Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 2,771 papers

Beta-band intermuscular coherence: a novel biomarker of upper motor neuron dysfunction in motor neuron disease.

  • Karen M Fisher‎ et al.
  • Brain : a journal of neurology‎
  • 2012‎

In motor neuron disease, the focus of therapy is to prevent or slow neuronal degeneration with neuroprotective pharmacological agents; early diagnosis and treatment are thus essential. Incorporation of needle electromyographic evidence of lower motor neuron degeneration into diagnostic criteria has undoubtedly advanced diagnosis, but even earlier diagnosis might be possible by including tests of subclinical upper motor neuron disease. We hypothesized that beta-band (15-30 Hz) intermuscular coherence could be used as an electrophysiological marker of upper motor neuron integrity in such patients. We measured intermuscular coherence in eight patients who conformed to established diagnostic criteria for primary lateral sclerosis and six patients with progressive muscular atrophy, together with 16 age-matched controls. In the primary lateral sclerosis variant of motor neuron disease, there is selective destruction of motor cortical layer V pyramidal neurons and degeneration of the corticospinal tract, without involvement of anterior horn cells. In progressive muscular atrophy, there is selective degeneration of anterior horn cells but a normal corticospinal tract. All patients with primary lateral sclerosis had abnormal motor-evoked potentials as assessed using transcranial magnetic stimulation, whereas these were similar to controls in progressive muscular atrophy. Upper and lower limb intermuscular coherence was measured during a precision grip and an ankle dorsiflexion task, respectively. Significant beta-band coherence was observed in all control subjects and all patients with progressive muscular atrophy tested, but not in the patients with primary lateral sclerosis. We conclude that intermuscular coherence in the 15-30 Hz range is dependent on an intact corticospinal tract but persists in the face of selective anterior horn cell destruction. Based on the distributions of coherence values measured from patients with primary lateral sclerosis and control subjects, we estimated the likelihood that a given measurement reflects corticospinal tract degeneration. Therefore, intermuscular coherence has potential as a quantitative test of subclinical upper motor neuron involvement in motor neuron disease.


Prefrontal cortical thickness in motor neuron disease.

  • Judith Machts‎ et al.
  • NeuroImage. Clinical‎
  • 2018‎

To examine whether the distribution of prefrontal cortical thickness in patients with motor neuron disease is normal or bimodal and how it compares to the normal population.


Identification and outcomes of clinical phenotypes in amyotrophic lateral sclerosis/motor neuron disease: Australian National Motor Neuron Disease observational cohort.

  • Paul Talman‎ et al.
  • BMJ open‎
  • 2016‎

To capture the clinical patterns, timing of key milestones and survival of patients presenting with amyotrophic lateral sclerosis/motor neuron disease (ALS/MND) within Australia.


Gut inflammation and dysbiosis in human motor neuron disease.

  • Julie Rowin‎ et al.
  • Physiological reports‎
  • 2017‎

Amyotrophic lateral sclerosis (ALS) is a systemic disorder that involves dysfunction of multiple organs. Growing evidence has shown that neurodegenerative disorders with gut dysbiosis affect the central nervous system via pro-inflammatory mediators thus impacting gut-brain communications. We have demonstrated dysbiosis and increased intestinal permeability in the SOD1G93A ALS mouse model. In this study, we comprehensively examined the human gut microbiome in stool samples and evaluated infection and markers of intestinal inflammation in five patients with ALS and motor neuron disorders. Five patients we studied all had alteration in their gut microbiome characterized by a low diversity of the microbiome, compared to healthy cohorts with relatively intact abundance. Firmicutes and Bacteroidetes are the two major members of bacteria at the phylum level. Low Ruminococcus spp occurred in three patients with low Firmicutes/Bacteroidetes (F/B) ratio. A majority of patients had signs of intestinal inflammation. This is the first comprehensive examination of inflammatory markers in the stool of ALS patients. Studies in gut health and microbiome related to the onset and progression of ALS may reveal novel therapeutic targets for disease modulation.


Altered SYNJ2BP-mediated mitochondrial-ER contacts in motor neuron disease.

  • Naemeh Pourshafie‎ et al.
  • Neurobiology of disease‎
  • 2022‎

Synaptojanin 2 binding protein (SYNJ2BP) is an outer mitochondrial membrane protein with a cytosolic PDZ domain that functions as a cellular signaling hub. Few studies have evaluated its role in disease. Here we use induced pluripotent stem cell (iPSC)-derived motor neurons and post-mortem tissue from patients with two hereditary motor neuron diseases, spinal and bulbar muscular atrophy (SBMA) and amyotrophic lateral sclerosis type 4 (ALS4), and show that SYNJ2BP expression is increased in diseased motor neurons. Similarly, we show that SYNJ2BP expression increases in iPSC-derived motor neurons undergoing stress. Using proteomic analysis, we found that elevated SYNJ2BP alters the cellular distribution of mitochondria and increases mitochondrial-ER membrane contact sites. Furthermore, decreasing SYNJ2BP levels improves mitochondrial oxidative function in the diseased motor neurons. Together, our observations offer new insight into the molecular pathology of motor neuron disease and the role of SYNJ2BP in mitochondrial dysfunction.


Plastic changes in the spinal cord in motor neuron disease.

  • Francesco Fornai‎ et al.
  • BioMed research international‎
  • 2014‎

In the present paper, we analyze the cell number within lamina X at the end stage of disease in a G93A mouse model of ALS; the effects induced by lithium; the stem-cell like phenotype of lamina X cells during ALS; the differentiation of these cells towards either a glial or neuronal phenotype. In summary we found that G93A mouse model of ALS produces an increase in lamina X cells which is further augmented by lithium administration. In the absence of lithium these nestin positive stem-like cells preferentially differentiate into glia (GFAP positive), while in the presence of lithium these cells differentiate towards a neuron-like phenotype ( β III-tubulin, NeuN, and calbindin-D28K positive). These effects of lithium are observed concomitantly with attenuation in disease progression and are reminiscent of neurogenetic effects induced by lithium in the subependymal ventricular zone of the hippocampus.


Frontotemporal Pathology in Motor Neuron Disease Phenotypes: Insights From Neuroimaging.

  • Mary Clare McKenna‎ et al.
  • Frontiers in neurology‎
  • 2021‎

Frontotemporal involvement has been extensively investigated in amyotrophic lateral sclerosis (ALS) but remains relatively poorly characterized in other motor neuron disease (MND) phenotypes such as primary lateral sclerosis (PLS), progressive muscular atrophy (PMA), spinal muscular atrophy (SMA), spinal bulbar muscular atrophy (SBMA), post poliomyelitis syndrome (PPS), and hereditary spastic paraplegia (HSP). This review focuses on insights from structural, metabolic, and functional neuroimaging studies that have advanced our understanding of extra-motor disease burden in these phenotypes. The imaging literature is limited in the majority of these conditions and frontotemporal involvement has been primarily evaluated by neuropsychology and post mortem studies. Existing imaging studies reveal that frontotemporal degeneration can be readily detected in ALS and PLS, varying degree of frontotemporal pathology may be captured in PMA, SBMA, and HSP, SMA exhibits cerebral involvement without regional predilection, and there is limited evidence for cerebral changes in PPS. Our review confirms the heterogeneity extra-motor pathology across the spectrum of MNDs and highlights the role of neuroimaging in characterizing anatomical patterns of disease burden in vivo. Despite the contribution of neuroimaging to MND research, sample size limitations, inclusion bias, attrition rates in longitudinal studies, and methodological constraints need to be carefully considered. Frontotemporal involvement is a quintessential clinical facet of MND which has important implications for screening practices, individualized management strategies, participation in clinical trials, caregiver burden, and resource allocation. The academic relevance of imaging frontotemporal pathology in MND spans from the identification of genetic variants, through the ascertainment of presymptomatic changes to the design of future epidemiology studies.


The Benefit of Non-invasive Ventilation in Motor Neuron Disease.

  • Laura J Walsh‎ et al.
  • The open respiratory medicine journal‎
  • 2020‎

Motor Neuron Disease (MND) is a progressive neurodegenerative disorder leading to respiratory muscle weakness with dyspnoea, morning headaches, orthopnoea, poor concentration, unrefreshing sleep, fatigue and daytime somnolence. Respiratory failure is the primary cause of death in those with MND.


Genotype-phenotype characterisation of long survivors with motor neuron disease in Scotland.

  • Danielle J Leighton‎ et al.
  • Journal of neurology‎
  • 2023‎

We investigated the phenotypes and genotypes of a cohort of 'long-surviving' individuals with motor neuron disease (MND) to identify potential targets for prognostication.


Structural and functional brain signatures of C9orf72 in motor neuron disease.

  • Federica Agosta‎ et al.
  • Neurobiology of aging‎
  • 2017‎

This study investigated structural and functional magnetic resonance imaging abnormalities in hexanucleotide repeat expansion in chromosome 9 open reading frame 72 (C9orf72) motor neuron disease (MND) relative to disease severity-matched sporadic MND cases. We enrolled 19 C9orf72 and 67 disease severity-matched sporadic MND patients, and 22 controls. Sporadic cases were grouped in patients with: no cognitive/behavioral deficits (sporadic-motor); same patterns of cognitive/behavioral impairment as C9orf72 cases (sporadic-cognitive); shorter disease duration versus other sporadic groups (sporadic-early). C9orf72 patients showed cerebellar and thalamic atrophy versus all sporadic cases. All MND patients showed motor, frontal, and temporoparietal cortical thinning and motor and extramotor white matter damage versus controls, independent of genotype and presence of cognitive impairment. Compared with sporadic-early, C9orf72 patients revealed an occipital cortical thinning. C9orf72 patients had enhanced visual network functional connectivity versus sporadic-motor and sporadic-early cases. Structural cerebellar and thalamic damage and posterior cortical alterations are the brain magnetic resonance imaging signatures of C9orf72 MND. Frontotemporal cortical and widespread white matter involvement are likely to be an effect of the disease evolution rather than a C9orf72 marker.


Mutant Profilin1 transgenic mice recapitulate cardinal features of motor neuron disease.

  • Daniel Fil‎ et al.
  • Human molecular genetics‎
  • 2017‎

The recent identification of profilin1 mutations in 25 familial ALS cases has linked altered function of this cytoskeleton-regulating protein to the pathogenesis of motor neuron disease. To investigate the pathological role of mutant profilin1 in motor neuron disease, we generated transgenic lines of mice expressing human profilin1 with a mutation at position 118 (hPFN1G118V). One of the mouse lines expressing high levels of mutant human PFN1 protein in the brain and spinal cord exhibited many key clinical and pathological features consistent with human ALS disease. These include loss of lower (ventral horn) and upper motor neurons (corticospinal motor neurons in layer V), mutant profilin1 aggregation, abnormally ubiquitinated proteins, reduced choline acetyltransferase (ChAT) enzyme expression, fragmented mitochondria, glial cell activation, muscle atrophy, weight loss, and reduced survival. Our investigations of actin dynamics and axonal integrity suggest that mutant PFN1 protein is associated with an abnormally low filamentous/globular (F/G)-actin ratio that may be the underlying cause of severe damage to ventral root axons resulting in a Wallerian-like degeneration. These observations indicate that our novel profilin1 mutant mouse line may provide a new ALS model with the opportunity to gain unique perspectives into mechanisms of neurodegeneration that contribute to ALS pathogenesis.


Inhibition of Cytohesins Protects against Genetic Models of Motor Neuron Disease.

  • Jinbin Zhai‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2015‎

Mutant genes that underlie Mendelian forms of amyotrophic lateral sclerosis (ALS) and biochemical investigations of genetic disease models point to potential driver pathophysiological events involving endoplasmic reticulum (ER) stress and autophagy. Several steps in these cell biological processes are known to be controlled physiologically by small ADP-ribosylation factor (ARF) signaling. Here, we investigated the role of ARF guanine nucleotide exchange factors (GEFs), cytohesins, in models of ALS. Genetic or pharmacological inhibition of cytohesins protects motor neurons in vitro from proteotoxic insults and rescues locomotor defects in a Caenorhabditis elegans model of disease. Cytohesins form a complex with mutant superoxide dismutase 1 (SOD1), a known cause of familial ALS, but this is not associated with a change in GEF activity or ARF activation. ER stress evoked by mutant SOD1 expression is alleviated by antagonism of cytohesin activity. In the setting of mutant SOD1 toxicity, inhibition of cytohesin activity enhances autophagic flux and reduces the burden of misfolded SOD1. These observations suggest that targeting cytohesins may have potential benefits for the treatment of ALS.


Post-polio Syndrome: More Than Just a Lower Motor Neuron Disease.

  • Stacey Li Hi Shing‎ et al.
  • Frontiers in neurology‎
  • 2019‎

Post-polio syndrome (PPS) is a neurological condition that affects polio survivors decades after their initial infection. Despite its high prevalence, the etiology of PPS remains elusive, mechanisms of progression are poorly understood, and the condition is notoriously under-researched. While motor dysfunction is a hallmark feature of the condition, generalized fatigue, sleep disturbance, decreased endurance, neuropsychological deficits, sensory symptoms, and chronic pain are also often reported and have considerable quality of life implications in PPS. The non-motor aspects of PPS are particularly challenging to evaluate, quantify, and treat. Generalized fatigue is one of the most distressing symptoms of PPS and is likely to be multifactorial due to weight-gain, respiratory compromise, poor sleep, and polypharmacy. No validated diagnostic, monitoring, or prognostic markers have been developed in PPS to date and the mainstay of therapy centers on symptomatic relief and individualized rehabilitation strategies such as energy conservation and muscle strengthening exercise regimes. Despite a number of large clinical trials in PPS, no effective disease-modifying pharmacological treatments are currently available.


MicroRNA Profiling Reveals Marker of Motor Neuron Disease in ALS Models.

  • Mariah L Hoye‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2017‎

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder marked by the loss of motor neurons (MNs) in the brain and spinal cord, leading to fatally debilitating weakness. Because this disease predominantly affects MNs, we aimed to characterize the distinct expression profile of that cell type to elucidate underlying disease mechanisms and to identify novel targets that inform on MN health during ALS disease time course. microRNAs (miRNAs) are short, noncoding RNAs that can shape the expression profile of a cell and thus often exhibit cell-type-enriched expression. To determine MN-enriched miRNA expression, we used Cre recombinase-dependent miRNA tagging and affinity purification in mice. By defining the in vivo miRNA expression of MNs, all neurons, astrocytes, and microglia, we then focused on MN-enriched miRNAs via a comparative analysis and found that they may functionally distinguish MNs postnatally from other spinal neurons. Characterizing the levels of the MN-enriched miRNAs in CSF harvested from ALS models of MN disease demonstrated that one miRNA (miR-218) tracked with MN loss and was responsive to an ALS therapy in rodent models. Therefore, we have used cellular expression profiling tools to define the distinct miRNA expression of MNs, which is likely to enrich future studies of MN disease. This approach enabled the development of a novel, drug-responsive marker of MN disease in ALS rodents.SIGNIFICANCE STATEMENT Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease in which motor neurons (MNs) in the brain and spinal cord are selectively lost. To develop tools to aid in our understanding of the distinct expression profiles of MNs and, ultimately, to monitor MN disease progression, we identified small regulatory microRNAs (miRNAs) that were highly enriched or exclusive in MNs. The signal for one of these MN-enriched miRNAs is detectable in spinal tap biofluid from an ALS rat model, where its levels change as disease progresses, suggesting that it may be a clinically useful marker of disease status. Furthermore, rats treated with ALS therapy have restored expression of this MN RNA marker, making it an MN-specific and drug-responsive marker for ALS rodents.


Amyotrophic Lateral Sclerosis: A Neurodegenerative Motor Neuron Disease With Ocular Involvement.

  • Pilar Rojas‎ et al.
  • Frontiers in neuroscience‎
  • 2020‎

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that causes degeneration of the lower and upper motor neurons and is the most prevalent motor neuron disease. This disease is characterized by muscle weakness, stiffness, and hyperreflexia. Patients survive for a short period from the onset of the disease. Most cases are sporadic, with only 10% of the cases being genetic. Many genes are now known to be involved in familial ALS cases, including some of the sporadic cases. It has also been observed that, in addition to genetic factors, there are numerous molecular mechanisms involved in these pathologies, such as excitotoxicity, mitochondrial disorders, alterations in axonal transport, oxidative stress, accumulation of misfolded proteins, and neuroinflammation. This pathology affects the motor neurons, the spinal cord, the cerebellum, and the brain, but recently, it has been shown that it also affects the visual system. This impact occurs not only at the level of the oculomotor system but also at the retinal level, which is why the retina is being proposed as a possible biomarker of this pathology. The current review discusses the main aspects mentioned above related to ALS, such as the main genes involved, the most important molecular mechanisms that affect this pathology, its ocular involvement, and the possible usefulness of the retina as a biomarker.


Genetic epidemiology of motor neuron disease-associated variants in the Scottish population.

  • Holly A Black‎ et al.
  • Neurobiology of aging‎
  • 2017‎

Genetic understanding of motor neuron disease (MND) has evolved greatly in the past 10 years, including the recent identification of association between MND and variants in TBK1 and NEK1. Our aim was to determine the frequency of pathogenic variants in known MND genes and to assess whether variants in TBK1 and NEK1 contribute to the burden of MND in the Scottish population. SOD1, TARDBP, OPTN, TBK1, and NEK1 were sequenced in 441 cases and 400 controls. In addition to 44 cases known to carry a C9orf72 hexanucleotide repeat expansion, we identified 31 cases and 2 controls that carried a loss-of-function or pathogenic variant. Loss-of-function variants were found in TBK1 in 3 cases and no controls and, separately, in NEK1 in 3 cases and no controls. This study provides an accurate description of the genetic epidemiology of MND in Scotland and provides support for the contribution of both TBK1 and NEK1 to MND susceptibility in the Scottish population.


Novel VRK1 Mutations in a Patient with Childhood-onset Motor Neuron Disease.

  • Genpei Yamaura‎ et al.
  • Internal medicine (Tokyo, Japan)‎
  • 2019‎

A 24-year-old Japanese man exhibited slowly progressive gait disturbance from childhood to young adulthood. Physical and physiological examinations showed the involvement of both upper and lower motor neurons, fulfilling the diagnostic criteria for amyotrophic lateral sclerosis (ALS). Mild cognitive impairment and subclinical sensory involvement were also observed. A genetic analysis revealed novel compound heterozygous mutations, c.767C>T (p.Thr256Ile) and c.800A>G (p.Asp267Gly), in the vaccinia-related kinase 1 gene (VRK1). This is the first report of a Japanese patient with a motor neuron disease phenotype caused by VRK1 mutations. This diagnosis should be considered in atypical cases of juvenile-onset and slowly progressive types of motor neuron disease.


Stem cell transplantation for motor neuron disease: current approaches and future perspectives.

  • Genevieve Gowing‎ et al.
  • Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics‎
  • 2011‎

Motor neuron degeneration leading to muscle atrophy and death is a pathological hallmark of disorders, such as amyotrophic lateral sclerosis or spinal muscular atrophy. No effective treatment is available for these devastating diseases. At present, cell-based therapies targeting motor neuron replacement, support, or as a vehicle for the delivery of neuroprotective molecules are being investigated. Although many challenges and questions remain, the beneficial effects observed following transplantation therapy in animal models of motor neuron disease has sparked hope and a number of clinical trials. Here, we provide a comprehensive review of cell-based therapeutics for motor neuron disorders, with a particular emphasis on amyotrophic lateral sclerosis.


The critical role of membralin in postnatal motor neuron survival and disease.

  • Bo Yang‎ et al.
  • eLife‎
  • 2015‎

Hitherto, membralin has been a protein of unknown function. Here, we show that membralin mutant mice manifest a severe and early-onset motor neuron disease in an autosomal recessive manner, dying by postnatal day 5-6. Selective death of lower motor neurons, including those innervating the limbs, intercostal muscles, and diaphragm, is predominantly responsible for this fatal phenotype. Neural expression of a membralin transgene completely rescues membralin mutant mice. Mechanistically, we show that membralin interacts with Erlin2, an endoplasmic reticulum (ER) membrane protein that is located in lipid rafts and known to be important in ER-associated protein degradation (ERAD). Accordingly, the degradation rate of ERAD substrates is attenuated in cells lacking membralin. Membralin mutations or deficiency in mouse models induces ER stress, rendering neurons more vulnerable to cell death. Our study reveals a critical role of membralin in motor neuron survival and suggests a novel mechanism for early-onset motor neuron disease.


Gene4MND: An Integrative Genetic Database and Analytic Platform for Motor Neuron Disease.

  • Guihu Zhao‎ et al.
  • Frontiers in molecular neuroscience‎
  • 2021‎

No abstract available


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: