of relapsing-remitting multiple sclerosis influences B-cell subsets.

  • Steven K Lundy‎ et al.
  • Neurology(R) neuroimmunology & neuroinflammation‎
  • 2016‎

To test the hypothesis that dimethyl fumarate (Tecfidera, BG-12) affects B-cell subsets in patients with relapsing-remitting multiple sclerosis (RRMS).


Profile of PEGylated interferon beta in the treatment of relapsing-remitting multiple sclerosis.

  • Eleonora Cocco‎ et al.
  • Therapeutics and clinical risk management‎
  • 2015‎

Several treatments are currently available for relapsing-remitting multiple sclerosis. Among them, interferon (IFN) beta remains a valid treatment approach because of its good benefit/risk profile. Due to the need for frequent administration (weekly, at a minimum), the use of IFN beta is limited by uncomfortable side effects that could reduce adherence to and persistence with the treatment. The use of subcutaneous polyethylene glycol (PEG)ylated interferon beta-1a (PEG-IFN) has been proposed to offer a better combination of pharmacokinetic and pharmacodynamic profiles and therapy-related side effects. A 125 μg dose of PEG-IFN given every 2 or 4 weeks was tested in two Phase I studies and shown to be as safe and efficient as IFN beta-1a but with a longer half-life. A Phase III trial (ADVANCE) comparing 125 μg of PEG-IFN given every 2 or 4 weeks with placebo in 1,512 patients with relapsing-remitting multiple sclerosis showed significant reductions in both the annualized relapse rate (ARR) and the occurrence of new or newly enlarged T2 brain lesions in both experimental groups versus placebo after the first year. Moreover, 38% fewer patients showed progression of disability (P=0.04) in the PEG-IFN groups. During the second year, the ARR was further reduced in the PEG-IFN 2-week treatment group (0.230 at 1 year versus 0.178 at 2 years) and was maintained in the 4-week treatment group. Patients who received immediate PEG-IFN treatment showed improved clinical efficacy (ARR, risk of relapse, 12-week disability progression) and magnetic resonance imaging parameters (new T2 and newly enlarging lesions, gadolinium-positive lesions) compared with those with delayed treatment. The effects were more evident with the 2-week dose for all endpoints considered. Furthermore, PEG-IFN was well tolerated, and no new safety concerns arose. In conclusion, PEG-IFN has good efficacy and a good safety profile. The available data support the use of PEG-IFN as a suitable therapeutic option in patients with relapsing-remitting multiple sclerosis.


Immunomodulators and immunosuppressants for relapsing-remitting multiple sclerosis: a network meta-analysis.

  • Marien Gonzalez-Lorenzo‎ et al.
  • The Cochrane database of systematic reviews‎
  • 2024‎

Different therapeutic strategies are available for the treatment of people with relapsing-remitting multiple sclerosis (RRMS), including immunomodulators, immunosuppressants and biological agents. Although each one of these therapies reduces relapse frequency and slows disability accumulation compared to no treatment, their relative benefit remains unclear. This is an update of a Cochrane review published in 2015.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: