Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 2,635 papers

Place aversion by morphine in offspring born of female morphine administered wistar rats.

  • Manizheh Karami‎ et al.
  • Iranian journal of pharmaceutical research : IJPR‎
  • 2011‎

This research was designed to study sexual differences in place conditioning induced by morphine in offspring born of female Wistar rats mated with drug-naïve males. Mothers were exposed to morphine during the 14(th)-16(th) days of gestational. Control dams were simply saline-injected. Female and male virgin offspring born of morphine-treated or saline-treated mothers were separately housed until become fully matured. A 3-day schedule of an unbiased conditioning procedure was used to the induce conditioning to morphine (2.5-7.5 mg/Kg, SC) in the offspring. According to the results, female offspring born of saline-administered mothers were morphine place-conditioned at lower doses of opioid (2.5 mg/Kg) in comparison to the males. An increase in locomotor activity in the females at 7.5 mg/Kg of opioid was also revealed. In contrast, administration of morphine (2.5-7.5 mg/Kg, SC), induced a significant aversion in either sexes of offspring born of morphine-exposed mothers. Moreover, female offspring of this category acquired more pronounced aversion at higher doses of morphine than males. In addition, a significant morphine-dose effect (7.5 mg/Kg, SC) on locomotor activity of these females' offspring was observed. This study may highlight sex differences in conditioning effects induced by morphine between offspring derived of morphine-treated mothers and those of saline-treated.


Positive Allosteric Modulation of CB1 Cannabinoid Receptor Signaling Enhances Morphine Antinociception and Attenuates Morphine Tolerance Without Enhancing Morphine- Induced Dependence or Reward.

  • Richard A Slivicki‎ et al.
  • Frontiers in molecular neuroscience‎
  • 2020‎

Opioid analgesics represent a critical treatment for chronic pain in the analgesic ladder of the World Health Organization. However, their use can result in a number of unwanted side-effects including incomplete efficacy, constipation, physical dependence, and overdose liability. Cannabinoids enhance the pain-relieving effects of opioids in preclinical studies and dampen unwanted side-effects resulting from excessive opioid intake. We recently reported that a CB1 positive allosteric modulator (PAM) exhibits antinociceptive efficacy in models of pathological pain and lacks the adverse side effects of direct CB1 receptor activation. In the present study, we evaluated whether a CB1 PAM would enhance morphine's therapeutic efficacy in an animal model of chemotherapy-induced neuropathic pain and characterized its impact on unwanted side-effects associated with chronic opioid administration. In paclitaxel-treated mice, both the CB1 PAM GAT211 and the opioid analgesic morphine reduced paclitaxel-induced behavioral hypersensitivities to mechanical and cold stimulation in a dose-dependent manner. Isobolographic analysis revealed that combinations of GAT211 and morphine resulted in anti-allodynic synergism. In paclitaxel-treated mice, a sub-threshold dose of GAT211 prevented the development of tolerance to the anti-allodynic effects of morphine over 20 days of once daily dosing. However, GAT211 did not reliably alter somatic withdrawal signs (i.e., jumps, paw tremors) in morphine-dependent neuropathic mice challenged with naloxone. In otherwise naïve mice, GAT211 also prolonged antinociceptive efficacy of morphine in the tail-flick test and reduced the overall right-ward shift in the ED50 for morphine to produce antinociception in the tail-flick test, consistent with attenuation of morphine tolerance. Pretreatment with GAT211 did not alter somatic signs of μ opioid receptor dependence in mice rendered dependent upon morphine via subcutaneous implantation of a morphine pellet. Moreover, GAT211 did not reliably alter μ-opioid receptor-mediated reward as measured by conditioned place preference to morphine. Our results suggest that a CB1 PAM may be beneficial in enhancing and prolonging the therapeutic properties of opioids while potentially sparing unwanted side-effects (e.g., tolerance) that occur with repeated opioid treatment.


Morphine Antinociception Restored by Use of Methadone in the Morphine-Resistant Inflammatory Pain State.

  • Chizuko Watanabe‎ et al.
  • Frontiers in pharmacology‎
  • 2020‎

The antinociceptive effect of methadone in the morphine-resistant inflammatory pain state was described in the paw-withdrawal test using the complete Freund's adjuvant (CFA)-induced mouse inflammatory pain model. After intraplantar (i.pl.) injection of CFA, thermal hyperalgesia was observed in the ipsilateral paw. The antinociceptive effects of subcutaneous (s.c.) injection of morphine, fentanyl, and oxycodone against thermal hyperalgesia in the inflammatory pain state were reduced in the ipsilateral paw 7 days after CFA pretreatment. On the contrary, the antinociceptive effect of s.c. injection of methadone was maintained in the ipsilateral paw 7 days after CFA pretreatment. The suppressed morphine antinociception in the CFA model mice was bilaterally restored following s.c. treatment with methadone 20 min prior to or 3 days after CFA pretreatment. The suppressed morphine antinociception was also bilaterally restored by intraperitoneal treatment with MK-801 30 min prior to CFA pretreatment; however, the s.c. injection of morphine 30 min prior to CFA pretreatment failed to restore the suppressed morphine antinociception in the CFA model mice. The expression level of mRNA for µ-opioid receptors 7 days after i.pl. pretreatment was not significantly changed by i.pl. pretreatment with CFA or s.c. pretreatment with methadone. In conclusion, methadone is extremely effective against thermal hyperalgesia in the morphine-resistant inflammatory pain state, and restores suppressed morphine antinociception in the inflammatory pain state without altering the expression level of mRNA for µ-opioid receptors.


Morphine induces changes in the gut microbiome and metabolome in a morphine dependence model.

  • Fuyuan Wang‎ et al.
  • Scientific reports‎
  • 2018‎

Opioid analgesics are frequently prescribed in the United States and worldwide. However, serious comorbidities, such as dependence, tolerance, immunosuppression and gastrointestinal disorders limit their long-term use. In the current study, a morphine-murine model was used to investigate the role of the gut microbiome and metabolome as a potential mechanism contributing to the negative consequences associated with opioid use. Results reveal a significant shift in the gut microbiome and metabolome within one day following morphine treatment compared to that observed after placebo. Morphine-induced gut microbial dysbiosis exhibited distinct characteristic signatures, including significant increase in communities associated with pathogenic function, decrease in communities associated with stress tolerance and significant impairment in bile acids and morphine-3-glucuronide/morphine biotransformation in the gut. Moreover, expansion of Enterococcus faecalis was strongly correlated with gut dysbiosis following morphine treatment, and alterations in deoxycholic acid (DCA) and phosphatidylethanolamines (PEs) were associated with opioid-induced metabolomic changes. Collectively, these results indicate that morphine induced distinct alterations in the gut microbiome and metabolome, contributing to negative consequences associated with opioid use. Therapeutics directed at maintaining microbiome homeostasis during opioid use may reduce the comorbidities associated with opioid use for pain management.


Morphine-induced hyperalgesia involves mu opioid receptors and the metabolite morphine-3-glucuronide.

  • Laurie-Anne Roeckel‎ et al.
  • Scientific reports‎
  • 2017‎

Opiates are potent analgesics but their clinical use is limited by side effects including analgesic tolerance and opioid-induced hyperalgesia (OIH). The Opiates produce analgesia and other adverse effects through activation of the mu opioid receptor (MOR) encoded by the Oprm1 gene. However, MOR and morphine metabolism involvement in OIH have been little explored. Hence, we examined MOR contribution to OIH by comparing morphine-induced hyperalgesia in wild type (WT) and MOR knockout (KO) mice. We found that repeated morphine administration led to analgesic tolerance and hyperalgesia in WT mice but not in MOR KO mice. The absence of OIH in MOR KO mice was found in both sexes, in two KO global mutant lines, and for mechanical, heat and cold pain modalities. In addition, the morphine metabolite morphine-3beta-D-glucuronide (M3G) elicited hyperalgesia in WT but not in MOR KO animals, as well as in both MOR flox and MOR-Nav1.8 sensory neuron conditional KO mice. M3G displayed significant binding to MOR and G-protein activation when using membranes from MOR-transfected cells or WT mice but not from MOR KO mice. Collectively our results show that MOR is involved in hyperalgesia induced by chronic morphine and its metabolite M3G.


Chronic paternal morphine exposure increases sensitivity to morphine-derived pain relief in male progeny.

  • Andre B Toussaint‎ et al.
  • Science advances‎
  • 2022‎

Parental history of opioid exposure is seldom considered when prescribing opioids for pain relief. To explore whether parental opioid exposure may affect sensitivity to morphine in offspring, we developed a "rat pain scale" with high-speed imaging, machine learning, and mathematical modeling in a multigenerational model of paternal morphine self-administration. We find that the most commonly used tool to measure mechanical sensitivity in rodents, the von Frey hair, is not painful in rats during baseline conditions. We also find that male progeny of morphine-treated sires had no baseline changes in mechanical pain sensitivity but were more sensitive to the pain-relieving effects of morphine. Using RNA sequencing across pain-relevant brain regions, we identify gene expression changes within the regulator of G protein signaling family of proteins that may underlie this multigenerational phenotype. Together, this rat pain scale revealed that paternal opioid exposure increases sensitivity to morphine's pain-relieving effects in male offspring.


Changes in Plasma Metabolic Signature upon Acute and Chronic Morphine Administration in Morphine-Tolerant Mice.

  • Naseer A Kutchy‎ et al.
  • Metabolites‎
  • 2023‎

Morphine administration causes system-level metabolic changes. Here, we show that morphine-tolerant mice exhibited distinct plasma metabolic signatures upon acute and chronic administration. We utilized a mouse model of morphine tolerance by exposing mice to increasing doses of the drug over 4 days. We collected plasma samples from mice undergoing acute or chronic morphine or saline injections and analyzed them using targeted GC-MS-based metabolomics to profile approximately 80 metabolites involved in the central carbon, amino acid, nucleotide, and lipid metabolism. Our findings reveal distinct alterations in plasma metabolite concentrations in response to acute or chronic morphine intake, and these changes were linked to the development of tolerance to morphine's analgesic effects. We identified several metabolites that had been differentially affected by acute versus chronic morphine use, suggesting that metabolic changes may be mitigated by prolonged exposure to the drug. Morphine-tolerant mice showed a restoration of amino acid and glycolytic metabolites. Additionally, we conducted reconstructed metabolic network analysis on the first 30 VIP-ranked metabolites from the PLSDA of the saline, acute, and morphine-tolerant mice groups, which uncovered four interaction networks involving the amino acid metabolism, the TCA cycle, the glutamine-phenylalanine-tyrosine pathway, and glycolysis. These pathways were responsible for the metabolic differences observed following distinct morphine administration regimens. Overall, this study provides a valuable resource for future investigations into the role of metabolites in morphine-induced analgesia and associated effects following acute or chronic use in mice.


A comparison between spontaneous electroencephalographic activities induced by morphine and morphine-related environment in rats.

  • Yan-Fang Zuo‎ et al.
  • Brain research‎
  • 2007‎

Previous studies demonstrated that drug cues could elicit drug-like or withdrawal-like effect, both subjectively and physiologically. However, few studies have compared the central activities induced by a drug-related environment and the drug itself. The aim of this study was to observe and compare electroencephalographic (EEG) changes induced by acute morphine administration and by the morphine-related environment. EEG activities were recorded via twelve skull electrodes scattered on the left and right cortex in conscious, freely moving rats, either after acute morphine administration or after successful training of conditioned place preference. Acute administration of morphine (0.1, 0.5, 1, 5, 10, 20 mg/kg, i.p.) produced an increase in absolute EEG power in the delta, theta, alpha1, alpha2, beta1, and beta2 bands, as well as a decrease in the gamma band. Topographic mapping revealed a maximal increase in the lateral leads in the theta band and a maximal change in the centro-frontal region in the remaining bands. After place conditioning training, the morphine-related environment induced a diffuse decrease in absolute power in the delta, theta, alpha1, alpha2, beta1, and beta2 bands, which was opposite to the changes induced by acute morphine administration. In addition, the changes in relative power induced by the two situations also diverged. These results indicate that the central mechanisms underlying the motivation of morphine-induced place preference may be somehow different from those underlying the reward effects produced by acute morphine administration.


(+)-Morphine and (-)-morphine stereoselectively attenuate the (-)-morphine-produced tail-flick inhibition via the naloxone-sensitive sigma receptor in the ventral periaqueductal gray of the rat.

  • Maia Terashvili‎ et al.
  • European journal of pharmacology‎
  • 2007‎

We have previously demonstrated that (+)-morphine and (-)-morphine pretreated spinally for 45 min stereoselectively attenuates the tail-flick inhibition produced by (-)-morphine given spinally in the mouse. The present study is then undertaken to determine if the same phenomenon observed in the mouse spinal cord can also take place in the ventral periaqueductal gray of the rat. Pretreatment with (+)-morphine for 45 min at 0.3 to 3.3 fmol dose-dependently attenuated the tail-flick inhibition produced by (-)-morphine (9 nmol) given into the ventral periaqueductal gray. Likewise, pretreatment with (-)-morphine for 45 min at a higher dose (3-900 pmol), which given alone did not affect the baseline tail-flick latency, also dose-dependently attenuated the tail-flick inhibition produced by (-)-morphine. Thus, (+)-morphine is approximately 270,000-fold more potent than (-)-morphine in attenuating the (-)-morphine-produced tail-flick inhibition. The attenuation of the (-)-morphine-produced tail-flick inhibition induced by (+)-morphine or (-)-morphine was dose-dependently reversed by (+)-naloxone (27.5 to 110 pmol) pretreatment for 50 min given into the ventral periaqueductal gray. Pretreatment with the sigma receptor antagonist BD1047 (N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(dimethylamino)ethylamine dihydrobromide) (11-45 nmol) for 45 min given into the ventral periaqueductal gray also reversed dose-dependently the attenuation of the (-)-morphine-produced tail-flick inhibition induced by (+)-morphine or (-)-morphine, indicating that the effects are mediated by the activation of the sigma receptors. Since (+)-morphine, (-)-morphine and (+)-naloxone do not have any affinity for the naloxone-inaccessible sigma receptors, we therefore propose that (+)-morphine and (-)-morphine attenuate the (-)-morphine-produced tail-flick inhibition via the activation of the naloxone-sensitive sigma receptor originally proposed by Tsao and Su [Tsao, L.T., Su, T.P., 1997. Naloxone-sensitive, haloperidol-sensitive, [(3)H](+)-SKF-1047-binding protein partially purified from rat liver and rat brain membranes: an opioid/sigma receptor. Synapse 25, 117-124].


Morphine-3-glucuronide causes antinociceptive cross-tolerance to morphine and increases spinal substance P expression.

  • Kim J Blomqvist‎ et al.
  • European journal of pharmacology‎
  • 2020‎

Morphine-3-glucuronide (M3G), the main metabolite of morphine, has been implicated in the development of tolerance and of opioid-induced hyperalgesia, both limiting the analgesic use of morphine. We evaluated the acute and chronic effects of M3G and morphine as well as development of antinociceptive cross-tolerance between morphine and M3G after intrathecal administration and assessed the expression of pain-associated neurotransmitter substance P in the spinal cord. Sprague-Dawley rats received intrathecal M3G or morphine twice daily for 6 days. Nociception and tactile allodynia were measured with von Frey filaments after acute and chronic treatments. Substance P levels in the dorsal horn of the spinal cord were determined by immunohistochemistry after 4-day treatments. Acute morphine caused antinociception as expected, whereas acute M3G caused tactile allodynia, as did both chronic M3G and morphine. Chronic M3G also induced antinociceptive cross-tolerance to morphine. M3G and morphine increased substance P levels similarly in the nociceptive laminae of the spinal cord. This study shows that chronic intrathecal M3G sensitises animals to mechanical stimulation and elevates substance P levels in the nociceptive laminae of the spinal cord. Chronic M3G also induces antinociceptive cross-tolerance to morphine. Thus, chronic M3G exposure might contribute to morphine-induced tolerance and opioid-induced hyperalgesia.


Monoclonal antibody targeting mu-opioid receptor attenuates morphine tolerance via enhancing morphine-induced receptor endocytosis.

  • Jia-Jia Zhang‎ et al.
  • Journal of pharmaceutical analysis‎
  • 2023‎

Morphine is a frequently used analgesic that activates the mu-opioid receptor (MOR), which has prominent side effects of tolerance. Although the inefficiency of morphine in inducing the endocytosis of MOR underlies the development of morphine tolerance, currently, there is no effective therapy to treat morphine tolerance. In the current study, we aimed to develop a monoclonal antibody (mAb) precisely targeting MOR and to determine its therapeutic efficacy on morphine tolerance and the underlying molecular mechanisms. We successfully prepared a mAb targeting MOR, named 3A5C7, by hybridoma technique using a strategy of deoxyribonucleic acid immunization combined with cell immunization, and identified it as an immunoglobulin G mAb with high specificity and affinity for MOR and binding ability to antigens with spatial conformation. Treatment of two cell lines, HEK293T and SH-SY5Y, with 3A5C7 enhanced morphine-induced MOR endocytosis via a G protein-coupled receptor kinase 2 (GRK2)/β-arrestin2-dependent mechanism, as demonstrated by immunofluorescence staining, flow cytometry, Western blotting, coimmunoprecipitation, and small interfering ribonucleic acid (siRNA)-based knockdown. This mAb also allowed MOR recycling from cytoplasm to plasma membrane and attenuated morphine-induced phosphorylation of MOR. We established an in vitro morphine tolerance model using differentiated SH-SY5Y cells induced by retinoic acid. Western blot, enzyme-linked immunosorbent assays, and siRNA-based knockdown revealed that 3A5C7 mAb diminished hyperactivation of adenylate cyclase, the in vitro biomarker of morphine tolerance, via the GRK2/β-arrestin2 pathway. Furthermore, in vivo hotplate test demonstrated that chronic intrathecal administration of 3A5C7 significantly alleviated morphine tolerance in mice, and withdrawal jumping test revealed that both chronic and acute 3A5C7 intrathecal administration attenuated morphine dependence. Finally, intrathecal electroporation of silencing short hairpin RNA illustrated that the in vivo anti-tolerance and anti-dependence efficacy of 3A5C7 was mediated by enhanced morphine-induced MOR endocytosis via GRK2/β-arrestin2 pathway. Collectively, our study provided a therapeutic mAb, 3A5C7, targeting MOR to treat morphine tolerance, mediated by enhancing morphine-induced MOR endocytosis. The mAb 3A5C7 demonstrates promising translational value to treat clinical morphine tolerance.


Alterations produced by novobiocin during biliary excretion of morphine, morphine-3-glucuronide and other compounds.

  • D S Smith‎ et al.
  • The Journal of pharmacology and experimental therapeutics‎
  • 1974‎

No abstract available


Paternal preconception exposure to chronic morphine alters respiratory pattern in response to morphine in male offspring.

  • Maryam Azadi‎ et al.
  • Respiratory physiology & neurobiology‎
  • 2022‎

The clinical use of opioids is restricted by its deleterious impacts on respiratory system. Gaining a better understanding of an individual's susceptibility to adverse opioid effects is important to recognize patients at risk. Ancestral drug addiction has been shown to be associated with alterations in drug responsiveness in the progenies. In the current study, we sought to evaluate the effects of preconception paternal morphine consumption on respiratory parameters in response to acute morphine in male offspring during adulthood, using plethysmography technique. Male Wistar rats administered 10 days of increasing doses of morphine in the period of adolescence. Thereafter, following a 30-day abstinence time, adult males copulated with naïve females. The adult male offspring were examined for breathing response to morphine. Our results indicated that sires who introduce chronic morphine during adolescence leads to increase irregularity of respiratory pattern and asynchronization between inter-breath interval (IBI) and respiratory volume (RV) time series in male offspring. These findings provide evidence that chronic morphine use by parents even before pregnancy can affect respiratory pattern and response to morphine in the offspring.


Aloe vera Aqueous Extract Effect on Morphine Withdrawal Syndrome in Morphine-Dependent Female Rats.

  • Mohammad Reza Shahraki‎ et al.
  • International journal of high risk behaviors & addiction‎
  • 2014‎

Aloe vera is a medicinal herb used as an anti-inflammatory and sedative agent.


Intrathecal lamotrigine attenuates antinociceptive morphine tolerance and suppresses spinal glial cell activation in morphine-tolerant rats.

  • In-Gu Jun‎ et al.
  • Journal of Korean medical science‎
  • 2013‎

Glial cells play a critical role in morphine tolerance, resulting from repeated administration of morphine. Both the development and the expression of tolerance are suppressed by the analgesic lamotrigine. This study investigated the relationship between the ability of lamotrigine to maintain the antinociceptive effect of morphine during tolerance development and glial cell activation in the spinal cord. In a rat model, morphine (15 µg) was intrathecally injected once daily for 7 days to induce morphine tolerance. Lamotrigine (200 µg) was co-administered with morphine either for 7 days or the first or last 3 days of this 7 day period. Thermal nociception was measured. OX-42 and GFAP immunoreactivity, indicating spinal microglial and astrocytic activation were evaluated on day 8. Tolerance developed after 7 days of intrathecal morphine administration; however, this was completely blocked and reversed by co-administration of lamotrigine. When lamotrigine was coinjected with morphine on days 5-7, the morphine effect was partially restored. Glial cell activation increased with the development of morphine tolerance but was clearly inhibited in the presence of lamotrigine. These results suggest that, in association with the suppression of spinal glial cell activity, intrathecally coadministered lamotrigine attenuates antinociceptive tolerance to morphine.


Midazolam exacerbates morphine tolerance and morphine-induced hyperactive behaviors in young rats with burn injury.

  • Li Song‎ et al.
  • Brain research‎
  • 2014‎

Midazolam and morphine are often used in pediatric intensive care unit (ICU) for analgesia and sedation. However, how these two drugs interact behaviorally remains unclear. Here, we examined whether (1) co-administration of midazolam with morphine would exacerbate morphine tolerance and morphine-induced hyperactive behaviors, and (2) protein kinase C (PKC) would contribute to these behavioral changes. Male rats of 3-4 weeks old were exposed to a hindpaw burn injury. In Experiment 1, burn-injured young rats received once daily saline or morphine (10mg/kg, subcutaneous, s.c.), followed 30min later by either saline or midazolam (2mg/kg, intraperitoneal, i.p.), for 14 days beginning 3 days after burn injury. In Experiment 2, young rats with burn injury were administered with morphine (10mg/kg, s.c.), midazolam (2mg/kg, i.p.), and chelerythrine chloride (a non-specific PKC inhibitor, 10nmol, intrathecal) for 14 days. For both experiments, cumulative morphine anti-nociceptive dose-response (ED50) was tested and hyperactive behaviors such as jumping and scratching were recorded. Following 2 weeks of each treatment, ED50 dose was significantly increased in rats receiving morphine alone as compared with rats receiving saline or midazolam alone. The ED50 dose was further increased in rats receiving both morphine and midazolam. Co-administration of morphine and midazolam also exacerbated morphine-induced hyperactive behaviors. Expression of the NR1 subunit of the N-methyl-d-aspartate (NMDA) receptor and PKCγ in the spinal cord dorsal horn (immunohistochemistry; Western blot) was upregulated in burn-injured young rats receiving morphine alone or in combination with midazolam, and chelerythrine prevented the development of morphine tolerance. These results indicate that midazolam exacerbated morphine tolerance through a spinal NMDA/PKC-mediated mechanism.


Sensitivity to Morphine Reward Associates With Gut Dysbiosis in Rats With Morphine-Induced Conditioned Place Preference.

  • Jingyuan Zhang‎ et al.
  • Frontiers in psychiatry‎
  • 2020‎

Gut microbiota has been found to establish a bidirectional relationship with the central nervous system. Variations of the gut microbiota has been implicated in various mental disorders, including opioid use disorders. Morphine exposure has been repeatedly found to disrupt the gut microbiota, but association between the gut microbiota and the sensitivity to morphine reward remains unknown. In this study the conditioned place preference (CPP) paradigm was used for morphine-treated rats and saline-treated rats. After the CPP procedure, the morphine-treated rats were divided equally into the low and high CPP (L- and H-CPP) groups according to the CPP scores. We adopted 16S rRNA sequencing for the fecal bacterial communities at baseline and post-conditioning. By comparing the morphine-treated group with saline-treated group, we found alterations of microbial composition in the morphine-treated group, but no significant differences in alpha diversity. The L-CPP group and H-CPP group differed in microbial composition both before and after morphine treatment. The relative abundance of certain taxa was correlated to the CPP scores, such as Alloprevotella and Romboutsia. This study provides direct evidence that morphine exposure alters the composition of the gut microbiota in rats and that microbial alterations are correlated to the sensitivity to morphine reward. These findings may help develop novel therapeutic and preventive strategies for opioid use disorder.


ABCC3 genetic variants are associated with postoperative morphine-induced respiratory depression and morphine pharmacokinetics in children.

  • V Chidambaran‎ et al.
  • The pharmacogenomics journal‎
  • 2017‎

Respiratory depression (RD) is a serious side effect of morphine and detrimental to effective analgesia. We reported that variants of the ATP binding cassette gene ABCC3 (facilitates hepatic morphine metabolite efflux) affect morphine metabolite clearance. In this study of 316 children undergoing tonsillectomy, we found significant association between ABCC3 variants and RD leading to prolonged postoperative care unit stay (prolonged RD). Allele A at rs4148412 and allele G at rs729923 caused a 2.36 (95% CI=1.28-4.37, P=0.0061) and 3.7 (95% CI 1.47-9.09, P=0.0050) times increase in odds of prolonged RD, respectively. These clinical associations were supported by increased formation clearance of morphine glucuronides in children with rs4148412 AA and rs4973665 CC genotypes in this cohort, as well as an independent spine surgical cohort of 67 adolescents. This is the first study to report association of ABCC3 variants with opioid-related RD, and morphine metabolite formation (in two independent surgical cohorts).


Differences in morphine-induced antinociception in male and female offspring born of morphine exposed mothers.

  • Masoomeh Biglarnia‎ et al.
  • Indian journal of pharmacology‎
  • 2013‎

Antinociceptive effect of morphine in offspring born of mothers that received saline or morphine during the gestation period was investigated.


Does Morphine Exposure Before Gestation Change Anxiety-Like Behavior During Morphine Dependence in Male Wistar Rats?

  • Saba Sabzevari‎ et al.
  • Addiction & health‎
  • 2023‎

Anxiety is one of the comorbid disorders of opioid addiction, which leads to opioid abuse or persuades people to engage in opioid abuse. Evidence revealed that morphine exposure before conception changes the offspring's phenotype. The current study aimed to investigate the influence of morphine dependence and abstinence on anxiety-like behavior in morphine-exposed and drug-naïve offspring.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: