Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 10 papers out of 10 papers

Validated assessment tools for screen media use: A systematic review.

  • Oriana Perez‎ et al.
  • PloS one‎
  • 2023‎

Accurate measurement of adult and child screen media use are needed to robustly assess its impact on health outcomes. Our objective was to systematically review screen media use measurement tools that have been validated against an objective "gold standard" tool.


Static and Dynamic Changes of Amplitude of Low-Frequency Fluctuations in Cervical Discogenic Pain.

  • Mingyue Ma‎ et al.
  • Frontiers in neuroscience‎
  • 2020‎

Cervical discogenic pain (CDP) is a clinically common pain syndrome caused by cervical disk degeneration. A large number of studies have reported that CDP results in brain functional impairments. However, the detailed dynamic brain functional abnormalities in CDP are still unclear. In this study, using resting-state functional magnetic resonance imaging, we explored the neural basis of CDP with 40 CDP patients and 40 age-, gender-matched healthy controls to delineate the changes of the voxel-level static and dynamic amplitude of low frequency fluctuations (ALFF). We found increased static ALFF in left insula (INS) and posterior precuneus (PCu), and decreased static ALFF in left precentral/postcentral gyrus (PreCG/PoCG), thalamus (THA), and subgenual anterior cingulate cortex in CPD patients compared to healthy controls. We also found decreased dynamic ALFF in left PreCG/PoCG, right posterior middle temporal gyrus, and bilateral THA. Moreover, we found that static ALFF in left PreCG/PoCG and dynamic ALFF in THA were significantly negatively correlated with visual analog scale and disease duration, respectively. Our findings provide the neurophysiological basis for CDP and facilitate understanding the neuropathology of CDP.


Dissociable intrinsic functional networks support noun-object and verb-action processing.

  • Huichao Yang‎ et al.
  • Brain and language‎
  • 2017‎

The processing mechanism of verbs-actions and nouns-objects is a central topic of language research, with robust evidence for behavioral dissociation. The neural basis for these two major word and/or conceptual classes, however, remains controversial. Two experiments were conducted to study this question from the network perspective. Experiment 1 found that nodes of the same class, obtained through task-evoked brain imaging meta-analyses, were more strongly connected with each other than nodes of different classes during resting-state, forming segregated network modules. Experiment 2 examined the behavioral relevance of these intrinsic networks using data from 88 brain-damaged patients, finding that across patients the relative strength of functional connectivity of the two networks significantly correlated with the noun-object vs. verb-action relative behavioral performances. In summary, we found that verbs-actions and nouns-objects are supported by separable intrinsic functional networks and that the integrity of such networks accounts for the relative noun-object- and verb-action-selective deficits.


Is there a left hemispheric asymmetry for tool affordance processing?

  • Alice M Proverbio‎ et al.
  • Neuropsychologia‎
  • 2013‎

The perception of tools vs. other objects has been shown to activate the left premotor and somatosensory cortex, which represents object affordance associated with tool manipulability (Proverbio, Adorni, & D'Aniello, 2011). The question of whether hemispheric asymmetry depends on right hand use or is linked to a hemispheric functional specialization for fine-grained precision movement is unclear. Thus, in this paper, ERPs were recorded from 128 sites in response to the visual presentation of bidimensional (2D) pictures depicting unimanual (e.g., a hammer) and bimanual (e.g., a handlebar) tools (Study 1). Central N2 and prefrontal N400 components were much larger for bimanual than unimanual tools (over the left hemisphere for N400). SwLORETAs performed for both components showed at first the activation of the left parietal cortex (BA39) and then of the right homologous (BA40) one, for both grips but stronger for the bimanual coordination. At all times and for both grips, the left premotor cortex (BA6) was involved in coding action affordance, while only unimanual tools activated the left postcentral gyrus (BA3). In Study 2, unimanual tools were presented with an orientation congruent (standard) or incongruent to their interaction with the right hand (rotated), to manipulate affordance's quality. Standard objects elicited much larger ERP responses (namely: N1, N2, N400) than rotated tools (over the left hemisphere for N400). At the earliest stage (190-270 ms) the significant intracranial sources were of visual nature (mainly the contralateral precuneus). Regions representing motor information were not involved. Rotated tools induced a smaller activation in the STS and parahippocampal regions (possibly coding affordable biological motion and the spatial aspects of hand/object interaction), whereas rotated tools activated to a greater extent the dorsolateral prefrontal cortex (DLPF, BA9). In the later time window standard objects activated the left BA6 and the right BA40 more than rotated objects. Overall, these data suggest that viewing tools automatically activates mental representations associated with their manipulation. The left premotor cortex was found to be involved with any kind of object and grip, as early as 200 ms post-stimulus, thus supporting the hypothesis of a LH asymmetry in the neural representation of grasping, within this region. The right supramarginal gyrus was also found to be crucially involved later in time.


Neuroimaging mechanisms of high-frequency repetitive transcranial magnetic stimulation for treatment of amnestic mild cognitive impairment: a double-blind randomized sham-controlled trial.

  • Li-Qiong Yuan‎ et al.
  • Neural regeneration research‎
  • 2021‎

Individuals with amnestic mild cognitive impairment (aMCI) have a high risk of developing Alzheimer's disease. Although repetitive transcranial magnetic stimulation (rTMS) is considered a potentially effective treatment for cognitive impairment in patients with aMCI, the neuroimaging mechanisms are poorly understood. Therefore, we performed a double-blind randomized sham-controlled trial in which rTMS was applied to the left dorsolateral prefrontal cortex of aMCI patients recruited from a community near the Third Hospital Affiliated to Sun Yat-sen University, China. Twenty-four patients with aMCI were randomly assigned to receive true rTMS (treatment group, n = 12, 6 men and 6 women; age 65.08 ± 4.89 years) or sham stimulation (sham group, n = 12, 5 men and 7 women; age 64.67 ± 4.77 years). rTMS parameters included a stimulation frequency of 10 Hz, stimulation duration of 2 seconds, stimulation interval of 8 seconds, 20 repetitions at 80% of the motor threshold, and 400 pulses per session. rTMS/sham stimulation was performed five times per week over a period of 4 consecutive weeks. Our results showed that compared with baseline, Montreal Cognitive Assessment scores were significantly increased and the value of the amplitude of low-frequency fluctuation (ALFF) was significantly increased at the end of treatment and 1 month after treatment. Compared with the sham group, the ALFF values in the right inferior frontal gyrus, triangular part of the inferior frontal gyrus, right precuneus, left angular gyrus, and right supramarginal gyrus were significantly increased, and the ALFF values in the right superior frontal gyrus were significantly decreased in the treatment group. These findings suggest that high-frequency rTMS can effectively improve cognitive function in aMCI patients and alter spontaneous brain activity in cognitive-related brain areas. This study was approved by the Ethics Committee of Shenzhen Baoan Hospital of Southern Medical University, China (approval No. BYL20190901) on September 3, 2019, and registered in the Chinese Clinical Trials Registry (registration No. ChiCTR1900028180) on December 14, 2019.


Effects of rTMS Treatment on Cognitive Impairment and Resting-State Brain Activity in Stroke Patients: A Randomized Clinical Trial.

  • Mingyu Yin‎ et al.
  • Frontiers in neural circuits‎
  • 2020‎

Repetitive transcranial magnetic stimulation (rTMS) has been employed for motor function rehabilitation for stroke patients, but its effects on post-stroke cognitive impairment (PSCI) remains controversial.


Predicting and Characterizing Neurodegenerative Subtypes with Multimodal Neurocognitive Signatures of Social and Cognitive Processes.

  • Agustín Ibañez‎ et al.
  • Journal of Alzheimer's disease : JAD‎
  • 2021‎

Social cognition is critically compromised across neurodegenerative diseases, including the behavioral variant frontotemporal dementia (bvFTD), Alzheimer's disease (AD), and Parkinson's disease (PD). However, no previous study has used social cognition and other cognitive tasks to predict diagnoses of these conditions, let alone reporting the brain correlates of prediction outcomes.


Altered functional connectivity density in mild cognitive impairment with moxibustion treatment: A resting-state fMRI study.

  • Chengxiang Liu‎ et al.
  • Brain research‎
  • 2022‎

Mild cognitive impairment (MCI) is a general neurodegenerative disease. Moxibustion has been shown to have remarkable effect on cognitive improvement, however, less is known about the effect of moxibustion on MCI and its underlying neural mechanism. This study aimed to investigate the ameliorative brain network in MCI after treatments of acupoint-related moxibustion.


Mapping the Interactive Effects of ApoE Gene Polymorphism on Caudate Functional Connectivity in Mild Cognitive Impairment Associated With Parkinson's Disease.

  • Song'an Shang‎ et al.
  • Frontiers in neuroscience‎
  • 2020‎

Cognitive impairment (CI) is a frequent non-motor symptom of Parkinson's disease (PD). Caudate and Apolipoprotein E (ApoE) are biomarkers linked to CI in PD. There is little known about whether ApoE affects caudate in mild CI of PD (PD-MCI). We investigated the possible interactive effect of ApoE genotypes on caudate functional connectivity (FC) in PD-MCI.


Abnormal intrinsic functional hubs and connectivity in stable patients with COPD: a resting-state MRI study.

  • Haijun Li‎ et al.
  • Brain imaging and behavior‎
  • 2020‎

Chronic obstructive pulmonary disease (COPD) affects a large population and is closely associated with cognitive impairment. However, the mechanisms of cognitive impairment in COPD patients have not been unraveled. This study investigated the change in patterns of intrinsic functional hubs using a degree centrality (DC) analysis. The connectivity between these abnormal hubs with the remaining brain was also investigated using functional connectivity (FC). Nineteen stable patients with COPD and 20 normal controls(NC) underwent functional magnetic resonance imaging (MRI) examinations and clinical and neuropsychologic assessments. We measured the voxel-wise DC across the whole brain gray matter and the seed-based FC between these abnormal hubs in the remaining brain matter; the group difference was calculated. A partial correlation analysis was performed to assess the relationship between the abnormal DC and clinical variables in COPD patients. Compared to NC, the patients with COPD exhibited significantly decreased DC in the right lingual gyrus (LG), bilateral supplementary motor area (SMA), and right paracentral lobule (PCL). A further seed-based FC analysis found that COPD patients demonstrated significantly decreased FC between these abnormal hubs in several brain areas, including the left cerebellum anterior lobe, left lingual gyrus, left fusiform gyrus, right insula, right inferior frontal gyrus, limbic lobe, cingulate gyrus, left putamen, lentiform nucleus, right precuneus, and right paracentral lobule. A partial correlation analysis showed that the decreased DC in the right PCL was positively correlated with the FEV1 and FEV1/FVC, and the decreased DC in the SMA was positively correlated with naming and pH in COPD patients. This study demonstrates that there are intrinsic functional hubs and connectivity alterations that may reflect the aberrant information communication in the brain of COPD patients. These findings may help provide new insight for understanding the mechanisms of COPD-related cognitive impairment from whole brain functional connections.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: