Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 691 papers

Eukaryote-wide sequence analysis of mitochondrial β-barrel outer membrane proteins.

  • Kenichiro Imai‎ et al.
  • BMC genomics‎
  • 2011‎

The outer membranes of mitochondria are thought to be homologous to the outer membranes of Gram negative bacteria, which contain 100's of distinct families of β-barrel membrane proteins (BOMPs) often forming channels for transport of nutrients or drugs. However, only four families of mitochondrial BOMPs (MBOMPs) have been confirmed to date. Although estimates as high as 100 have been made in the past, the number of yet undiscovered MBOMPs is an open question. Fortunately, the recent discovery of a membrane integration signal (the β-signal) for MBOMPs gave us an opportunity to look for undiscovered MBOMPs.


Dual Role of Mitochondrial Porin in Metabolite Transport across the Outer Membrane and Protein Transfer to the Inner Membrane.

  • Lars Ellenrieder‎ et al.
  • Molecular cell‎
  • 2019‎

The mitochondrial inner membrane harbors a large number of metabolite carriers. The precursors of carrier proteins are synthesized in the cytosol and imported into mitochondria by the translocase of the outer membrane (TOM) and the carrier translocase of the inner membrane (TIM22). Molecular chaperones in the cytosol and intermembrane space bind to the hydrophobic precursors to prevent their aggregation. We report that the major metabolite channel of the outer membrane, termed porin or voltage-dependent anion channel (VDAC), promotes efficient import of carrier precursors. Porin interacts with carrier precursors arriving in the intermembrane space and recruits TIM22 complexes, thus ensuring an efficient transfer of the precursors to the inner membrane translocase. Porin channel mutants impaired in metabolite transport are not disturbed in carrier import into mitochondria. We conclude that porin serves distinct functions as outer membrane channel for metabolites and as coupling factor for protein translocation into the inner membrane.


Electron transport chain complex II sustains high mitochondrial membrane potential in hematopoietic stem and progenitor cells.

  • Claudia Morganti‎ et al.
  • Stem cell research‎
  • 2019‎

The role of mitochondria in the fate determination of hematopoietic stem and progenitor cells (HSPCs) is not solely limited to the switch from glycolysis to oxidative phosphorylation, but also involves alterations in mitochondrial features and properties, including mitochondrial membrane potential (ΔΨmt). HSPCs have a high ΔΨmt even when the rates of respiration and phosphorylation are low, and we have previously shown that the minimum proton flow through ATP synthesis (or complex V) enables high ΔΨmt in HSPCs. Here we show that HSPCs sustain a unique equilibrium between electron transport chain (ETC) complexes and ATP production. HSPCs exhibit high expression of ETC complex II, which sustains complex III in proton pumping, although the expression levels of complex I or V are relatively low. Complex II inhibition by TTFA caused a substantial decrease of ΔΨmt, particularly in HSPCs, while the inhibition of complex I by Rotenone mainly affected mature populations. Functionally, pharmacological inhibition of complex II reduced in vitro colony-replating capacity but this was not observed when complex I was inhibited, which supports the distinct roles of complex I and II in HSPCs. Taken together, these data highlight complex II as a key regulator of ΔΨmt in HSPCs and open new and interesting questions regarding the precise mechanisms that regulate mitochondrial control to maintain hematopoietic stem cell self-renewal.


Plasma membrane-located purine nucleotide transport proteins are key components for host exploitation by microsporidian intracellular parasites.

  • Eva Heinz‎ et al.
  • PLoS pathogens‎
  • 2014‎

Microsporidia are obligate intracellular parasites of most animal groups including humans, but despite their significant economic and medical importance there are major gaps in our understanding of how they exploit infected host cells. We have investigated the evolution, cellular locations and substrate specificities of a family of nucleotide transport (NTT) proteins from Trachipleistophora hominis, a microsporidian isolated from an HIV/AIDS patient. Transport proteins are critical to microsporidian success because they compensate for the dramatic loss of metabolic pathways that is a hallmark of the group. Our data demonstrate that the use of plasma membrane-located nucleotide transport proteins (NTT) is a key strategy adopted by microsporidians to exploit host cells. Acquisition of an ancestral transporter gene at the base of the microsporidian radiation was followed by lineage-specific events of gene duplication, which in the case of T. hominis has generated four paralogous NTT transporters. All four T. hominis NTT proteins are located predominantly to the plasma membrane of replicating intracellular cells where they can mediate transport at the host-parasite interface. In contrast to published data for Encephalitozoon cuniculi, we found no evidence for the location for any of the T. hominis NTT transporters to its minimal mitochondria (mitosomes), consistent with lineage-specific differences in transporter and mitosome evolution. All of the T. hominis NTTs transported radiolabelled purine nucleotides (ATP, ADP, GTP and GDP) when expressed in Escherichia coli, but did not transport radiolabelled pyrimidine nucleotides. Genome analysis suggests that imported purine nucleotides could be used by T. hominis to make all of the critical purine-based building-blocks for DNA and RNA biosynthesis during parasite intracellular replication, as well as providing essential energy for parasite cellular metabolism and protein synthesis.


4-Hydroxynonenal, an aldehydic product of membrane lipid peroxidation, impairs glutamate transport and mitochondrial function in synaptosomes.

  • J N Keller‎ et al.
  • Neuroscience‎
  • 1997‎

Removal of extracellular glutamate at synapses, by specific high-affinity glutamate transporters, is critical to prevent excitotoxic injury to neurons. Oxidative stress has been implicated in the pathogenesis of an array of prominent neurodegenerative conditions that involve degeneration of synapses and neurons in glutamatergic pathways including stroke, and Alzheimer's, Parkinson's and Huntington's diseases. Although cell culture data indicate that oxidative insults can impair key membrane regulatory systems including ion-motive ATPases and amino acid transport systems, the effects of oxidative stress on synapses, and the mechanisms that mediate such effects, are largely unknown. This study provides evidence that 4-hydroxynonenal, an aldehydic product of lipid peroxidation, mediates oxidation-induced impairment of glutamate transport and mitochondrial function in synapses. Exposure of rat cortical synaptosomes to 4-hydroxynonenal resulted in concentration- and time-dependent decreases in [3H]glutamate uptake, and mitochondrial function [assessed with the dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)]. Other related aldehydes including malondialdehyde and hexanal had little or no effect on glutamate uptake or mitochondrial function. Exposure of synaptosomes to insults known to induce lipid peroxidation (FeSO4 and amyloid beta-peptide) also impaired glutamate uptake and mitochondrial function. The antioxidants propyl gallate and glutathione prevented impairment of glutamate uptake and MTT reduction induced by FeSO4 and amyloid beta-peptide, but not that induced by 4-hydroxynonenal. Western blot analyses using an antibody to 4-hydroxynonenal-conjugated proteins showed that 4-hydroxynonenal bound to multiple cell proteins including GLT-1, a glial glutamate transporter present at high levels in synaptosomes. 4-Hydroxynonenal itself induced lipid peroxidation suggesting that, in addition to binding directly to membrane regulatory proteins, 4-hydroxynonenal potentiates oxidative cascades. Collectively, these findings suggest that 4-hydroxynonenal plays important roles in oxidative impairment of synaptic functions that would be expected to promote excitotoxic cascades.


Homodimeric intrinsic membrane proteins. Identification and modulation of interactions between mitochondrial transporter (carrier) subunits.

  • Hartmut Wohlrab‎
  • Biochemical and biophysical research communications‎
  • 2010‎

Transporter (carrier) proteins of the inner mitochondrial membrane link metabolic pathways within the matrix and the cytosol with transport/exchange of metabolites and inorganic ions. Their strict control of these fluxes is required for oxidative phosphorylation. Understanding the ternary complex transport mechanism with which most of these transporters function requires an accounting of the number and interactions of their subunits. The phosphate transporter (PTP, Mir1p) subunit readily forms homodimers with intersubunit affinities changeable by mutations. Cys28, likely at the subunit interface, is a site for mutations yielding transport inhibition or a channel-like transport mode. Such mutations yield a small increase or decrease in affinity between the subunits. The PTP inhibitor N-ethylmaleimide decreases subunit affinity by a small amount. PTP mutations that yield the highest (40%) and the lowest (2%) liposome incorporation efficiencies (LIE) are clustered near Cys28. Such mutant subunits show the lowest and highest subunit affinities respectively. The oxaloacetate transporter (Oac1p) subunit has an almost twofold lower affinity than the PTP subunit. The Oac1p, dicarboxylate (Dic1p) and PTP transporter subunits form heterodimers with even lower affinities. These results form a firm basis for detailed studies to establish the effect of subunit affinities on transport mode and activity and for the identification of the mechanism that prevents formation of heterodimers that surely will negatively impact oxidative phosphorylation and ATP levels with serious consequences for the cell.


Yeast mitochondrial interactosome model: metabolon membrane proteins complex involved in the channeling of ADP/ATP.

  • Benjamin Clémençon‎
  • International journal of molecular sciences‎
  • 2012‎

The existence of a mitochondrial interactosome (MI) has been currently well established in mammalian cells but the exact composition of this super-complex is not precisely known, and its organization seems to be different from that in yeast. One major difference is the absence of mitochondrial creatine kinase (MtCK) in yeast, unlike that described in the organization model of MI, especially in cardiac, skeletal muscle and brain cells. The aim of this review is to provide a detailed description of different partner proteins involved in the synergistic ADP/ATP transport across the mitochondrial membranes in the yeast Saccharomyces cerevisiae and to propose a new mitochondrial interactosome model. The ADP/ATP (Aacp) and inorganic phosphate (PiC) carriers as well as the VDAC (or mitochondrial porin) catalyze the import and export of ADP, ATP and Pi across the mitochondrial membranes. Aacp and PiC, which appear to be associated with the ATP synthase, consist of two nanomotors (F(0), F(1)) under specific conditions and form ATP synthasome. Identification and characterization of such a complex were described for the first time by Pedersen and co-workers in 2003.


Superresolution Imaging Identifies That Conventional Trafficking Pathways Are Not Essential for Endoplasmic Reticulum to Outer Mitochondrial Membrane Protein Transport.

  • Kyle Salka‎ et al.
  • Scientific reports‎
  • 2017‎

Most nuclear-encoded mitochondrial proteins traffic from the cytosol to mitochondria. Some of these proteins localize at mitochondria-associated membranes (MAM), where mitochondria are closely apposed with the endoplasmic reticulum (ER). We have previously shown that the human cytomegalovirus signal-anchored protein known as viral mitochondria-localized inhibitor of apoptosis (vMIA) traffics from the ER to mitochondria and clusters at the outer mitochondrial membrane (OMM). Here, we have examined the host pathways by which vMIA traffics from the ER to mitochondria and clusters at the OMM. By disruption of phosphofurin acidic cluster sorting protein 2 (PACS-2), mitofusins (Mfn1/2), and dynamin related protein 1 (Drp1), we find these conventional pathways for ER to the mitochondria trafficking are dispensable for vMIA trafficking to OMM. Instead, mutations in vMIA that change its hydrophobicity alter its trafficking to mitochondria. Superresolution imaging showed that PACS-2- and Mfn-mediated membrane apposition or hydrophobic interactions alter vMIA's ability to organize in nanoscale clusters at the OMM. This shows that signal-anchored MAM proteins can make use of hydrophobic interactions independently of conventional ER-mitochondria pathways to traffic from the ER to mitochondria. Further, vMIA hydrophobic interactions and ER-mitochondria contacts facilitate proper organization of vMIA on the OMM.


Choline transporter-like proteins 1 and 2 are newly identified plasma membrane and mitochondrial ethanolamine transporters.

  • Adrian Taylor‎ et al.
  • The Journal of biological chemistry‎
  • 2021‎

The membrane phospholipids phosphatidylcholine and phosphatidylethanolamine (PE) are synthesized de novo by the CDP-choline and CDP-ethanolamine (Kennedy) pathway, in which the extracellular substrates choline and ethanolamine are transported into the cell, phosphorylated, and coupled with diacylglycerol to form the final phospholipid product. Although multiple transport systems have been established for choline, ethanolamine transport is poorly characterized and there is no single protein assigned a transport function for ethanolamine. The solute carriers 44A (SLC44A) known as choline transporter-like proteins-1 and -2 (CTL1 and CTL2) are choline transporter at the plasma membrane and mitochondria. We report a novel function of CTL1 and CTL2 in ethanolamine transport. Using the lack or the gain of gene function in combination with specific antibodies and transport inhibitors we established two distinct ethanolamine transport systems of a high affinity, mediated by CTL1, and of a low affinity, mediated by CTL2. Both transporters are Na+-independent ethanolamine/H+ antiporters. Primary human fibroblasts with separate frameshift mutations in the CTL1 gene (M1= SLC44A1ΔAsp517 and M2= SLC44A1ΔSer126) are devoid of CTL1 ethanolamine transport but maintain unaffected CTL2 transport. The lack of CTL1 in M2 cells reduced the ethanolamine transport, the flux through the CDP-ethanolamine Kennedy pathway, and PE synthesis. In contrast, overexpression of CTL1 in M2 cells improved ethanolamine transport and PE synthesis. These data firmly establish that CTL1 and CTL2 are the first identified ethanolamine transporters in whole cells and mitochondria, with intrinsic roles in de novo PE synthesis by the Kennedy pathway and intracellular redistribution of ethanolamine.


Mitochondrial-bacterial hybrids of BamA/Tob55 suggest variable requirements for the membrane integration of β-barrel proteins.

  • Anna-Katharina Pfitzner‎ et al.
  • Scientific reports‎
  • 2016‎

β-Barrel proteins are found in the outer membrane (OM) of Gram-negative bacteria, chloroplasts and mitochondria. The assembly of these proteins into the corresponding OM is facilitated by a dedicated protein complex that contains a central conserved β-barrel protein termed BamA in bacteria and Tob55/Sam50 in mitochondria. BamA and Tob55 consist of a membrane-integral C-terminal domain that forms a β-barrel pore and a soluble N-terminal portion comprised of one (in Tob55) or five (in BamA) polypeptide transport-associated (POTRA) domains. Currently the functional significance of this difference and whether the homology between BamA and Tob55 can allow them to replace each other are unclear. To address these issues we constructed hybrid Tob55/BamA proteins with differently configured N-terminal POTRA domains. We observed that constructs harboring a heterologous C-terminal domain could not functionally replace the bacterial BamA or the mitochondrial Tob55 demonstrating species-specific requirements. Interestingly, the various hybrid proteins in combination with the bacterial chaperones Skp or SurA supported to a variable extent the assembly of bacterial β-barrel proteins into the mitochondrial OM. Collectively, our findings suggest that the membrane assembly of various β-barrel proteins depends to a different extent on POTRA domains and periplasmic chaperones.


ASTER-B regulates mitochondrial carotenoid transport and homeostasis.

  • Sepalika Bandara‎ et al.
  • Journal of lipid research‎
  • 2023‎

The scavenger receptor class B type 1 (SR-B1) facilitates uptake of cholesterol and carotenoids into the plasma membrane (PM) of mammalian cells. Downstream of SR-B1, ASTER-B protein mediates the nonvesicular transport of cholesterol to mitochondria for steroidogenesis. Mitochondria also are the place for the processing of carotenoids into diapocarotenoids by β-carotene oxygenase-2. However, the role of these lipid transport proteins in carotenoid metabolism has not yet been established. Herein, we showed that the recombinant StART-like lipid-binding domain of ASTER-A and B preferentially binds oxygenated carotenoids such as zeaxanthin. We established a novel carotenoid uptake assay and demonstrated that ASTER-B expressing A549 cells transport zeaxanthin to mitochondria. In contrast, the pure hydrocarbon β-carotene is not transported to the organelles, consistent with its metabolic processing to vitamin A in the cytosol by β-carotene oxygenase-1. Depletion of the PM from cholesterol by methyl-β-cyclodextrin treatment enhanced zeaxanthin but not β-carotene transport to mitochondria. Loss-of-function assays by siRNA in A549 cells and the absence of zeaxanthin accumulation in mitochondria of ARPE19 cells confirmed the pivotal role of ASTER-B in this process. Together, our study in human cell lines established ASTER-B protein as key player in nonvesicular transport of zeaxanthin to mitochondria and elucidated the molecular basis of compartmentalization of the metabolism of nonprovitamin A and provitamin A carotenoids in mammalian cells.


Developmental changes in trak-mediated mitochondrial transport in neurons.

  • Omar Loss‎ et al.
  • Molecular and cellular neurosciences‎
  • 2017‎

Previous studies established that the kinesin adaptor proteins, TRAK1 and TRAK2, play an important role in mitochondrial transport in neurons. They link mitochondria to kinesin motor proteins via a TRAK acceptor protein in the mitochondrial outer membrane, the Rho GTPase, Miro. TRAKs also associate with enzyme, O-linked N-acetylglucosamine transferase (OGT), to form a quaternary, mitochondrial trafficking complex. A recent report suggested that TRAK1 preferentially controls mitochondrial transport in axons of hippocampal neurons whereas TRAK2 controls mitochondrial transport in dendrites. However, it is not clear whether the function of any of these proteins is exclusive to axons or dendrites and if their mechanisms of action are conserved between different neuronal populations and also, during maturation. Here, a comparative study was carried out into TRAK-mediated mitochondrial mobility in axons and dendrites of hippocampal and cortical neurons during maturation in vitro using a shRNA gene knockdown approach. It was found that in mature hippocampal and cortical neurons, TRAK1 predominantly mediates axonal mitochondrial transport whereas dendritic transport is mediated via TRAK2. In young, maturing neurons, TRAK1 and TRAK2 contribute similarly in mitochondrial transport in both axons and dendrites in both neuronal types. These findings demonstrate maturation regulation of mitochondrial transport which is conserved between at least two distinct neuronal subtypes.


Metaxins are core components of mitochondrial transport adaptor complexes.

  • Yinsuo Zhao‎ et al.
  • Nature communications‎
  • 2021‎

Trafficking of mitochondria into dendrites and axons plays an important role in the physiology and pathophysiology of neurons. Mitochondrial outer membrane protein Miro and adaptor proteins TRAKs/Milton link mitochondria to molecular motors. Here we show that metaxins MTX-1 and MTX-2 contribute to mitochondrial transport into both dendrites and axons of C. elegans neurons. MTX1/2 bind to MIRO-1 and kinesin light chain KLC-1, forming a complex to mediate kinesin-1-based movement of mitochondria, in which MTX-1/2 are essential and MIRO-1 plays an accessory role. We find that MTX-2, MIRO-1, and TRAK-1 form another distinct adaptor complex to mediate dynein-based transport. Additionally, we show that failure of mitochondrial trafficking in dendrites causes age-dependent dendrite degeneration. We propose that MTX-2 and MIRO-1 form the adaptor core for both motors, while MTX-1 and TRAK-1 specify each complex for kinesin-1 and dynein, respectively. MTX-1 and MTX-2 are also required for mitochondrial transport in human neurons, indicative of their evolutionarily conserved function.


Pathogenic SLC25A26 variants impair SAH transport activity causing mitochondrial disease.

  • Florian A Schober‎ et al.
  • Human molecular genetics‎
  • 2022‎

The SLC25A26 gene encodes a mitochondrial inner membrane carrier that transports S-adenosylmethionine (SAM) into the mitochondrial matrix in exchange for S-adenosylhomocysteine (SAH). SAM is the predominant methyl-group donor for most cellular methylation processes, of which SAH is produced as a by-product. Pathogenic, biallelic SLC25A26 variants are a recognized cause of mitochondrial disease in children, with a severe neonatal onset caused by decreased SAM transport activity. Here, we describe two, unrelated adult cases, one of whom presented with recurrent episodes of severe abdominal pain and metabolic decompensation with lactic acidosis. Both patients had exercise intolerance and mitochondrial myopathy associated with biallelic variants in SLC25A26, which led to marked respiratory chain deficiencies and mitochondrial histopathological abnormalities in skeletal muscle that are comparable to those previously described in early-onset cases. We demonstrate using both mouse and fruit fly models that impairment of SAH, rather than SAM, transport across the mitochondrial membrane is likely the cause of this milder, late-onset phenotype. Our findings associate a novel pathomechanism with a known disease-causing protein and highlight the quests of precision medicine in optimizing diagnosis, therapeutic intervention and prognosis.


The pro-apoptotic proteins, Bid and Bax, cause a limited permeabilization of the mitochondrial outer membrane that is enhanced by cytosol.

  • R M Kluck‎ et al.
  • The Journal of cell biology‎
  • 1999‎

During apoptosis, an important pathway leading to caspase activation involves the release of cytochrome c from the intermembrane space of mitochondria. Using a cell-free system based on Xenopus egg extracts, we examined changes in the outer mitochondrial membrane accompanying cytochrome c efflux. The pro-apoptotic proteins, Bid and Bax, as well as factors present in Xenopus egg cytosol, each induced cytochrome c release when incubated with isolated mitochondria. These factors caused a permeabilization of the outer membrane that allowed the corelease of multiple intermembrane space proteins: cytochrome c, adenylate kinase and sulfite oxidase. The efflux process is thus nonspecific. None of the cytochrome c-releasing factors caused detectable mitochondrial swelling, arguing that matrix swelling is not required for outer membrane permeability in this system. Bid and Bax caused complete release of cytochrome c but only a limited permeabilization of the outer membrane, as measured by the accessibility of inner membrane-associated respiratory complexes III and IV to exogenously added cytochrome c. However, outer membrane permeability was strikingly increased by a macromolecular cytosolic factor, termed PEF (permeability enhancing factor). We hypothesize that PEF activity could help determine whether cells can recover from mitochondrial cytochrome c release.


Aster-B coordinates with Arf1 to regulate mitochondrial cholesterol transport.

  • John-Paul Andersen‎ et al.
  • Molecular metabolism‎
  • 2020‎

Cholesterol plays a pivotal role in mitochondrial steroidogenesis, membrane structure, and respiration. Mitochondrial membranes are intrinsically low in cholesterol content and therefore must be replenished with cholesterol from other subcellular membranes. However, the molecular mechanisms underlying mitochondrial cholesterol transport remains poorly understood. The Aster-B gene encodes a cholesterol binding protein recently implicated in cholesterol trafficking from the plasma membrane to the endoplasmic reticulum (ER). In this study, we investigated the function and underlying mechanism of Aster-B in mediating mitochondrial cholesterol transport.


SQR mediates therapeutic effects of H2S by targeting mitochondrial electron transport to induce mitochondrial uncoupling.

  • Jia Jia‎ et al.
  • Science advances‎
  • 2020‎

Hydrogen sulfide (H2S) is a gasotransmitter and a potential therapeutic agent. However, molecular targets relevant to its therapeutic actions remain enigmatic. Sulfide-quinone oxidoreductase (SQR) irreversibly oxidizes H2S. Therefore, SQR is assumed to inhibit H2S signaling. We now report that SQR-mediated oxidation of H2S drives reverse electron transport (RET) at mitochondrial complex I, which, in turn, repurposes mitochondrial function to superoxide production. Unexpectedly, complex I RET, a process dependent on high mitochondrial membrane potential, induces superoxide-dependent mitochondrial uncoupling and downstream activation of adenosine monophosphate-activated protein kinase (AMPK). SQR-induced mitochondrial uncoupling is separated from the inhibition of mitochondrial complex IV by H2S. Moreover, deletion of SQR, complex I, or AMPK abolishes therapeutic effects of H2S following intracerebral hemorrhage. To conclude, SQR mediates H2S signaling and therapeutic effects by targeting mitochondrial electron transport to induce mitochondrial uncoupling. Moreover, SQR is a previously unrecognized target for developing non-protonophore uncouplers with broad clinical implications.


Role of the lipid transport protein StarD7 in mitochondrial dynamics.

  • María L Rojas‎ et al.
  • Biochimica et biophysica acta. Molecular and cell biology of lipids‎
  • 2021‎

Mitochondria are dynamic organelles crucial for cell function and survival implicated in oxidative energy production whose central functions are tightly controlled by lipids. StarD7 is a lipid transport protein involved in the phosphatidylcholine (PC) delivery to mitochondria. Previous studies have shown that StarD7 knockdown induces alterations in mitochondria and endoplasmic reticulum (ER) with a reduction in PC content, however whether StarD7 modulates mitochondrial dynamics remains unexplored. Here, we generated HTR-8/SVneo stable cells expressing the precursor StarD7.I and the mature processed StarD7.II isoforms. We demonstrated that StarD7.I overexpression altered mitochondrial morphology increasing its fragmentation, whereas no changes were observed in StarD7.II-overexpressing cells compared to the control (Ct) stable cells. StarD7.I (D7.I) stable cells were able to transport higher fluorescent PC analog to mitochondria than Ct cells, yield mitochondrial fusions, maintained the membrane potential, and produced lower levels of reactive oxygen species (ROS). Additionally, the expression of Dynamin Related Protein 1 (Drp1) and Mitofusin (Mfn2) proteins were increased, whereas the amount of Mitofusin 1 (Mfn1) decreased. Moreover, transfections with plasmids encoding Drp1-K38A, Drp1-S637D or Drp1-S637A mutants indicated that mitochondrial fragmentation in D7.I cells occurs in a fission-dependent manner via Drp1. In contrast, StarD7 silencing decreased Mfn1 and Mfn2 fusion proteins without modification of Drp1 protein level. These cells increased ROS levels and presented donut-shape mitochondria, indicative of metabolic stress. Altogether our findings provide novel evidence indicating that alterations in StarD7.I expression produce significant changes in mitochondrial morphology and dynamics.


Membrane-bound electron transport systems of an anammox bacterium: A complexome analysis.

  • Naomi M de Almeida‎ et al.
  • Biochimica et biophysica acta‎
  • 2016‎

Electron transport, or oxidative phosphorylation, is one of the hallmarks of life. To this end, prokaryotes evolved a vast variety of protein complexes, only a small part of which have been discovered and studied. These protein complexes allow them to occupy virtually every ecological niche on Earth. Here, we applied the method of proteomics-based complexome profiling to get a better understanding of the electron transport systems of the anaerobic ammonium-oxidizing (anammox) bacteria, the N2-producing key players of the global nitrogen cycle. By this method nearly all respiratory complexes that were previously predicted from genome analysis to be involved in energy and cell carbon fixation were validated. More importantly, new and unexpected ones were discovered. We believe that complexome profiling in concert with (meta)genomics offers great opportunities to expand our knowledge on bacterial respiratory processes at a rapid and massive pace, in particular in new and thus far poorly investigated non-model and environmentally-relevant species.


Structural insight into mitochondrial β-barrel outer membrane protein biogenesis.

  • Kathryn A Diederichs‎ et al.
  • Nature communications‎
  • 2020‎

In mitochondria, β-barrel outer membrane proteins mediate protein import, metabolite transport, lipid transport, and biogenesis. The Sorting and Assembly Machinery (SAM) complex consists of three proteins that assemble as a 1:1:1 complex to fold β-barrel proteins and insert them into the mitochondrial outer membrane. We report cryoEM structures of the SAM complex from Myceliophthora thermophila, which show that Sam50 forms a 16-stranded transmembrane β-barrel with a single polypeptide-transport-associated (POTRA) domain extending into the intermembrane space. Sam35 and Sam37 are located on the cytosolic side of the outer membrane, with Sam35 capping Sam50, and Sam37 interacting extensively with Sam35. Sam35 and Sam37 each adopt a GST-like fold, with no functional, structural, or sequence similarity to their bacterial counterparts. Structural analysis shows how the Sam50 β-barrel opens a lateral gate to accommodate its substrates.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: