Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 67 papers

Retinal projections to the midline and intralaminar thalamic nuclei in the common marmoset (Callithrix jacchus).

  • Jeferson S Cavalcante‎ et al.
  • Brain research‎
  • 2005‎

In this study, we report the identification of a hitherto not reported direct retinal projection to midline and intralaminar thalamic nuclei in the marmoset brain. After unilateral intravitreal injections of cholera toxin subunit B (CTb), anterogradely transported CTb-immunoreactive fibers and presumptive terminals were seen in the following thalamic midline nuclei: paraventricular, rhomboid, interanteromedial, and reuniens, and thalamic intralaminar nuclei: central medial, central lateral, central dorsal, and parafascicular. Studies employing sensitive tracers in other primate species are needed in order to verify the possible universality of these projections. Some of the possible functional correlates of the present data are briefly discussed. The present results may contribute to the elucidation of the anatomical substrate of the functionally demonstrated involvement of this midline/intralaminar thalamic nuclear complex in several domains that include arousal and awareness, besides specific cognitive, sensory, and motor functions.


Lesions of the midline thalamic nuclei impair classical conditioning under partial but not continuous reinforcement conditions.

  • S L Buchanan‎ et al.
  • Behavioural brain research‎
  • 1998‎

Rabbits with lesions of the midline thalamic nuclei were compared to rabbits with sham lesions on classical eyeblink (EB) and heart rate (HR) conditioning. Separate groups of sham and lesioned animals received either 25, 50 or 100% reinforcement with a periorbital shock unconditioned stimulus. Animals with lesions showed slightly impaired EB conditioning, compared to sham animals, under the partial but not continuous reinforcement schedules. Midline lesions also reduced the magnitude of the decelerative HR conditioned response under partial but not continuous reinforcement conditions. These findings suggest that the midline thalamic nuclei, like the mediodorsal nucleus of the thalamus, process information required for response selection under non-optimal learning conditions.


Serotonergic fibers distribution in the midline and intralaminar thalamic nuclei in the rock cavy (Kerodon rupestris).

  • Alane de Medeiros Silva‎ et al.
  • Brain research‎
  • 2014‎

The thalamic midline/intralaminar complex is part of the higher-order thalamus, which receives little sensory input, and instead forms extensive cortico-thalamo-cortical pathways. The midline thalamic nuclei connect with the medial prefrontal cortex and the medial temporal lobe. On the other hand, the intralaminar nuclei connect with the fronto-parietal cortex. Taking into account this connectivity pattern, it is not surprising that the midline/intralaminar complex has been implicated in a broad variety of cognitive functions, including memory process, attention and orientation, and also reward-based behavior. Serotonin (5-HT) is a neurotransmitter that exerts different post-synaptic roles. Serotonergic neurons are almost entirely restricted to the raphe nuclei and the 5-HT fibers are distributed widely throughout the brain, including the midline/intralaminar complex. The present study comprises a detailed description of the morphologic features and semiquantitative analysis of 5-HT fibers distribution in the midline/intralaminar complex in the rock cavy, a typical rodent of the Northeast region of Brazil, which has been used by our group as an anatomical model to expand the comprehension about phylogeny on the nervous system. The 5-HT fibers in the midline/intralaminar nuclei of the rock cavy were classified into three distinct categories: (1) beaded fibers, which are relatively fine and endowed with large varicosities; (2) fine fibers, with thin axons and small varicosities uniformly distributed in whole axon; and (3) stem axons, showing thick non-varicose axons. Moreover, the density of 5-HT fibers is variable among the analyzed nuclei. On the basis of this diversity of the morphological fibers and the differential profile of optical density among the midline/intralaminar nuclei of the rock cavy, we conclude that the serotonergic system uses a diverse morphologic apparatus to exert a large functional repertory in the midline/intralaminar thalamic nuclei.


Single prolonged stress alters neural activation in the periacqueductal gray and midline thalamic nuclei during emotional learning and memory.

  • Rebecca Della Valle‎ et al.
  • Learning & memory (Cold Spring Harbor, N.Y.)‎
  • 2019‎

Clinical and preclinical studies that have examined the neurobiology of persistent fear memory in posttraumatic stress disorder (PTSD) have focused on the medial prefrontal cortex, hippocampus, and amygdala. Sensory systems, the periaqueductal gray (PAG), and midline thalamic nuclei have been implicated in fear and extinction memory, but whether neural activity in these substrates is sensitive to traumatic stress (at baseline or during emotional learning and memory) remains unexplored. To address this, we used the single prolonged stress (SPS) model of traumatic stress. SPS and control rats were either subjected to fear conditioning (CS-fear) or presented with CSs alone (CS-only) during fear conditioning. All rats were then subjected to extinction training and testing. A subset of rats were euthanized after each behavioral stage and c-Fos and c-Jun used to measure neural activation in all substrates. SPS lowered c-Jun levels in the dorsomedial and lateral PAG at baseline, but the elevated c-Jun expression in the PAG during emotional learning and memory. SPS also altered c-Fos expression during fear and extinction learning/memory in midline thalamic nuclei. These findings suggest changes in neural function in the PAG and midline thalamic nuclei could contribute to persistent fear memory induced by traumatic stress. Interestingly, SPS effects were also observed in animals that never learned fear or extinction (i.e., CS-only). This raises the possibility that traumatic stress could have broader effects on the psychological function that are dependent on the PAG and midline thalamic nuclei.


The µ-opioid system in midline thalamic nuclei modulates defence strategies towards a conditioned fear stimulus in male mice.

  • Xabier Bengoetxea‎ et al.
  • Journal of psychopharmacology (Oxford, England)‎
  • 2020‎

Nuclei located in the dorsal midline thalamus, such as the paraventricular nucleus of the thalamus (PVT), are crucial to modulate fear and aversive behaviour. In addition, the PVT shows a dense expression of µ-opioid receptors (MORs) and could mediate the anxiolytic effects of opioids.


Midline thalamic inputs to the amygdala: Ultrastructure and synaptic targets.

  • Alon Amir‎ et al.
  • The Journal of comparative neurology‎
  • 2019‎

One of the main subcortical inputs to the basolateral nucleus of the amygdala (BL) originates from a group of dorsal thalamic nuclei located at or near the midline, mainly from the central medial (CMT), and paraventricular (PVT) nuclei. Although similarities among the responsiveness of BL, CMT, and PVT neurons to emotionally arousing stimuli suggest that these thalamic inputs exert a significant influence over BL activity, little is known about the synaptic relationships that mediate these effects. Thus, the present study used Phaseolus vulgaris-leucoagglutinin (PHAL) anterograde tracing and electron microscopy to shed light on the ultrastructural properties and synaptic targets of CMT and PVT axon terminals in the rat BL. Virtually all PHAL-positive CMT and PVT axon terminals formed asymmetric synapses. Although CMT and PVT axon terminals generally contacted dendritic spines, a substantial number ended on dendritic shafts. To determine whether these dendritic shafts belonged to principal or local-circuit cells, calcium/calmodulin-dependent protein kinase II (CAMKIIα) immunoreactivity was used as a selective marker of principal BL neurons. In most cases, dendritic shafts postsynaptic to PHAL-labeled CMT and PVT terminals were immunopositive for CaMKIIα. Overall, these results suggest that CMT and PVT inputs mostly target principal BL neurons such that when CMT or PVT neurons fire, little feed-forward inhibition counters their excitatory influence over principal cells. These results are consistent with the possibility that CMT and PVT inputs constitute major determinants of BL activity.


Serotonin suppresses the slow afterhyperpolarization in rat intralaminar and midline thalamic neurones by activating 5-HT(7) receptors.

  • Jean-Marc Goaillard‎ et al.
  • The Journal of physiology‎
  • 2002‎

While the highest expression level of 5-HT(7) receptors in the brain is observed in intralaminar and midline thalamic neurones, the physiological role of these receptors in this structure is unknown. In vivo recordings have shown that stimulation of the serotonergic raphe nuclei can alter the response of these neurones to a nociceptive stimulus, suggesting that serotonin modulates their firing properties. Using the patch-clamp technique in rat thalamic brain slices, we demonstrate that activation of 5-HT(7) receptors can strongly modulate the excitability of intralaminar and midline thalamic neurones by inhibiting the calcium-activated potassium conductance that is responsible for the slow afterhyperpolarization (sAHP) following a spike discharge. This sAHP was inhibited after activation of the cAMP pathway, either by bath application of forskolin or intracellular perfusion with 8-bromo-cAMP. The inhibitory effect of 5-HT(7) receptors on sAHPs was blocked by the protein kinase A antagonist R(P)-cAMPS. Calcium-imaging experiments showed no change in intracellular calcium levels during the 5-HT(7) response, indicating that in these neurones, a global calcium signal was not necessary to activate the cAMP cascade. Finally, bath application of serotonin produced a strong increase in cytosolic cAMP concentration, as measured using the fluorescent probe FlCRhR, and an inhibition of the sAHP. Taken together, these results suggest that 5-HT(7) receptors are implicated in the effect of 5-HT on sAHP in intralaminar and midline thalamic neurones, an effect that is mediated by the cAMP second-messenger cascade.


Mapping thalamic-anterior cingulate monosynaptic inputs in adult mice.

  • Man Xue‎ et al.
  • Molecular pain‎
  • 2022‎

The anterior cingulate cortex (ACC) is located in the frontal part of the cingulate cortex, and plays important roles in pain perception and emotion. The thalamocortical pathway is the major sensory input to the ACC. Previous studies have show that several different thalamic nuclei receive projection fibers from spinothalamic tract, that in turn send efferents to the ACC by using neural tracers and optical imaging methods. Most of these studies were performed in monkeys, cats, and rats, few studies were reported systematically in adult mice. Adult mice, especially genetically modified mice, have provided molecular and synaptic mechanisms for cortical plasticity and modulation in the ACC. In the present study, we utilized rabies virus-based retrograde tracing system to map thalamic-anterior cingulate monosynaptic inputs in adult mice. We also combined with a new high-throughput VISoR imaging technique to generate a three-dimensional whole-brain reconstruction, especially the thalamus. We found that cortical neurons in the ACC received direct projections from different sub-nuclei in the thalamus, including the anterior, ventral, medial, lateral, midline, and intralaminar thalamic nuclei. These findings provide key anatomic evidences for the connection between the thalamus and ACC.


A role for midline and intralaminar thalamus in the associative blocking of Pavlovian fear conditioning.

  • Auntora Sengupta‎ et al.
  • Frontiers in behavioral neuroscience‎
  • 2014‎

Fear learning occurs in response to positive prediction error, when the expected outcome of a conditioning trial exceeds that predicted by the conditioned stimuli present. This role for error in Pavlovian association formation is best exemplified by the phenomenon of associative blocking, whereby prior fear conditioning of conditioned stimulus (CS) A is able to prevent learning to CSB when they are conditioned in compound. The midline and intralaminar thalamic nuclei (MIT) are well-placed to contribute to fear prediction error because they receive extensive projections from the midbrain periaqueductal gray-which has a key role in fear prediction error-and project extensively to prefrontal cortex and amygdala. Here we used an associative blocking design to study the role of MIT in fear learning. In Stage I rats were trained to fear CSA via pairings with shock. In Stage II rats received compound fear conditioning of CSAB paired with shock. On test, rats that received Stage I training expressed less fear to CSB relative to control rats that did not receive this training. Microinjection of bupivacaine into MIT prior to Stage II training had no effect on the expression of fear during Stage II and had no effect on fear learning in controls, but prevented associative blocking and so enabled fear learning to CSB. These results show an important role for MIT in predictive fear learning and are discussed with reference to previous findings implicating the midline and posterior intralaminar thalamus in fear learning and fear responding.


Adolescent thalamic inhibition leads to long-lasting impairments in prefrontal cortex function.

  • Laura J Benoit‎ et al.
  • Nature neuroscience‎
  • 2022‎

Impaired cortical maturation is a postulated mechanism in the etiology of neurodevelopmental disorders, including schizophrenia. In the sensory cortex, activity relayed by the thalamus during a postnatal sensitive period is essential for proper cortical maturation. Whether thalamic activity also shapes prefrontal cortical maturation is unknown. We show that inhibiting the mediodorsal and midline thalamus in mice during adolescence leads to a long-lasting decrease in thalamo-prefrontal projection density and reduced excitatory drive to prefrontal neurons. It also caused prefrontal-dependent cognitive deficits during adulthood associated with disrupted prefrontal cross-correlations and task outcome encoding. Thalamic inhibition during adulthood had no long-lasting consequences. Exciting the thalamus in adulthood during a cognitive task rescued prefrontal cross-correlations, task outcome encoding and cognitive deficits. These data point to adolescence as a sensitive window of thalamocortical circuit maturation. Furthermore, by supporting prefrontal network activity, boosting thalamic activity provides a potential therapeutic strategy for rescuing cognitive deficits in neurodevelopmental disorders.


Retinal projections to the thalamic paraventricular nucleus in the rock cavy (Kerodon rupestris).

  • Expedito S Nascimento‎ et al.
  • Brain research‎
  • 2008‎

The thalamic paraventricular nucleus (PVT) receives afferents from numerous brain areas, including the hypothalamic suprachiasmatic nucleus (SCN), considered to be the major circadian pacemaker. The PVT also sends projections to the SCN, limbic system centers and some nuclei involved in the control of the Sleep-Wake cycle. In this study, we report the identification of a hitherto not reported direct retinal projection to the PVT of the rock cavy, a typical rodent species of the northeast region of Brazil. After unilateral intravitreal injections of cholera toxin subunit B (CTb), anterogradely transported CTb-immunoreactive fibers and presumptive terminals were seen in the PVT. Some possible functional correlates of the present data are briefly discussed, including the role of the PVT in the modulation of the circadian rhythms by considering the reciprocal connections between the PVT and the SCN. The present work is the first to show a direct retinal projection to the PVT of a rodent and may contribute to elucidate the anatomical substrate of the functionally demonstrated involvement of this midline thalamic nucleus in the modulation of the circadian timing system.


Optogenetic study of central medial and paraventricular thalamic projections to the basolateral amygdala.

  • Nowrin Ahmed‎ et al.
  • Journal of neurophysiology‎
  • 2021‎

The central medial (CMT) and paraventricular (PVT) thalamic nuclei project strongly to the basolateral amygdala (BL). Similarities between the responsiveness of CMT, PVT, and BL neurons suggest that these nuclei strongly influence BL activity. Supporting this possibility, an electron microscopic study reported that, in contrast with other extrinsic afferents, CMT and PVT axon terminals form very few synapses with BL interneurons. However, since limited sampling is a concern in electron microscopic studies, the present investigation was undertaken to compare the impact of CMT and PVT thalamic inputs on principal and local-circuit BL neurons with optogenetic methods and whole cell recordings in vitro. Optogenetic stimulation of CMT and PVT axons elicited glutamatergic excitatory postsynaptic potentials (EPSPs) or excitatory postsynaptic currents (EPSCs) in principal cells and interneurons, but they generally had a longer latency in interneurons. Moreover, after blockade of polysynaptic interactions with tetrodotoxin (TTX), a lower proportion of interneurons (50%) than principal cells (90%) remained responsive to CMT and PVT inputs. Although the presence of TTX-resistant responses in some interneurons indicates that CMT and PVT inputs directly contact some local-circuit cells, their lower incidence and amplitude after TTX suggest that CMT and PVT inputs form fewer synapses with them than with principal BL cells. Together, these results indicate that CMT and PVT inputs mainly contact principal BL neurons such that when CMT or PVT neurons fire, limited feedforward inhibition counters their excitatory influence over principal BL cells. However, CMT and PVT axons can also recruit interneurons indirectly, via the activation of principal cells, thereby generating feedback inhibition.NEW & NOTEWORTHY Midline thalamic (MTh) nuclei contribute major projections to the basolateral amygdala (BL). Similarities between the responsiveness of MTh and BL neurons suggest that MTh neurons exert a significant influence over BL activity. Using optogenetic techniques, we show that MTh inputs mainly contact principal BL neurons such that when MTh neurons fire, little feedforward inhibition counters their excitatory influence over principal cells. Thus, MTh inputs may be major determinants of BL activity.


Nucleus reuniens of the midline thalamus of a rat is specifically damaged after early postnatal alcohol exposure.

  • Zachary H Gursky‎ et al.
  • Neuroreport‎
  • 2019‎

Individuals diagnosed with fetal alcohol spectrum disorders often show behavioral impairments in executive functioning. Mechanistic studies have implicated coordination between the prefrontal cortex and the hippocampus (through thalamic nucleus reuniens) as essential for such executive functions. This study is the first to report the long-term neuroanatomical alterations to the ventral midline thalamus after alcohol exposure on postnatal days 4-9 (a rodent model of binge drinking during the third-trimester of human pregnancy). Alcohol added to a milk formula was administered to female Long-Evans rat pups on postnatal days 4-9 (5.25 g/kg/day of ethanol, intragastric intubation). Control animals were intubated without the administration of liquid. In adulthood, brains were immunohistochemically labeled for a neuronal marker (NeuN) conjugated with Cy3 fluorophore and stained with Hoechst33342 to visualize nuclei. Total non-neuronal cell number (NeuN/Hoechst) and neuron number (NeuN/Hoechst), and total volume were estimated using unbiased stereology in two neighboring midline thalamic nuclei: reuniens and rhomboid. Estimates were analyzed using linear mixed modeling to account for animal and litter as clustering variables. A 21% reduction in the total neuron number (resulting in altered neuron-to-non-neuron ratio) and an 18% reduction in total volume were found exclusively in thalamic nucleus reuniens in rats exposed to ethanol. Non-neuronal cell number was not changed in reuniens. No ethanol-induced changes on any measures were observed in rhomboid nucleus. These specific neuroanatomical alterations provide a necessary foundation for further examination of circuit-level alterations that occur in fetal alcohol spectrum disorder.


Hypoactive Thalamic Crh+ Cells in a Female Mouse Model of Alcohol Drinking After Social Trauma.

  • Emily L Newman‎ et al.
  • Biological psychiatry‎
  • 2021‎

Comorbid stress-induced mood and alcohol use disorders are increasingly prevalent among female patients. Stress exposure can disrupt salience processing and goal-directed decision making, contributing to persistent maladaptive behavioral patterns; these and other stress-sensitive cognitive and behavioral processes rely on dynamic and coordinated signaling by midline and intralaminar thalamic nuclei. Considering the role of social trauma in the trajectory of these debilitating psychopathologies, identifying vulnerable thalamic cells may provide guidance for targeting persistent stress-induced symptoms.


Optogenetic activation of the reticular nucleus of the thalamus attenuates limbic seizures via inhibition of the midline thalamus.

  • Evan Wicker‎ et al.
  • Epilepsia‎
  • 2021‎

The nucleus reticularis of the thalamus (nRT) is most studied in epilepsy for its role in the genesis of absence seizures; much less is known regarding its role in other seizure types, including those originating in limbic structures and the temporal lobe. As it is a major source of inhibitory input to higher order thalamic nuclei, stimulation of the nRT may be an effective strategy to disrupt seizure activity that requires thalamic engagement.


Environmental enrichment enhances systems-level consolidation of a spatial memory after lesions of the ventral midline thalamus.

  • Mohamad Ali‎ et al.
  • Neurobiology of learning and memory‎
  • 2017‎

Lesions of the reuniens and rhomboid (ReRh) thalamic nuclei in rats do not alter spatial learning but shorten the period of memory persistence (Loureiro et al. 2012). Such persistence requires a hippocampo-cortical (prefrontal) dialog leading to memory consolidation at the systems level. Evidence for reciprocal connections with the hippocampus and the medial prefrontal cortex (mPFC) makes the ReRh a potential hub for regulating hippocampo-cortical interactions. As environmental enrichment (EE) fosters recovery of declarative-like memory functions after diencephalic lesions (e.g., anterior thalamus), we studied the possibility of triggering recovery of systems-level consolidation in ReRh lesioned rats using a 40-day postsurgical EE. Remote memory was tested 25days post-acquisition in a Morris water maze. The functional activity associated with retrieval was quantified using c-Fos imaging in the dorsal hippocampus, mPFC, intralaminar thalamic nuclei, and amygdala. EE enhanced remote memory in ReRh rats. Conversely, ReRh rats housed in standard conditions were impaired. C-Fos immunohistochemistry showed a higher recruitment of the mPFC in enriched vs. standard rats with ReRh lesions during retrieval. ReRh rats raised in standard conditions showed weaker c-Fos expression than their sham-operated counterparts. The reinstatement of memory capacity implicated an EE-triggered modification of functional connectivity: EE reduced a marked lesion-induced increase in baseline c-Fos expression in the amygdala. Thus, enriched housing conditions counteracted the negative impact of ReRh lesions on spatial memory persistence. These effects could be the EE-triggered consequence of an enhanced neuronal activation in the mPFC, along with an attenuation of a lesion-induced hyperactivity in the amygdala.


Cholecystokinin and substance P immunoreactive projections to the paraventricular thalamic nucleus in the rat.

  • Kazuyoshi Otake‎
  • Neuroscience research‎
  • 2005‎

Cholecystokinin (CCK) and substance P (SP) are thought to play an important role in a variety of stress responses. Both CCK- and SP-positive fibers innervating the thalamus are found principally in the midline nuclei, including the paraventricular thalamic nucleus (PVT), which has strong reciprocal connections with the medial prefrontal cortex. In the present study, we determined the source of the CCK- and SP-immunoreactive fibers to the PVT, employing combination of retrograde neuronal tracing and immunohistochemistry in the rat. The PVT-projecting neurons showing CCK immunoreactivity were detected in the dorsomedial nucleus of the hypothalamus, and ventral mesencephalic periaqueductal gray, including the Edinger-Westphal nucleus and the dorsal raphe nucleus. Sources of SP afferents to the PVT were detected in the Edinger-Westphal nucleus, the mesopontine tegmentum and the medullary raphe nucleus. CCK- and SP-immunoreactive fibers may exert modulatory influence on the prefrontal cortical activity via the PVT and regulate behavioral components of stress-adaptation responses.


Collateral rostral thalamic projections to prelimbic, infralimbic, anterior cingulate and retrosplenial cortices in the rat brain.

  • Steliana Yanakieva‎ et al.
  • The European journal of neuroscience‎
  • 2022‎

As the functional properties of a cortical area partly reflect its thalamic inputs, the present study compared collateral projections arising from various rostral thalamic nuclei that terminate across prefrontal (including anterior cingulate) and retrosplenial areas in the rat brain. Two retrograde tracers, fast blue and cholera toxin B, were injected in pairs to different combinations of cortical areas. The research focused on the individual anterior thalamic nuclei, including the interanteromedial nucleus, nucleus reuniens and the laterodorsal nucleus. Of the principal anterior thalamic nuclei, only the anteromedial nucleus contained neurons reaching both the anterior cingulate cortex and adjacent cortical areas (prefrontal or retrosplenial), though the numbers were modest. For these same cortical pairings (medial prefrontal/anterior cingulate and anterior cingulate/retrosplenial), the interanteromedial nucleus and nucleus reuniens contained slightly higher proportions of bifurcating neurons (up to 11% of labelled cells). A contrasting picture was seen for collaterals reaching different areas within retrosplenial cortex. Here, the anterodorsal nucleus, typically provided the greatest proportion of bifurcating neurons (up to 15% of labelled cells). While individual neurons that terminate in different retrosplenial areas were also found in the other thalamic nuclei, they were infrequent. Consequently, these thalamo-cortical projections predominantly arise from separate populations of neurons with discrete cortical termination zones, consistent with the transmission of segregated information and influence. Overall, two contrasting medial-lateral patterns of collateral projections emerged, with more midline nuclei, for example, nucleus reuniens and the interoanteromedial nucleus innervating prefrontal areas, while more dorsal and lateral anterior thalamic collaterals innervated retrosplenial cortex.


Reorganization of functional brain maps after exercise training: Importance of cerebellar-thalamic-cortical pathway.

  • D P Holschneider‎ et al.
  • Brain research‎
  • 2007‎

Exercise training (ET) causes functional and morphologic changes in normal and injured brain. While studies have examined effects of short-term (same day) training on functional brain activation, less work has evaluated effects of long-term training, in particular treadmill running. An improved understanding is relevant as changes in neural reorganization typically require days to weeks, and treadmill training is a component of many neurorehabilitation programs. Adult, male rats (n=10) trained to run for 40 min/day, 5 days/week on a Rotarod treadmill at 11.5 cm/s, while control animals (n=10) walked for 1 min/day at 1.2 cm/s. Six weeks later, [(14)C]-iodoantipyrine was injected intravenously during treadmill walking. Regional cerebral blood flow-related tissue radioactivity was quantified by autoradiography and analyzed in the three-dimensionally reconstructed brain by statistical parametric mapping. Exercised compared to nonexercised rats demonstrated increased influence of the cerebellar-thalamic-cortical (CbTC) circuit, with relative increases in perfusion in deep cerebellar nuclei (medial, interposed, lateral), thalamus (ventrolateral, midline, intralaminar), and paravermis, but with decreases in the vermis. In the basal ganglia-thalamic-cortical circuit, significant decreases were noted in sensorimotor cortex and striatum, with associated increases in the globus pallidus. Additional significant changes were noted in the ventral pallidum, superior colliculus, dentate gyrus (increases), and red nucleus (decreases). Following ET, the new dynamic equilibrium of the brain is characterized by increases in the efficiency of neural processing (sensorimotor cortex, striatum, vermis) and an increased influence of the CbTC circuit. Cerebral regions demonstrating changes in neural activation may point to alternate circuits, which may be mobilized during neurorehabilitation.


The Threatful Self: Midbrain Functional Connectivity to Cortical Midline and Parietal Regions During Subliminal Trauma-Related Processing in PTSD.

  • Braeden A Terpou‎ et al.
  • Chronic stress (Thousand Oaks, Calif.)‎
  • 2019‎

The innate alarm system consists of a subcortical network of interconnected midbrain, lower brainstem, and thalamic nuclei, which together mediate the detection of evolutionarily-relevant stimuli. The periaqueductal gray is a midbrain structure innervated by the innate alarm system that coordinates the expression of defensive states following threat detection. In participants with post-traumatic stress disorder, the periaqueductal gray displays overactivation during the subliminal presentation of trauma-related stimuli as well as altered resting-state functional connectivity. Aberrant functional connectivity is also reported in post-traumatic stress disorder for the default-mode network, a large-scale brain network recruited during self-referential processing and autobiographical memory. Here, research lacks investigation on the extent to which functional interactions are displayed between the midbrain and the large-scale cortical networks in post-traumatic stress disorder.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: