Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 890 papers

Localization of distinct monoamine oxidase A and monoamine oxidase B cell populations in human brainstem.

  • K N Westlund‎ et al.
  • Neuroscience‎
  • 1988‎

Monoclonal antibodies, specific for either monoamine oxidases A or B, were used to determine the localization of monoamine oxidase in the human brain. Two distinct populations of neurons were detected by immunocytochemical staining. Neurons in regions rich in catecholamines were positive for monoamine oxidase A, including the nucleus locus coeruleus, the nucleus subcoeruleus and the medullary reticular formation. In these regions, monoamine oxidase A could be co-localized with the synthetic enzyme, dopamine-beta-hydroxylase. Neurons in the substantia nigra and the periventricular region of the hypothalamus, areas rich in dopamine neurons, stained for monoamine oxidase A but with much less frequency and intensity. The major accumulation of monoamine oxidase B-positive neurons was observed in the same regions in which monoamine oxidase B is found to co-localize with serotonin in monkey tissues, including the nucleus raphe dorsalis and the nucleus centralis superior. In addition, both monoamine oxidase A and B were localized in distinct populations of neurons in the lateral and tuberal regions of the hypothalamus, a region shown recently to contain histamine neurons in rats. Some glial cells were stained throughout the brain for monoamine oxidase A or B suggesting that glia are capable of either expression or uptake of these proteins.


Molecular aspects of monoamine oxidase B.

  • Rona R Ramsay‎
  • Progress in neuro-psychopharmacology & biological psychiatry‎
  • 2016‎

Monoamine oxidases (MAO) influence the monoamine levels in brain by virtue of their role in neurotransmitter breakdown. MAO B is the predominant form in glial cells and in platelets. MAO B structure, function and kinetics are described as a background for the effect of alterations in its activity on behavior. The need to inhibit MAO B to combat decreased brain amines continues to drive the search for new drugs. Reversible and irreversible inhibitors are now designed using data-mining, computational screening, docking and molecular dynamics. Multi-target ligands designed to combat the elevated activity of MAO B in Alzheimer's and Parkinson's Diseases incorporate MAO inhibition (usually irreversible) as well as iron chelation, antioxidant or neuroprotective properties. The main focus of drug design is the catalytic activity of MAO, but the imidazoline I2 site in the entrance cavity of MAO B is also a pharmacological target. Endogenous regulation of MAO B expression is discussed briefly in light of new studies measuring mRNA, protein, or activity in healthy and degenerative samples, including the effect of DNA methylation on the expression. Overall, this review focuses on examples of recent research on the molecular aspects of the expression, activity, and inhibition of MAO B.


Monoamine Oxidase B in Renal Cell Carcinoma.

  • Ingrid Hodorová‎ et al.
  • Medical science monitor : international medical journal of experimental and clinical research‎
  • 2018‎

BACKGROUND Studies on monoamine oxidase B (MAO-B) expression in renal cell carcinoma (RCC) are lacking. This study focused on the immunohistochemical evaluation of MAO-B in RCC. MATERIAL AND METHODS Sixty-three RCC samples were compared on basic clinical and histopathological parameters, including histopathological type and tumor grade. RCC samples were divided according to the histopathological type into 2 groups: conventional type (51 samples) and other types (12 samples). For MAO-B detection, a standard immunohistochemical procedure was employed. RESULTS In healthy kidney samples, MAO-B was detected predominantly in tubules. Fifty-two cancer tissue samples were MAO-B negative and 11 tissue samples were MAO-B low positive. Enzymes were detected only in the cytoplasm. We did not find any significant correlation between the percentage of positive MAO-B specimens and nuclear grade. Additionally, Fisher's test did not reveal any difference in numbers of positive and negative MAO-B samples between the 2 RCC types (P>0.05). CONCLUSIONS From our results, it was clear that MAO-B expression played no significant role in stimulation of renal cancer development. We found that MAO-B occurred only in 19% of kidney tumors and that the positivity of protein expression was low. Moreover, it seems that the disappearance of this enzyme in RCC is a consequence of replacement of healthy tissue by cancer cells. On the other hand, one can assume that the loss of MAO-B expression could be associated with severe pathological processes in the kidney.


Parameters for Irreversible Inactivation of Monoamine Oxidase.

  • Rona R Ramsay‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

The irreversible inhibitors of monoamine oxidases (MAO) slow neurotransmitter metabolism in depression and neurodegenerative diseases. After oxidation by MAO, hydrazines, cyclopropylamines and propargylamines form a covalent adduct with the flavin cofactor. To assist the design of new compounds to combat neurodegeneration, we have updated the kinetic parameters defining the interaction of these established drugs with human MAO-A and MAO-B and analyzed the required features. The Ki values for binding to MAO-A and molecular models show that selectivity is determined by the initial reversible binding. Common to all the irreversible inhibitor classes, the non-covalent 3D-chemical interactions depend on a H-bond donor and hydrophobic-aromatic features within 5.7 angstroms apart and an ionizable amine. Increasing hydrophobic interactions with the aromatic cage through aryl halogenation is important for stabilizing ligands in the binding site for transformation. Good and poor inactivators were investigated using visible spectroscopy and molecular dynamics. The initial binding, close and correctly oriented to the FAD, is important for the oxidation, specifically at the carbon adjacent to the propargyl group. The molecular dynamics study also provides evidence that retention of the allenyl imine product oriented towards FADH- influences the formation of the covalent adduct essential for effective inactivation of MAO.


Monoamine oxidase A (MAO A) inhibitors decrease glioma progression.

  • Swati Kushal‎ et al.
  • Oncotarget‎
  • 2016‎

Glioblastoma (GBM) is an aggressive brain tumor which is currently treated with temozolomide (TMZ). Tumors usually become resistant to TMZ and recur; no effective therapy is then available. Monoamine Oxidase A (MAO A) oxidizes monoamine neurotransmitters resulting in reactive oxygen species which cause cancer. This study shows that MAO A expression is increased in human glioma tissues and cell lines. MAO A inhibitors, clorgyline or the near-infrared-dye MHI-148 conjugated to clorgyline (NMI), were cytotoxic for glioma and decreased invasion in vitro. Using the intracranial TMZ-resistant glioma model, clorgyline or NMI alone or in combination with low-dose TMZ reduced tumor growth and increased animal survival. NMI was localized specifically to the tumor. Immunocytochemistry studies showed that the MAO A inhibitor reduced proliferation, microvessel density and invasion, and increased macrophage infiltration. In conclusion, we have identified MAO A inhibitors as potential novel stand-alone drugs or as combination therapy with low dose TMZ for drug-resistant gliomas. NMI can also be used as a non-invasive imaging tool. Thus has a dual function for both therapy and diagnosis.


Inhibition of Monoamine Oxidase by Stilbenes from Rheum palmatum.

  • Bo Wei‎ et al.
  • Iranian journal of pharmaceutical research : IJPR‎
  • 2016‎

Seven stilbenes and one catechin were bioactivity-guidedly isolated from the rhizomes of Rheum palmatem. Their structures were identified as piceatannol (1), resveratrol (2), piceid (3), rhapontigenin (4), piceatannol-3´-O-β-D-glucopyranoside (5), rhaponticin (6), catechin (7) and desoxyrhapontigenin (8). Anti-monoamine oxidase (MAO) activities of compounds 1-8 were tested. Compounds 1 and 8 showed significant MAO inhibitory activities with IC50 values 16.4 ± 1.5 μM and 11.5 ± 1.1, respectively, when the IC50 value of iproniazid as a standard was 6.5 ± 0.5 μM. The selectivity of compounds 1-8 against MAO-A and MAO-B were also evaluated. The results showed that compounds 4˴6˴8 preferred to inhibit MAO-A rather than MAO-B with selectivity values ([IC50 of MAO-B]/ [IC50 of MAO-A]) of 4.74, 10.01 and 9.42, respectively. The preliminary structure-activity relationships (SARs) of these compounds were discussed and the molecular modeling was also performed to explore the binding mode of inhibitors at the active site of MAO-A and MAO-B.


Monoamine oxidase A drives neuroendocrine differentiation in prostate cancer.

  • Xue Shui‎ et al.
  • Biochemical and biophysical research communications‎
  • 2022‎

Neuroendocrine transdifferentiation (NED) of prostate cancer (PCa) is the main cause of failure of androgen receptor inhibitor treatment. However, the molecular mechanisms underlying the development of NEPC, especially treatment-induced NEPC, remain unclear. Emerging evidence indicates that elevated monoamine oxidase A (MAOA) contribute to the proliferation, cell stemness, and bone metastasis in PCa. Here, we generated an enzalutamide-induced NED cell model to assess the role of MAOA during NED. Overall, MAOA expression was significantly increased upon Enz long-term exposure and was required for neuroendocrine marker expression. In particular, Enz was found to induce NED via the MAOA/mTOR/HIF-1α signaling axis. Further analyses revealed that the MAOA inhibitor clorgyline(CLG) may bring multiple benefits to CRPC patients, including better therapeutic effect and delays NED. These findings suggest that MAOA may be an important target for the development of anti-NED therapies, thereby providing a novel strategy for the combined application of CLG and AR inhibitors in the clinic.


Effect of Alkaloids Isolated from Phyllodium pulchellum on Monoamine Levels and Monoamine Oxidase Activity in Rat Brain.

  • Lu Cai‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2016‎

Phyllodium pulchellum (P. pulchellum) is a folk medicine with a significant number of bioactivities. The aim of this study was to investigate the effects displayed by alkaloids fractions, isolated from the roots of P. pulchellum, on neurotransmitters monoamine levels and on monoamine oxidase (MAO) activity. Six alkaloids, which had indolealkylamine or β-carboline skeleton, were obtained by chromatographic technologies and identified by spectroscopic methods such as NMR and MS. After treatment with alkaloids of P. pulchellum, the reduction of DA levels (54.55%) and 5-HT levels (35.01%) in rat brain was observed by HPLC-FLD. The effect of alkaloids on the monoamines metabolism was mainly related to MAO inhibition, characterized by IC50 values of 37.35 ± 6.41 and 126.53 ± 5.39 μg/mL for MAO-A and MAO-B, respectively. The acute toxicity indicated that P. pulchellum extract was nontoxic.


Computational Insights into β-Carboline Inhibition of Monoamine Oxidase A.

  • Alja Prah‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2022‎

Monoamine oxidases (MAOs) are an important group of enzymes involved in the degradation of neurotransmitters and their imbalanced mode of action may lead to the development of various neuropsychiatric or neurodegenerative disorders. In this work, we report the results of an in-depth computational study in which we performed a static and a dynamic analysis of a series of substituted β-carboline natural products, found mainly in roasted coffee and tobacco smoke, that bind to the active site of the MAO-A isoform. By applying molecular docking in conjunction with structure-based pharmacophores and molecular dynamics simulations coupled with dynamic pharmacophores, we extensively investigated the geometric aspects of MAO-A binding. To gain insight into the energetics of binding, we used the linear interaction energy (LIE) method and determined the key anchors that allow productive β-carboline binding to MAO-A. The results presented herein could be applied in the rational structure-based design and optimization of β-carbolines towards preclinical candidates that would target the MAO-A enzyme and would be applicable especially in the treatment of mental disorders such as depression.


Glial GABA, synthesized by monoamine oxidase B, mediates tonic inhibition.

  • Bo-Eun Yoon‎ et al.
  • The Journal of physiology‎
  • 2014‎

GABA is the major inhibitory transmitter in the brain and is released not only from a subset of neurons but also from glia. Although neuronal GABA is well known to be synthesized by glutamic acid decarboxylase (GAD), the source of glial GABA is unknown. After estimating the concentration of GABA in Bergmann glia to be around 5-10 mM by immunogold electron microscopy, we demonstrate that GABA production in glia requires MAOB, a key enzyme in the putrescine degradation pathway. In cultured cerebellar glia, both Ca(2+)-induced and tonic GABA release are significantly reduced by both gene silencing of MAOB and the MAOB inhibitor selegiline. In the cerebellum and striatum of adult mice, general gene silencing, knock out of MAOB or selegiline treatment resulted in elimination of tonic GABA currents recorded from granule neurons and medium spiny neurons. Glial-specific rescue of MAOB resulted in complete rescue of tonic GABA currents. Our results identify MAOB as a key synthesizing enzyme of glial GABA, which is released via bestrophin 1 (Best1) channel to mediate tonic inhibition in the brain.


Neuroprotective and neurorestorative activities of a novel iron chelator-brain selective monoamine oxidase-A/monoamine oxidase-B inhibitor in animal models of Parkinson's disease and aging.

  • Orit Bar-Am‎ et al.
  • Neurobiology of aging‎
  • 2015‎

Recently, we have designed and synthesized a novel multipotent, brain-permeable iron-chelating drug, VAR10303 (VAR), possessing both propargyl and monoamine oxidase (MAO) inhibitory moieties. The present study was undertaken to determine the multiple pharmacological activities of VAR in neurodegenerative preclinical models. We demonstrate that VAR affords iron chelating/iron-induced lipid-peroxidation inhibitory potency and brain selective MAO-A and MAO-B inhibitory effects, with only limited tyramine-cardiovascular potentiation of blood pressure. The results show that in 6-hydroxydopamine rat (neuroprotection) and in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse (neurorescue) Parkinson's disease models, VAR significantly attenuated the loss of striatal dopamine levels, markedly reduced dopamine turnover, and increased tyrosine-hydroxylase levels. Furthermore, chronic systemic treatment of aged rats with VAR improved cognitive behavior deficits and enhanced the expression levels of neurotrophic factors (e.g., brain-derived neurotrophic factor, glial cell-derived neurotrophic factor, and nerve growth factor), Bcl-2 family members and synaptic plasticity in the hippocampus. Our study indicates that the multitarget compound VAR exerted neuroprotective and neurorestorative effects in animal models of Parkinson's disease and aging, further suggesting that a drug that can regulate multiple brain targets could be an ideal treatment-strategy for age-associated neurodegenerative disorders.


Zonisamide inhibits monoamine oxidase and enhances motor performance and social activity.

  • Maiko T Uemura‎ et al.
  • Neuroscience research‎
  • 2017‎

Zonisamide (ZNS) is an effective drug for not only motor symptoms but also non-motor symptoms in Parkinson's disease. However, the actions of ZNS as an anti-Parkinsonian drug are not well understood. To clarify the actions of ZNS in vivo, we administered ZNS to mice and examined the effects on neurotransmitter metabolism and behaviors, focusing on motor and non-motor symptoms. Administration of ZNS decreased dopamine (DA) turnover in various brain regions, including the striatum. In behavioral tests, ZNS enhanced locomotor activity and novelty seeking in the open field test, light-dark transition test, and the social interaction test. Consistent with these results of DA metabolism in ZNS-treated mice, monoamine oxidase activity was significantly inhibited by ZNS in primary neurons and astrocytes. Collectively, these data suggest that ZNS inhibits monoamine oxidase activity and decreases DA turnover, which increases locomotor activity and novelty seeking in mice. ZNS is potentially useful to improve not only motor symptoms but also neuropsychiatric non-motor symptoms such as apathy in PD.


Altered cerebellar organization and function in monoamine oxidase A hypomorphic mice.

  • Loai Alzghoul‎ et al.
  • Neuropharmacology‎
  • 2012‎

Monoamine oxidase A (MAO-A) is the key enzyme for the degradation of brain serotonin (5-hydroxytryptamine, 5-HT), norepinephrine (NE) and dopamine (DA). We recently generated and characterized a novel line of MAO-A hypormorphic mice (MAO-A(Neo)), featuring elevated monoamine levels, social deficits and perseverative behaviors as well as morphological changes in the basolateral amygdala and orbitofrontal cortex. Here we showed that MAO-A(Neo) mice displayed deficits in motor control, manifested as subtle disturbances in gait, motor coordination, and balance. Furthermore, magnetic resonance imaging of the cerebellum revealed morphological changes and a moderate reduction in the cerebellar size of MAO-A(Neo) mice compared to wild type (WT) mice. Histological and immunohistochemical analyses using calbindin-D-28k (CB) expression of Purkinje cells revealed abnormal cerebellar foliation with vermal hypoplasia and decreased in Purkinje cell count and their dendritic density in MAO-A(Neo) mice compared to WT. Our current findings suggest that congenitally low MAO-A activity leads to abnormal development of the cerebellum.


Microbial Metabolite Urolithin B Inhibits Recombinant Human Monoamine Oxidase A Enzyme.

  • Rajbir Singh‎ et al.
  • Metabolites‎
  • 2020‎

Urolithins are gut microbial metabolites derived from ellagitannins (ET) and ellagic acid (EA), and shown to exhibit anticancer, anti-inflammatory, anti-microbial, anti-glycative and anti-oxidant activities. Similarly, the parent molecules, ET and EA are reported for their neuroprotection and antidepressant activities. Due to the poor bioavailability of ET and EA, the in vivo functional activities cannot be attributed exclusively to these compounds. Elevated monoamine oxidase (MAO) activities are responsible for the inactivation of monoamine neurotransmitters in neurological disorders, such as depression and Parkinson's disease. In this study, we examined the inhibitory effects of urolithins (A, B and C) and EA on MAO activity using recombinant human MAO-A and MAO-B enzymes. Urolithin B was found to be a better MAO-A enzyme inhibitor among the tested urolithins and EA with an IC50 value of 0.88 µM, and displaying a mixed mode of inhibition. However, all tested compounds exhibited higher IC50 (>100 µM) for MAO-B enzyme.


Monoamine oxidase A is down-regulated in EBV-associated nasopharyngeal carcinoma.

  • Hui Min Lee‎ et al.
  • Scientific reports‎
  • 2020‎

Nasopharyngeal carcinoma (NPC) is a highly metastatic cancer that is consistently associated with Epstein-Barr virus (EBV) infection. In this study, we identify for the first time a role for monoamine oxidase A (MAOA) in NPC. MAOA is a mitochondrial enzyme that catalyzes oxidative deamination of neurotransmitters and dietary amines. Depending on the cancer type, MAOA can either have a tumour-promoting or tumour-suppressive role. We show that MAOA is down-regulated in primary NPC tissues and its down-regulation enhances the migration of NPC cells. In addition, we found that EBV infection can down-regulate MAOA expression in both pre-malignant and malignant nasopharyngeal epithelial (NPE) cells. We further demonstrate that MAOA is down-regulated as a result of IL-6/IL-6R/STAT3 signalling and epigenetic mechanisms, effects that might be attributed to EBV infection in NPE cells. Taken together, our data point to a central role for EBV in mediating the tumour suppressive effects of MAOA and that loss of MAOA could be an important step in the pathogenesis of NPC.


FA-70, a novel selective and irreversible monoamine oxidase-A inhibitor: effect on monoamine metabolism in mouse cerebral cortex.

  • J A Morón‎ et al.
  • The Journal of pharmacology and experimental therapeutics‎
  • 2000‎

A series of indolealkylamine derivatives has been previously designed and evaluated with the aim of finding the most potent and selective novel monoamine oxidase (MAO) inhibitors to be used in the therapy of neurological and affective disorders. Among them, FA70, a 5-hydroxy-indolealkylamine derivative, has been characterized in vitro as a potent, irreversible, and mechanism-based inhibitor of the MAO-A isoform. The comparison with clorgyline, analyzed under the same experimental conditions, confirmed FA70 as the most potent MAO-A inhibitor. The ex vivo effect of FA70 on MAO activity in mouse cerebral cortex was similar to that observed in vitro, showing more efficacy than in peripheral tissues. The ex vivo effect of FA70 on amine metabolism also was evaluated after acute and chronic treatment, and the results showed that between both MAO isoforms, MAO-A is the only one responsible for monoamine metabolism in this region of the brain. The ex vivo effect of FA70 on dopamine content was correlated with the activation effect on tyrosine hydroxylase activity, the enzyme responsible for the regulation of the limiting step in catecholamine synthesis.


Interactions of Desmethoxyyangonin, a Secondary Metabolite from Renealmia alpinia, with Human Monoamine Oxidase-A and Oxidase-B.

  • Narayan D Chaurasiya‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2017‎

Renealmia alpinia (Zingiberaceae), a medicinal plant of tropical rainforests, is used to treat snakebites and other injuries and also as a febrifuge, analgesic, antiemetic, antiulcer, and anticonvulsant. The dichloromethane extract of R. alpinia leaves showed potent inhibition of human monoamine oxidases- (MAOs-) A and B. Phytochemical studies yielded six known compounds, including pinostrobin 1, 4'-methyl ether sakuranetin 2, sakuranetin 3, pinostrobin chalcone 4, yashabushidiol A 5, and desmethoxyyangonin 6. Compound 6 displayed about 30-fold higher affinity for MAO-B than MAO-A, with Ki values of 31 and 922 nM, respectively. Kinetic analysis of inhibition and equilibrium-dialysis dissociation assay of the enzyme-inhibitor complex showed reversible binding of desmethoxyyangonin 6 with MAO-A and MAO-B. The binding interactions of compound 6 in the active site of the MAO-A and MAO-B isoenzymes, investigated through molecular modeling algorithms, confirmed preferential binding of desmethoxyyangonin 6 with MAO-B compared to MAO-A. Selective reversible inhibitors of MAO-B, like desmethoxyyangonin 6, may have important therapeutic significance for the treatment of neurodegenerative disorders, such as Parkinson's disease and Alzheimer's disease.


A Peroxidase-linked Spectrophotometric Assay for the Detection of Monoamine Oxidase Inhibitors.

  • Kangkang Zhi‎ et al.
  • Iranian journal of pharmaceutical research : IJPR‎
  • 2016‎

To develop a new more accurate spectrophotometric method for detecting monoamine oxidase inhibitors from plant extracts, a series of amine substrates were selected and their ability to be oxidized by monoamine oxidase was evaluated by the HPLC method and a new substrate was used to develop a peroxidase-linked spectrophotometric assay. 4-(Trifluoromethyl) benzylamine (11) was proved to be an excellent substrate for peroxidase-linked spectrophotometric assay. Therefore, a new peroxidase-linked spectrophotometric assay was set up. The principle of the method is that the MAO converts 11 into aldehyde, ammonia and hydrogen peroxide. In the presence of peroxidase, the hydrogen peroxide will oxidize 4-aminoantipyrine into oxidised 4-aminoantipyrine which can condense with vanillic acid to give a red quinoneimine dye. The production of the quinoneimine dye was detected at 490 nm by a microplate reader. The ⊿OD value between the blank group and blank negative control group in this new method is twice as much as that in Holt's method, which enables the procedure to be more accurate and avoids the produce of false positive results. The new method will be helpful for researchers to screening monoamine oxidase inhibitors from deep-color plant extracts.


Inhibition of monoamine oxidase-a increases respiration in isolated mouse cortical mitochondria.

  • Olivia J Kalimon‎ et al.
  • Experimental neurology‎
  • 2023‎

Monoamine oxidase (MAO) is an enzyme located on the outer mitochondrial membrane that metabolizes amine substrates like serotonin, norepinephrine and dopamine. MAO inhibitors (MAOIs) are frequently utilized to treat disorders such as major depression or Parkinson's disease (PD), though their effects on brain mitochondrial bioenergetics are unclear. These studies measured bioenergetic activity in mitochondria isolated from the mouse cortex in the presence of inhibitors of either MAO-A, MAO-B, or both isoforms. We found that only 10 μM clorgyline, the selective inhibitor of MAO-A and not MAO-B, increased mitochondrial oxygen consumption rate in State V(CI) respiration compared to vehicle treatment. We then assessed mitochondrial bioenergetics, reactive oxygen species (ROS) production, and Electron Transport Chain (ETC) complex function in the presence of 0, 5, 10, 20, 40, or 80 μM of clorgyline to determine if this change was dose-dependent. The results showed increased oxygen consumption rates across the majority of respiration states in mitochondria treated with 5, 10, or 20 μM with significant bioenergetic inhibition at 80 μM clorgyline. Next, we assessed mitochondrial ROS production in the presence of the same concentrations of clorgyline in two different states: high mitochondrial membrane potential (ΔΨm) induced by oligomycin and low ΔΨm induced by carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP). There were no changes in ROS production in the presence of 5, 10, 20, or 40 μM clorgyline compared to vehicle after the addition of oligomycin or FCCP. There was a significant increase in mitochondrial ROS in the presence of 80 μM clorgyline after FCCP addition, as well as reduced Complex I and Complex II activities, which are consistent with inhibition of bioenergetics seen at this dose. There were no changes in Complex I, II, or IV activities in mitochondria treated with low doses of clorgyline. These studies shed light on the direct effect of MAO-A inhibition on brain mitochondrial bioenergetic function, which may be a beneficial outcome for those taking these medications.


Regional changes in the cholinergic system in mice lacking monoamine oxidase A.

  • Régis Grailhe‎ et al.
  • Brain research bulletin‎
  • 2009‎

Elevated brain monoamine concentrations resulting from monoamine oxidase A genetic ablation (MAOA knock-out mice) lead to changes in other neurotransmitter systems. To investigate the consequences of MAOA deficiency on the cholinergic system, we measured ligand binding to the high-affinity choline transporter (CHT1) and to muscarinic and nicotinic receptors in brain sections of MAOA knock-out (KO) and wild-type mice. A twofold increase in [(3)H]-hemicholinium-3 ([(3)H]-HC-3) binding to CHT1 was observed in the caudate putamen, nucleus accumbens, and motor cortex in MAOA KO mice as compared with wild-type (WT) mice. There was no difference in [(3)H]-HC-3 labeling in the hippocampus (dentate gyrus) between the two genotypes. Binding of [(125)I]-epibatidine ([(125)I]-Epi), [(125)I]-alpha-bungarotoxin ([(125)I]-BGT), [(3)H]-pirenzepine ([(3)H]-PZR), and [(3)H]-AFDX-384 ([(3)H]-AFX), which respectively label high- and low-affinity nicotinic receptors, M1 and M2 muscarinic cholinergic receptors, was not modified in the caudate putamen, nucleus accumbens, and motor cortex. A small but significant decrease of 19% in M1 binding densities was observed in the hippocampus (CA1 field) of KO mice. Next, we tested acetylcholinesterase activity and found that it was decreased by 25% in the striatum of KO mice as compared with WT mice. Our data suggest that genetic deficiency in MAOA enzyme is associated with changes in cholinergic activity, which may account for some of the behavioral alterations observed in mice and humans lacking MAOA.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: