Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 898 papers

Minocycline and Diacetyl Minocycline Eye Drops Reduce Ocular Neovascularization in Mice.

  • Joshua O Willms‎ et al.
  • Translational vision science & technology‎
  • 2023‎

To evaluate the efficacy of minocycline and a novel, modified minocycline analogue that lacks antimicrobial action, diacetyl minocycline (DAM), on choroidal neovascularization (CNV) in mice of both sexes.


Minocycline prevents hypoxia-induced seizures.

  • Isato Fukushi‎ et al.
  • Frontiers in neural circuits‎
  • 2023‎

Severe hypoxia induces seizures, which reduces ventilation and worsens the ictal state. It is a health threat to patients, particularly those with underlying hypoxic respiratory pathologies, which may be conducive to a sudden unexpected death in epilepsy (SUDEP). Recent studies provide evidence that brain microglia are involved with both respiratory and ictal processes. Here, we investigated the hypothesis that microglia could interact with hypoxia-induced seizures. To this end, we recorded electroencephalogram (EEG) and acute ventilatory responses to hypoxia (5% O2 in N2) in conscious, spontaneously breathing adult mice. We compared control vehicle pre-treated animals with those pre-treated with minocycline, an inhibitory modulator of microglial activation. First, we histologically confirmed that hypoxia activates microglia and that pre-treatment with minocycline blocks hypoxia-induced microglial activation. Then, we analyzed the effects of minocycline pre-treatment on ventilatory responses to hypoxia by plethysmography. Minocycline alone failed to affect respiratory variables in room air or the initial respiratory augmentation in hypoxia. The comparative results showed that hypoxia caused seizures, which were accompanied by the late phase ventilatory suppression in all but one minocycline pre-treated mouse. Compared to the vehicle pre-treated, the minocycline pre-treated mice showed a delayed occurrence of seizures. Further, minocycline pre-treated mice tended to resist post-ictal respiratory arrest. These results suggest that microglia are conducive to seizure activity in severe hypoxia. Thus, inhibition of microglial activation may help suppress or prevent hypoxia-induced ictal episodes.


Minocycline Attenuates Experimental Subarachnoid Hemorrhage in Rats.

  • Jingbo Li‎ et al.
  • Open life sciences‎
  • 2019‎

The aim of this study was to evaluate the therapeutic effect of minocycline on treating experimental subarachnoid hemorrhage (SAH) in rats and to explore its possible molecular mechanism.


Drug repurposing of minocycline against dengue virus infection.

  • Shilpa Lekshmi Leela‎ et al.
  • Biochemical and biophysical research communications‎
  • 2016‎

Dengue virus infection is one of the most common arthropod-borne viral diseases. A complex interplay between host and viral factors contributes to the severity of infection. The antiviral effects of three antibiotics, lomefloxacin, netilmicin, and minocycline, were examined in this study, and minocycline was found to be a promising drug. This antiviral effect was confirmed in all four serotypes of the virus. The effects of minocycline at various stages of the viral life cycle, such as during viral RNA synthesis, intracellular envelope protein expression, and the production of infectious virions, were examined and found to be significantly reduced by minocycline treatment. Minocycline also modulated host factors, including the phosphorylation of extracellular signal-regulated kinase1/2 (ERK1/2). The transcription of antiviral genes, including 2'-5'-oligoadenylate synthetase 1 (OAS1), 2'-5'-oligoadenylate synthetase 3 (OAS3), and interferon α (IFNA), was upregulated by minocycline treatment. Therefore, the antiviral activity of minocycline may have a potential clinical use against Dengue virus infection.


Minocycline attenuates ischemia-induced ventricular arrhythmias in rats.

  • Xiaorong Hu‎ et al.
  • European journal of pharmacology‎
  • 2011‎

Minocycline has been shown to protect against myocardial ischemia-reperfusion injury. This study investigated the effects of minocycline on ischemia-induced ventricular arrhythmias in rats. Anesthetized male rats were once treated with minocycline (45mg/kg, i.p.) 1h before ischemia in the absence and/or presence of 2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one hydrochloride (LY294002, 0.3mg/kg, i.v., a PI3K inhibitor) and 5-hydroxydecanoic acid [5-HD, 10mg/kg, i.v., a specific inhibitor of mitochondrial ATP-sensitive potassium (K(ATP)) channels] which were once injected 10min before ischemia and then subjected to ischemia for 30min. Ventricular arrhythmias were assessed. L-type Ca(2+) current was measured by the patch-clamp technique. During the 30-minute ischemia, minocycline significantly reduced the incidence of ventricular fibrillation (VF) (P<0.05). The duration of VT+VF, the number of VT+VF episodes and the severity of arrhythmias were all significantly reduced by minocycline compared to those in myocardial ischemia group (P<0.05 for all). Administration of LY294002 or 5-HD abolished the protective effects of minocycline on VF incidence, the duration of VT+VF, the number of VT+VF episodes and the severity of arrhythmias (P<0.05 for all). In addition, minocycline inhibited L-type Ca(2+) currents of normal myocardial cell membrane in a dose-dependent manner. This study suggested that minocycline could attenuate ischemia-induced ventricular arrhythmias in rats in which PI3K/Akt signaling pathway, mitochondrial K(ATP) channels and L-type Ca(2+) channels may be involved.


PEG minocycline-liposomes ameliorate CNS autoimmune disease.

  • Wei Hu‎ et al.
  • PloS one‎
  • 2009‎

Minocycline is an oral tetracycline derivative with good bioavailability in the central nervous system (CNS). Minocycline, a potent inhibitor of matrix metalloproteinase (MMP)-9, attenuates disease activity in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Potential adverse effects associated with long-term daily minocycline therapy in human patients are concerning. Here, we investigated whether less frequent treatment with long-circulating polyethylene glycol (PEG) minocycline liposomes are effective in treating EAE.


Minocycline selectively inhibits M1 polarization of microglia.

  • K Kobayashi‎ et al.
  • Cell death & disease‎
  • 2013‎

Minocycline is commonly used to inhibit microglial activation. It is widely accepted that activated microglia exert dual functions, that is, pro-inflammatory (M1) and anti-inflammatory (M2) functions. The in vivo status of activated microglia is probably on a continuum between these two extreme states. However, the mechanisms regulating microglial polarity remain elusive. Here, we addressed this question focusing on minocycline. We used SOD1(G93A) mice as a model, which exhibit the motor neuron-specific neurodegenerative disease, amyotrophic lateral sclerosis. Administration of minocycline attenuated the induction of the expression of M1 microglia markers during the progressive phase, whereas it did not affect the transient enhancement of expression of M2 microglia markers during the early pathogenesis phase. This selective inhibitory effect was confirmed using primary cultured microglia stimulated by lipopolysaccharide (LPS) or interleukin (IL)-4, which induced M1 or M2 polarization, respectively. Furthermore, minocycline inhibited the upregulation of NF-κB in the LPS-stimulated primary cultured microglia and in the spinal cord of SOD1(G93A) mice. On the other hand, IL-4 did not induce upregulation of NF-κB. This study indicates that minocycline selectively inhibits the microglia polarization to a proinflammatory state, and provides a basis for understanding pathogeneses of many diseases accompanied by microglial activation.


Antibiotic Minocycline Prevents Respiratory Syncytial Virus Infection.

  • Swapnil S Bawage‎ et al.
  • Viruses‎
  • 2019‎

Treatment drugs, besides their specific activity, often have multiple effects on the body. The undesired effect of the drug may be repurposed as therapeutics, saving significant investigative time and effort. Minocycline has anti-cancer, anti-oxidant, anti-inflammatory, and anti-apoptotic properties. Presently, minocycline is also known to show anti-viral activity against Influenza virus, Japanese encephalitis virus, Simian immunodeficiency virus, Human immunodeficiency virus and West Nile virus. Here, we investigate the effect of minocycline on Respiratory syncytial virus (RSV), a common respiratory virus that causes severe mortality and morbidity in infants, children, and older adult populations. Currently, there is no effective vaccine or treatment for RSV infection; hence, there is a critical need for alternative and effective drug choices. Our study shows that minocycline reduces the RSV-mediated cytopathic effect and prevents RSV infection. This is the first study demonstrating the anti-viral activity of minocycline against RSV.


Effect of minocycline on cerebral ischemia-reperfusion injury.

  • Yuanyin Zheng‎ et al.
  • Neural regeneration research‎
  • 2013‎

Minocylcine, a tetracycline derivate, has been shown to cross the blood-brain barrier and enter the central nervous system. In this study, cerebral ischemia-reperfusion injury models were established using the suture method, and minocycline was immediately injected intraperitoneally after cerebral ischemia-reperfusion (22.5 mg/kg, initially 45 mg/kg) at a 12-hour interval. Results showed that after minocycline treatment, the volume of cerebral infarction was significantly reduced, the number of surviving cell in the hippocampal CA1 region increased, the number of apoptotic cells decreased, the expression of caspase-3 and poly(adenosine diphosphate-ribose) polymerase-1 protein was down-regulated, and the escape latency in the water maze test was significantly shortened compared with the ischemia-reperfusion group. Our experimental findings indicate that minocycline can protect against neuronal injury induced by focal ischemia-reperfusion, which may be mediated by the inhibition of caspase-3 and poly(adenosine diphosphate-ribose) polymerase-1 protein expression.


Metformin reverse minocycline to inhibit minocycline-resistant Acinetobacter baumannii by destroy the outer membrane and enhance membrane potential in vitro.

  • Tingting Guo‎ et al.
  • BMC microbiology‎
  • 2022‎

Acinetobacter baumannii (A. baumannii) is an opportunistic pathogen and has emerged as one of the most troublesome pathogens. Drug resistance in A. baumannii has been reported on a global scale. Minocycline was found to be active against multi-drug resistant A. baumannii and was approved by the FDA for the infections caused by sensitive strains of A. baumannii. However, the emergence of minocycline resistance and its toxic effects still need to be addressed. Therefore, this study aimed to evaluate the synergistic effects of metformin combined with minocycline on minocycline-resistant A. baumannii.


Minocycline protects the immature white matter against hyperoxia.

  • Thomas Schmitz‎ et al.
  • Experimental neurology‎
  • 2014‎

Poor neurological outcome in preterm infants is associated with periventricular white matter damage and hypomyelination, often caused by perinatal inflammation, hypoxia-ischemia, and hyperoxia. Minocycline has been demonstrated in animal models to protect the immature brain against inflammation and hypoxia-ischemia by microglial inhibition. Here we studied the effect of minocycline on white matter damage caused by hyperoxia. To mimic the 3- to 4-fold increase of oxygen tension caused by preterm birth, we have used the hyperoxia model in neonatal rats providing 24h exposure to 4-fold increased oxygen concentration (80% instead of 21% O2) from P6 to P7. We analyzed whether minocycline prevents activation of microglia and damage of oligodendroglial precursor cell development, and whether acute treatment of hyperoxia-exposed rats with minocycline improves long term white matter integrity. Minocycline administration during exposure to hyperoxia resulted in decreased apoptotic cell death and in improved proliferation and maturation of oligodendroglial precursor cells (OPC). Minocycline blocked changes in microglial morphology and IL-1β release induced by hyperoxia. In primary microglial cell cultures, minocycline inhibited cytokine release while in mono-cultures of OPCs, it improved survival and proliferation. Long term impairment of white matter diffusivity in MRI/DTI in P30 and P60 animals after neonatal hyperoxia was attenuated by minocycline. Minocycline protects white matter development against oxygen toxicity through direct protection of oligodendroglia and by microglial inhibition. This study moreover demonstrates long term benefits of minocycline on white matter integrity.


Sex-independent neuroprotection with minocycline after experimental thromboembolic stroke.

  • Md Nasrul Hoda‎ et al.
  • Experimental & translational stroke medicine‎
  • 2011‎

Minocycline provides neurovascular protection reducing acute cerebral injury. However, it is unclear whether minocycline is effective in females. We tested minocycline in both sexes and aged animals using a novel embolic stroke model in mice that closely mimics acute thromboembolic stroke in humans.


Minocycline attenuates cardiac dysfunction in tumor-burdened mice.

  • Raymond D Devine‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 2016‎

Cardiovascular dysfunction as a result of tumor burden is becoming a recognized complication; however, the mechanisms remain unknown. A murine model of cancer cachexia has shown marked increases of matrix metalloproteinases (MMPs), known mediators of cardiac remodeling, in the left ventricle. The extent to which MMPs are involved in remodeling remains obscured. To this end a common antibiotic, minocycline, with MMP inhibitory properties was used to elucidate MMP involvement in tumor induced cardiovascular dysfunction. Tumor-bearing mice showed decreased cardiac function with reduced posterior wall thickness (PWTs) during systole, increased MMP and collagen expression consistent with fibrotic remodeling. Administration of minocycline preserved cardiac function in tumor bearing mice and decreased collagen RNA expression in the left ventricle. MMP protein levels were unaffected by minocycline administration, with the exception of MMP-9, indicating minocycline inhibition mechanisms are directly affecting MMP activity. Cancer induced cardiovascular dysfunction is an increasing concern; novel therapeutics are needed to prevent cardiac complications. Minocycline is a well-known antibiotic and recently has been shown to possess MMP inhibitory properties. Our findings presented here show that minocycline could represent a novel use for a long established drug in the prevention and treatment of cancer induced cardiovascular dysfunction.


Protective Effect of Minocycline Against Cisplatin-induced Ototoxicity.

  • Chi-Kyou Lee‎ et al.
  • Clinical and experimental otorhinolaryngology‎
  • 2011‎

Cisplatin, a widely used chemotherapeutic agent, has serious side effects, including nephrotoxicity and ototoxicity. Minocycline is a semisynthetic second-generation tetracycline that exerts anti-inflammatory and neuroprotective effects. The purpose of this study was to elucidate the protective effect of minocycline against cisplatin-induced ototoxicity in the auditory hair cell.


Prevention of hypoglycemia-induced neuronal death by minocycline.

  • Seok Joon Won‎ et al.
  • Journal of neuroinflammation‎
  • 2012‎

Diabetic patients who attempt strict management of blood glucose levels frequently experience hypoglycemia. Severe and prolonged hypoglycemia causes neuronal death and cognitive impairment. There is no effective tool for prevention of these unwanted clinical sequelae. Minocycline, a second-generation tetracycline derivative, has been recognized as an anti-inflammatory and neuroprotective agent in several animal models such as stroke and traumatic brain injury. In the present study, we tested whether minocycline also has protective effects on hypoglycemia-induced neuronal death and cognitive impairment. To test our hypothesis we used an animal model of insulin-induced acute hypoglycemia. Minocycline was injected intraperitoneally at 6 hours after hypoglycemia/glucose reperfusion and injected once per day for the following 1 week. Histological evaluation for neuronal death and microglial activation was performed from 1 day to 1 week after hypoglycemia. Cognitive evaluation was conducted 6 weeks after hypoglycemia. Microglial activation began to be evident in the hippocampal area at 1 day after hypoglycemia and persisted for 1 week. Minocycline injection significantly reduced hypoglycemia-induced microglial activation and myeloperoxidase (MPO) immunoreactivity. Neuronal death was significantly reduced by minocycline treatment when evaluated at 1 week after hypoglycemia. Hypoglycemia-induced cognitive impairment is also significantly prevented by the same minocycline regimen when subjects were evaluated at 6 weeks after hypoglycemia. Therefore, these results suggest that delayed treatment (6 hours post-insult) with minocycline protects against microglial activation, neuronal death and cognitive impairment caused by severe hypoglycemia. The present study suggests that minocycline has therapeutic potential to prevent hypoglycemia-induced brain injury in diabetic patients.


Minocycline protects developing brain against ethanol-induced damage.

  • Xin Wang‎ et al.
  • Neuropharmacology‎
  • 2018‎

Fetal alcohol spectrum disorders (FASD) are caused by ethanol exposure during the pregnancy and is the leading cause of mental retardation. Ethanol exposure during the development results in the loss of neurons in the developing brain, which may underlie many neurobehavioral deficits associated with FASD. It is important to understand the mechanisms underlying ethanol-induced neuronal loss and develop appropriate therapeutic strategies. One of the potential mechanisms involves neuroimmune activation. Using a third trimester equivalent mouse model of ethanol exposure, we demonstrated that ethanol induced a wide-spread neuroapoptosis, microglial activation, and neuroinflammation in C57BL/6 mice. Minocycline is an antibiotic that inhibits microglial activation and alleviates neuroinflammation. We tested the hypothesis that minocycline may protect neurons ethanol-induced neuron death by inhibiting microglial activation and neuroinflammation. We showed that minocycline significantly inhibited ethanol-induced caspase-3 activation, microglial activation, and the expression of pro-inflammatory cytokines. In contrast, minocycline reversed ethanol inhibition of anti-inflammatory cytokines. Minocycline blocked ethanol-induced activation of GSK3β, a key mediator of neuroinflammation and microglial activation in the developing brain. Consistent with the in vivo observations, minocycline inhibited ethanol-induced the expression of pro-inflammatory cytokines and activation of GSK3β in a microglia cell line (SIM-9). GSK3β inhibitor eliminated ethanol activation of pro-inflammatory cytokines in SIM-9 cells. Co-cultures of cortical neurons and SIM-9 microglia cells sensitized neurons to alcohol-induced neuronal death. Minocycline protected neurons against ethanol-induced neuronal death in neurons/microglia co-cultures. Together, these results suggest that minocycline may ameliorate ethanol neurotoxicity in the developing by alleviating GSK3β-mediated neuroinflammation.


Proteomic analysis of the anti-inflammatory action of minocycline.

  • Christopher R Dunston‎ et al.
  • Proteomics‎
  • 2011‎

Minocycline possesses anti-inflammatory properties independently of its antibiotic activity although the underlying molecular mechanisms are unclear. Lipopolysaccharide (LPS)-induced cytokines and pro-inflammatory protein expression are reduced by minocycline in cultured macrophages. Here, we tested a range of clinically important tetracycline compounds (oxytetracycline, doxycycline, minocycline and tigecycline) and showed that they all inhibited LPS-induced nitric oxide production. We made the novel finding that tigecycline inhibited LPS-induced nitric oxide production to a greater extent than the other tetracycline compounds tested. To identify potential targets for minocycline, we assessed alterations in the macrophage proteome induced by LPS in the presence or absence of a minocycline pre-treatment using 2-DE and nanoLC-MS. We found a number of proteins, mainly involved in cellular metabolism (ATP synthase β-subunit and aldose reductase) or stress response (heat shock proteins), which were altered in expression in response to LPS, some of which were restored, at least in part, by minocycline. This is the first study to document proteomic changes induced by minocycline. The observation that minocycline inhibits some, but not all, of the LPS-induced proteomic changes shows that minocycline specifically affects some signalling pathways and does not completely inhibit macrophage activation.


Neuroinflammatory alterations in trait anxiety: modulatory effects of minocycline.

  • Sinead Rooney‎ et al.
  • Translational psychiatry‎
  • 2020‎

High trait anxiety is a substantial risk factor for developing anxiety disorders and depression. While neuroinflammation has been identified to contribute to stress-induced anxiety, little is known about potential dysregulation in the neuroinflammatory system of genetically determined pathological anxiety or high trait anxiety individuals. We report microglial alterations in various brain regions in a mouse model of high trait anxiety (HAB). In particular, the dentate gyrus (DG) of the hippocampus of HABs exhibited enhanced density and average cell area of Iba1+, and density of phagocytic (CD68+/Iba1+) microglia compared to normal anxiety (NAB) controls. Minocycline was used to assess the capacity of a putative microglia 'inhibitor' in modulating hyperanxiety behavior of HABs. Chronic oral minocycline indeed reduced HAB hyperanxiety, which was associated with significant decreases in Iba1+ and CD68+Iba1+ cell densities in the DG. Addressing causality, it was demonstrated that longer (10 days), but not shorter (5 days), periods of minocycline microinfusions locally into the DG of HAB reduced Iba-1+ cell density and attenuated hyperanxiety-related behavior, indicating that neuroinflammation in the DG is at least partially involved in the maintenance of pathological anxiety. The present data reveal evidence of disturbances in the microglial system of individuals with high trait anxiety. Minocycline attenuated HAB hyperanxiety, likely by modulation of microglial activity within the DG. Thus, the present data suggest that drugs with microglia-targeted anti-inflammatory properties could be promising as novel alternative or complimentary anxiolytic therapeutic approaches in specific subgroups of individuals genetically predisposed to hyperanxiety.


Minocycline attenuates lipopolysaccharide (LPS)-induced neuroinflammation, sickness behavior, and anhedonia.

  • Christopher J Henry‎ et al.
  • Journal of neuroinflammation‎
  • 2008‎

Activation of the peripheral innate immune system stimulates the secretion of CNS cytokines that modulate the behavioral symptoms of sickness. Excessive production of cytokines by microglia, however, may cause long-lasting behavioral and cognitive complications. The purpose of this study was to determine if minocycline, an anti-inflammatory agent and purported microglial inhibitor, attenuates lipopolysaccharide (LPS)-induced neuroinflammation, sickness behavior, and anhedonia.


Minocycline protects neurons against glial cells-mediated bilirubin neurotoxicity.

  • Changwei Zhou‎ et al.
  • Brain research bulletin‎
  • 2020‎

Unconjugated bilirubin, the end product of heme catabolism and antioxidant, induced brain damage in human neonates is a well-recognized clinical syndrome. However, the cellular and molecular mechanisms underlying bilirubin neurotoxicity remain unclear. To characterize the sequence of events leading to bilirubin-induced neurotoxicity, we investigated whether bilirubin-induced glial activation was involved in bilirubin neurotoxicity by exposing co-cultured rat glial cells and cerebellar granule neurons (CGN) to bilirubin. We found that bilirubin could markedly induce the expression of TNF-α and iNOS in glial cells, and even at low concentrations, the co-culture of glial cells with neurons significantly enhances neurotoxicity of bilirubin. Pretreatment of the co-cultured cells with minocycline protected CGN from glia-mediated bilirubin neurotoxicity and inhibited overexpression of TNF-α and iNOS in glia. Furthermore, we found that high doses of bilirubin were able to induce glial injury, and minocycline attenuated bilirubin-induced glial cell death. Our data suggest that glial cells play an important role in brain damage caused by bilirubin, and minocycline blocks bilirubin-induced encephalopathy possibly by directly and indirectly inhibiting neuronal death pathways.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: