Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 550 papers

Three-dimensional immunoelectron microscopy of scorpion hemocyanin labeled with a monoclonal Fab fragment.

  • N Boisset‎ et al.
  • Journal of structural biology‎
  • 1993‎

An immunocomplex of the 4 x 6-meric hemocyanin of the scorpion Androctonus australis with the monoclonal Fab fragment L104 was reconstructed from electron micrographs of a negatively stained specimen, using the double-carbon-layer technique. The resulting structure enables a clear visualization of the Fab fragments bound to the four copies of the Aa6 subunit and directly confirms a previous localization of the L104 epitope deduced from two-dimensional image processing. Despite a strong flattening effect produced by the negative-staining technique the orientations of the Fab fragments are well characterized. Moreover, the observation of a central hole within the elbow bends of the Fab fragments provides information about the disposition of the Fabs around their main axis.


Location of Keratin-associated Proteins in Developing Fiber Cuticle Cells using Immunoelectron Microscopy.

  • Ln Jones‎ et al.
  • International journal of trichology‎
  • 2010‎

To investigate the location of keratin-associated proteins (KAPs) in developing hair fiber cuticle cells using transmission electron microscopy with immunogold techniques and specific antibodies. Other studies were aimed at detecting the presence of cornified envelope proteins including involucrin and loricrin. MATEIALS AND METHODS: Polyclonal antibodies were produced in rabbits against peptides from KAPS 5.1, KAPS 10.1 ultra high-sulfur proteins.


Arrangement of the subunits in the ribosome of Escherichia coli: demonstration by immunoelectron microscopy.

  • B Kastner‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 1981‎

The three-dimensional locations of Escherichia coli ribosomal proteins S13, L1, and L7/L12 on the surface of ribosomal subunits and 70S monomeric ribosomes were determined by electron microscopy of antibody-labeled ribosomal particles. A new approach to orient the subunits within 70S ribosomes was developed that used 30S.70S.50S triples that were prepared by simultaneous combination with one antibody directed against a 30S protein and another directed against a 50S protein. Electron microscope studies of triples obtained with the antibody combinations anti-S13/anti-L1 and anti-S13/anti-L7/L12 showed that, in 70S monomeric ribosomes, the head of the 30S subunit is proximate to protein L1 and the peptidyl transferase center but far from the rod-like appendage containing proteins L7 and L12.


High-resolution Immunoelectron Microscopy Techniques for Revealing Distinct Subcellular Type 1 Cannabinoid Receptor Domains in Brain.

  • Nagore Puente‎ et al.
  • Bio-protocol‎
  • 2019‎

Activation of type 1 cannabinoid (CB1) receptors by endogenous, exogenous (cannabis derivatives) or synthetic cannabinoids (i.e., CP 55.940, Win-2) has a wide variety of behavioral effects due to the presence of CB1 receptors in the brain. In situ hybridization and immunohistochemical techniques have been crucial for defining the CB1 receptor expression and localization at the cellular level. Nevertheless, more advanced methods are needed to reveal the precise topography of CB1 receptors in the brain, especially in unsuspected sites such as other cell types and organelles with low receptor expression (e.g., glutamatergic neurons, astrocytes, mitochondria). High-resolution immunoelectron microscopy provides a more precise detection method for the subcellular localization of CB1 receptors in the brain. Herein, we describe a single pre-embedding immunogold method for electron microscopy based on the use of specific CB1 receptor antibodies and silver-intensified 1.4 nm gold-labeled Fab' fragments, and a combined pre-embedding immunogold and immunoperoxidase method that employs biotinylated secondary antibodies and avidin-biotin-peroxidase complex for the simultaneous localization of CB1 receptors and protein markers of specific brain cells or synapses (e.g., GFAP, GLAST, IBA-1, PSD-95, gephyrin). In addition, a post-embedding immunogold method is also described and compared to the pre-embedding labeling procedure. These methods provide a relatively easy and useful approach for revealing the subcellular localization of low amounts of CB1 receptors in glutamatergic synapses, astrocytes, neuronal and astrocytic mitochondria in the brain.


High resolution imaging of subcellular glutathione concentrations by quantitative immunoelectron microscopy in different leaf areas of Arabidopsis.

  • Barbara E Koffler‎ et al.
  • Micron (Oxford, England : 1993)‎
  • 2013‎

Glutathione is an important antioxidant and redox buffer in plants. It fulfills many important roles during plant development, defense and is essential for plant metabolism. Even though the compartment specific roles of glutathione during abiotic and biotic stress situations have been studied in detail there is still great lack of knowledge about subcellular glutathione concentrations within the different leaf areas at different stages of development. In this study a method is described that allows the calculation of compartment specific glutathione concentrations in all cell compartments simultaneously in one experiment by using quantitative immunogold electron microscopy combined with biochemical methods in different leaf areas of Arabidopsis thaliana Col-0 (center of the leaf, leaf apex, leaf base and leaf edge). The volume of subcellular compartments in the mesophyll of Arabidopsis was found to be similar to other plants. Vacuoles covered the largest volume within a mesophyll cell and increased with leaf age (up to 80% in the leaf apex of older leaves). Behind vacuoles, chloroplasts covered the second largest volume (up to 20% in the leaf edge of the younger leaves) followed by nuclei (up to 2.3% in the leaf edge of the younger leaves), mitochondria (up to 1.6% in the leaf apex of the younger leaves), and peroxisomes (up to 0.3% in the leaf apex of the younger leaves). These values together with volumes of the mesophyll determined by stereological methods from light and electron micrographs and global glutathione contents measured with biochemical methods enabled the determination of subcellular glutathione contents in mM. Even though biochemical investigations did not reveal differences in global glutathione contents, compartment specific differences could be observed in some cell compartments within the different leaf areas. Highest concentrations of glutathione were always found in mitochondria, where values in a range between 8.7mM (in the apex of younger leaves) and 15.1mM (in the apex of older leaves) were found. The second highest amount of glutathione was found in nuclei (between 5.5mM and 9.7mM in the base and the center of younger leaves, respectively) followed by peroxisomes (between 2.6mM in the edge of younger leaves and 4.8mM in the base of older leaves, respectively) and the cytosol (2.8mM in the edge of younger and 4.5mM in the center of older leaves, respectively). Chloroplasts contained rather low amounts of glutathione (between 1mM and 1.4mM). Vacuoles had the lowest concentrations of glutathione (0.01mM and 0.14mM) but showed large differences between the different leaf areas. Clear differences in glutathione contents between the different leaf areas could only be found in vacuoles and mitochondria revealing that glutathione in the later cell organelle accumulated with leaf age to concentrations of up to 15mM and that concentrations of glutathione in vacuoles are quite low in comparison to the other cell compartments.


The Function of NG2/CSPG4-expressing Cells in the Rat Spinal Cord Injury: An Immunoelectron Microscopy Study.

  • Ilyas M Kabdesh‎ et al.
  • Neuroscience‎
  • 2021‎

Emerging evidence supports an increased role for NG2/CSPG4-expressing cells in the process of neuroregeneration and synaptic plasticity, due to the increased production of multifunctional chondroitin sulfate proteoglycan (NG2/CSPG4). However, the response of NG2/CSPG4-expressing cells in spinal cord injury (SCI) remains to be elcudiated. Expression and distribution of NG2/CSPG4-expressing cells were studied by immunoelectron microscopy in the ventral horns (VH) of an intact and injured rat spinal cord. In the intact spinal cord, NG2/CSPG4 expression was detected on the cell membrane and in the cytoplasm of NG2 glia and was absent in neurons. Large amounts of NG2/CSPG4 were found on myelin membranes. The ability of intact astrocytes to produce NG2/CSPG4 was shown, although to a lesser extent than oligodendrocytes and NG2 glia. At 7 days after SCI at the Th8 level in the reactive glial zone of VH, the expression of NG2/CSPG4 sharply increased in NG2 glia at a distance of 3-5 mm and in reactive astrocytes were observed at all investigated distances caudally from the epicenter of injury. The obtained results indicate the presence of NG2/CSPG4-positive astrocytes in the intact spinal cord, and in the case of damage, an increase in the ability of reactive astrocytes to produce NG2/CSPG4. SCI leads to increased expression of NG2/CSPG4 by NG2 glia in the early stages after injury, which decreases with distance from the epicenter of the injury, as well as at later stages.


Glycoproteins of coated pits, cell junctions, and the entire cell surface revealed by monoclonal antibodies and immunoelectron microscopy.

  • T L Murphy‎ et al.
  • The Journal of cell biology‎
  • 1983‎

Topographical descriptions of three major plasma membrane glycoproteins of murine 3T3 cells were obtained by immunoelectron microscopy with monoclonal antibodies. A glycoprotein of Mr 80,000 was distributed throughout the total cell surface. A second of Mr 90,000 was concentrated in coated pits, and a third of Mr 100,000 was localized at cell junctions.


Axial arrangement of the myosin rod in vertebrate thick filaments: immunoelectron microscopy with a monoclonal antibody to light meromyosin.

  • T Shimizu‎ et al.
  • The Journal of cell biology‎
  • 1985‎

A monoclonal antibody, MF20, which has been shown previously to bind the myosin heavy chain of vertebrate striated muscle, has been proven to bind the light meromyosin (LMM) fragment by solid phase radioimmune assay with alpha-chymotryptic digests of purified myosin. Epitope mapping by electron microscopy of rotary-shadowed, myosin-antibody complexes has localized the antibody binding site to LMM at a point approximately 92 nm from the C-terminus of the myosin heavy chain. Since this epitope in native thick filaments is accessible to monoclonal antibodies, we used this antibody as a high affinity ligand to analyze the packing of LMM along the backbone of the thick filament. By immunofluorescence microscopy, MF20 was shown to bind along the entire A-band of chicken pectoralis myofibrils, although the epitope accessibility was greater near the ends than at the center of the A-bands. Thin-section, transmission electron microscopy of myofibrils decorated with MF20 revealed 50 regularly spaced, cross-striations in each half A-band, with a repeat distance of approximately 13 nm. These were numbered consecutively, 1-50, from the A-band to the last stripe, approximately 68 nm from the filament tips. These same striations could be visualized by negative staining of native thick filaments labeled with MF20. All 50 striations were of a consecutive, uninterrupted repeat which approximated the 14-15-nm axial translation of cross-bridges. Each half M-region contained five MF20 striations (approximately 13 nm apart) with a distance between stripes 1 and 1', on each half of the bare zone, of approximately 18 nm. This is compatible with a packing model with full, antiparallel overlap of the myosin rods in the bare zone region. Differences in the spacings measured with negatively stained myofilaments and thin-sectioned myofibrils have been shown to arise from specimen shrinkage in the fixed and embedded preparations. These observations provide strong support for Huxley's original proposal for myosin packing in thick filaments of vertebrate muscle (Huxley, H. E., 1963, J. Mol. Biol., 7:281-308) and, for the first time, directly demonstrate that the 14-15-nm axial translation of LMM in the thick filament backbone corresponds to the cross-bridge repeat detected with x-ray diffraction of living muscle.


Visualization by high resolution immunoelectron microscopy of the transient receptor potential vanilloid-1 at inhibitory synapses of the mouse dentate gyrus.

  • Miren-Josune Canduela‎ et al.
  • PloS one‎
  • 2015‎

We have recently shown that the transient receptor potential vanilloid type 1 (TRPV1), a non-selective cation channel in the peripheral and central nervous system, is localized at postsynaptic sites of the excitatory perforant path synapses in the hippocampal dentate molecular layer (ML). In the present work, we have studied the distribution of TRPV1 at inhibitory synapses in the ML. With this aim, a preembedding immunogold method for high resolution electron microscopy was applied to mouse hippocampus. About 30% of the inhibitory synapses in the ML are TRPV1 immunopositive, which is mostly localized perisynaptically (∼60% of total immunoparticles) at postsynaptic dendritic membranes receiving symmetric synapses in the inner 1/3 of the layer. This TRPV1 pattern distribution is not observed in the ML of TRPV1 knock-out mice. These findings extend the knowledge of the subcellular localization of TRPV1 to inhibitory synapses of the dentate molecular layer where the channel, in addition to excitatory synapses, is present.


Silver-enhanced diaminobenzidine-sulfide (SEDS): a technique for high-resolution immunoelectron microscopy demonstrated with monoamine immunoreactivity in monkey cerebral cortex and caudate.

  • J F Smiley‎ et al.
  • The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society‎
  • 1993‎

A common frustration of immunoelectron microscopy (IEM) is the density of the 3,3'-diaminobenzidine (DAB) label, which obscures intracellular details of labeled structures. To overcome this problem, a silver enhancement protocol was developed which leaves silver deposits on very low levels of DAB. The resulting label is composed of easily visualized punctate silver deposits, localized in processes with little or no detectable DAB. This technique incorporates several modifications into previously described methods for silver enhancement of DAB. The principal innovation is to pretreat the DAB label with sodium sulfide before silver enhancement, which substantially increases the sensitivity of the silver enhancement. In addition, cysteine was used in place of thioglycolic acid to suppress tissue argyrophilia, allowing use of both glutaraldehyde- and paraformaldehyde-fixed tissue without degradation of ultrastructure. We demonstrate this technique with dopamine, norepinephrine (NE), and serotonin (5HT) immunoreactivity in monkey prefrontal cerebral cortex and with dopamine immunoreactivity in the anterior caudate. The punctate label allows essentially unobscured visualization of the intracellular details and cell membranes of these monoamine axons. Whereas 5HT axons formed small asymmetric synapses, dopamine and NE axons typically formed small symmetric synapses with notably subtle membrane specializations. It is likely that these are often obscured by conventional DAB labeling. The use of several preparations indicates that this technique will be useful with a variety of antibodies. It might also provide an attractive alternative to colloidal gold, especially with glutaraldehyde-fixed tissue which is not easily penetrated by gold particles.


Immunoelectron microscopic localization of monoclonal IgM antibodies in gammopathy associated with peripheral demyelinative neuropathy.

  • B Lach‎ et al.
  • Acta neuropathologica‎
  • 1993‎

A sural nerve biopsy from a patient with benign monoclonal IgM kappa gammopathy and sensory-motor demyelinative neuropathy, revealed marked loss of myelinated fibers and focal axonal degeneration as well as widespread demyelination and remyelination with onion-skin formation. Almost all myelinated fibers displayed characteristic widening of the myelin lamellae as well as excessive thickness and/or exuberant outfoldings of myelin, reminiscent of that seen in tomaculous neuropathy. Many endoneurial capillaries were lined by fenestrated endothelium, indicating breakdown of a normal blood-nerve barrier. The endoneurium contained large amounts of extracellular proteinaceous material. Immunofluorescence and immunoelectron microscopy performed on the nerve of the patient, demonstrated selective deposition of IgM kappa gammaglobulin, exclusively in the areas of splittings of the myelin lamellae. Schwann cells contained cytoplasmic myelin debris labelled with IgM kappa only. In the indirect immunofluorescence and immunoelectron microscopy, serum of the patient reacted with the whole thickness of compact peripheral myelin of a normal human nerve. There was no immunoreactivity with the central myelin, Schwannoma cells, glial cells, axons or neurons. Demonstration of the selective presence of monoclonal IgM in widened lamellae of myelinated fibers, as well as bound to the internalized myelin debris in Schwann cells and macrophages, indicates a pathogenetic role of monoclonal paraprotein in myelin injury. Demyelination is promoted by development of endothelial fenestrations in the endoneurial capillaries and breakdown of the blood-nerve barrier.


Immunoelectron microscope localization of androgen receptors and proliferating cell nuclear antigen in the epithelial cells of albino rat ventral prostate.

  • Noha Gamal Bahey‎ et al.
  • Journal of microscopy and ultrastructure‎
  • 2015‎

Androgen receptor (AR) and proliferating cell nuclear antigen (PCNA) play a crucial role in development and progression of various prostatic diseases including prostatic carcinoma that is a leading cause of death in males. Previous studies have evaluated the expression pattern of AR and PCNA in prostate epithelial cells using immunohistochemistry (IHC). However, this technique has limited ability to identify their precise subcellular localization. Therefore, the aim of this study was to localize, subcellularly, AR and PCNA in the secretory epithelial cells of rat ventral prostate using post embedding immunogold-electron microscopy. The ventral lobes were dissected from six adult male albino rats after being perfused with paraformaldehyde. Some specimens were immuno-labeled with AR or PCNA and others were processed for immuno-electron microscope of AR and PCNA using 15-nm gold conjugated secondary antibodies. The results showed that, by immunoperoxidase reaction, AR and PCNA were localized diffusely throughout the nuclei of the epithelial cells of prostatic acini without visible cytoplasmic expression. However, the higher resolution immuno-electron microscopy was able to detect AR and PCNA in the nucleus and some cytoplasmic organelles. In conclusion, this study emphasizes the importance of immuno-electron microscopy in precise localization of AR and PCNA at the subcelullar levels in the secretory epithelial cells of the rat prostatic acini. These findings will help to further understand the mechanism of action of these receptors under normal and pathological conditions that could have future clinical application after careful human investigation.


Immunoelectron microscopic evidence for Tetherin/BST2 as the physical bridge between HIV-1 virions and the plasma membrane.

  • Jason Hammonds‎ et al.
  • PLoS pathogens‎
  • 2010‎

Tetherin/BST2 was identified in 2008 as the cellular factor responsible for restricting HIV-1 replication at a very late stage in the lifecycle. Tetherin acts to retain virion particles on the plasma membrane after budding has been completed. Infected cells that express large amounts of tetherin display large strings of HIV virions that remain attached to the plasma membrane. Vpu is an HIV-1 accessory protein that specifically counteracts the restriction to virus release contributed by tetherin. Tetherin is an unusual Type II transmembrane protein that contains a GPI anchor at its C-terminus and is found in lipid rafts. The leading model for the mechanism of action of tetherin is that it functions as a direct physical tether bridging virions and the plasma membrane. However, evidence that tetherin functions as a physical tether has thus far been indirect. Here we demonstrate by biochemical and immunoelectron microscopic methods that endogenous tetherin is present on the viral particle and forms a bridge between virion particles and the plasma membrane. Endogenous tetherin was found on HIV particles that were released by partial proteolytic digestion. Immunoelectron microscopy performed on HIV-infected T cells demonstrated that tetherin forms an apparent physical link between virions and connects patches of virions to the plasma membrane. Linear filamentous strands that were highly enriched in tetherin bridged the space between some virions. We conclude that tetherin is the physical tether linking HIV-1 virions and the plasma membrane. The presence of filaments with which multiple molecules of tetherin interact in connecting virion particles is strongly suggested by the morphologic evidence.


Immunoelectron Microscopic Characterization of Vasopressin-Producing Neurons in the Hypothalamo-Pituitary Axis of Non-Human Primates by Use of Formaldehyde-Fixed Tissues Stored at -25 °C for Several Years.

  • Akito Otubo‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Translational research often requires the testing of experimental therapies in primates, but research in non-human primates is now stringently controlled by law around the world. Tissues fixed in formaldehyde without glutaraldehyde have been thought to be inappropriate for use in electron microscopic analysis, particularly those of the brain. Here we report the immunoelectron microscopic characterization of arginine vasopressin (AVP)-producing neurons in macaque hypothalamo-pituitary axis tissues fixed by perfusion with 4% formaldehyde and stored at -25 °C for several years (4-6 years). The size difference of dense-cored vesicles between magnocellular and parvocellular AVP neurons was detectable in their cell bodies and perivascular nerve endings located, respectively, in the posterior pituitary and median eminence. Furthermore, glutamate and the vesicular glutamate transporter 2 could be colocalized with AVP in perivascular nerve endings of both the posterior pituitary and the external layer of the median eminence, suggesting that both magnocellular and parvocellular AVP neurons are glutamatergic in primates. Both ultrastructure and immunoreactivity can therefore be sufficiently preserved in macaque brain tissues stored long-term, initially for light microscopy. Taken together, these results suggest that this methodology could be applied to the human post-mortem brain and be very useful in translational research.


Colocalization coefficients evaluating the distribution of molecular targets in microscopy methods based on pointed patterns.

  • Lukáš Pastorek‎ et al.
  • Histochemistry and cell biology‎
  • 2016‎

In biomedical studies, the colocalization is commonly understood as the overlap between distinctive labelings in images. This term is usually associated especially with quantitative evaluation of the immunostaining in fluorescence microscopy. On the other hand, the evaluation of the immunolabeling colocalization in the electron microscopy images is still under-investigated and biased by the subjective and non-quantitative interpretation of the image data. We introduce a novel computational technique for quantifying the level of colocalization in pointed patterns. Our approach follows the idea included in the widely used Manders' colocalization coefficients in fluorescence microscopy and represents its counterpart for electron microscopy. In presented methodology, colocalization is understood as the product of the spatial interactions at the single-particle (single-molecule) level. Our approach extends the current significance testing in the immunoelectron microscopy images and establishes the descriptive colocalization coefficients. To demonstrate the performance of the proposed coefficients, we investigated the level of spatial interactions of phosphatidylinositol 4,5-bisphosphate with fibrillarin in nucleoli. We compared the electron microscopy colocalization coefficients with Manders' colocalization coefficients for confocal microscopy and super-resolution structured illumination microscopy. The similar tendency of the values obtained using different colocalization approaches suggests the biological validity of the scientific conclusions. The presented methodology represents a good basis for further development of the quantitative analysis of immunoelectron microscopy data and can be used for studying molecular interactions at the ultrastructural level. Moreover, this methodology can be applied also to the other super-resolution microscopy techniques focused on characterization of discrete pointed structures.


Correlative light and electron microscopy is a powerful tool to study interactions of extracellular vesicles with recipient cells.

  • Uma Thanigai Arasu‎ et al.
  • Experimental cell research‎
  • 2019‎

Extracellular vesicles (EVs) and their interactions with recipient cells constitute a rapidly growing research area. However, due to the limitations in current methodologies, the mechanisms of these interactions are still unclear. Microscopic studies of EVs are challenging, because their typical diameter is near the resolution limit of light microscopy, and electron microscopy has restricted possibilities for protein labelling. The objective of this study was to combine these two techniques to demonstrate in detail the interactions of EVs by recipient cells. Hyaluronan synthase 3 (HAS3) is an integral transmembrane protein that is enriched in EVs. In this work, GFP-HAS3 was utilized to study the interactions of EVs with the recipient cells. Surprisingly, confocal analysis correlation with scanning electron microscopy (SEM) revealed that most of the EVs were indeed lying on the recipient cell's plasma membrane, while the level of EV-derived intracellular signal was low. Immunoelectron microscopy supported this finding. Furthermore, hyaluronan oligosaccharides decreased the numbers of bound EVs, suggesting that CD44 participates in the regulation of their binding. This study indicates that correlative light and electron microscopy is a reliable method to analyze EV interactions with recipient cells. Detailed 3D confocal imaging of EV carrying a GFP-label on their plasma membrane combined with high-resolution electron microscopy provides significantly more information than either of the techniques alone. In the future studies it is crucial to utilize these techniques and their combinations to solve in detail the ambiguous fate of EV in target cells. Furthermore, live cell imaging at high resolution will be required to obtain definite answers on the detailed mechanisms of binding, fusion and endocytosis of EVs.


Three-dimensional visualization of multiple synapses in thick sections using high-voltage electron microscopy in the rat spinal cord.

  • Keita Satoh‎ et al.
  • Data in brief‎
  • 2015‎

This data article contains complementary figure and movies (Supplementary Movies 1-3) related to the research article entitled, "Effective synaptome analysis of itch-mediating neurons in the spinal cord: a novel immunohistochemical methodology using high-voltage electron microscopy" [7]. It is important to show the synaptic connections at the ultrastructural level to understand the neural circuit, which requires the three-dimensional (3-D) analyses in the electron microscopy. Here, we applied a new sample preparation method, a high-contrast en bloc staining according to the protocol of the National Center for Microscopy and Imaging Research (NCMIR), University of California, San Diego, CA, USA to high-voltage electron microscopy (HVEM) tomography in order to examine the 3-D chemical neuroanatomy of the rat spinal cord. Pre-embedding immunoelectron microscopy was used in this study. HVEM has an excellent potential to directly visualize the ultrastructures in semi-thin sections (~5 μm thick), and we have successfully visualized many itch-mediating synaptic connections and neural networks in the spinal cord using "HVEM tomography". Moreover, the methodology used in this study is simple and can be applied in multiple ways. This is an important contribution to ultrastructural investigations of the central nervous system in the present post-genomic age.


Increased Expression of Osteopontin in the Degenerating Striatum of Rats Treated with Mitochondrial Toxin 3-Nitropropionic Acid: A Light and Electron Microscopy Study.

  • Hong-Lim Kim‎ et al.
  • Acta histochemica et cytochemica‎
  • 2015‎

The mycotoxin 3-nitropropionic acid (3NP) is an irreversible inhibitor that induces neuronal damage by inhibiting mitochondrial complex II. Neurodegeneration induced by 3NP, which is preferentially induced in the striatum, is caused by an excess influx and accumulation of calcium in mitochondria. Osteopontin (OPN) is a glycosylated phosphoprotein and plays a role in the regulation of calcium precipitation in the injured brain. The present study was designed to examine whether induction of OPN protein is implicated in the pathogenesis of 3NP-induced striatal neurodegeneration. We observed overlapping regional expression of OPN, the neurodegeneration marker Fluoro-Jade B, and the microglial marker ionized calcium-binding adaptor molecule 1 (Iba1) in the 3NP-lesioned striatum. OPN expression was closely associated with the mitochondrial marker NADH dehydrogenase (ubiquinone) flavoprotein 2 in the damaged striatum. In addition, immunoelectron microscopy demonstrated that OPN protein was specifically localized to the inner membrane and matrix of the mitochondria in degenerating striatal neurons, and cell fragments containing OPN-labeled mitochondria were also present within activated brain macrophages. Thus, our study revealed that OPN expression is associated with mitochondrial dysfunction produced by 3NP-induced alteration of mitochondrial calcium homeostasis, suggesting that OPN is involved in the pathogenesis of striatal degeneration by 3NP administration.


Insight into the Characteristics of Novel Desmin-Immunopositive Perivascular Cells of the Anterior Pituitary Gland Using Transmission and Focused Ion Beam Scanning Electron Microscopy.

  • Depicha Jindatip‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Recently, another new cell type was found in the perivascular space called a novel desmin-immunopositive perivascular (DIP) cell. However, the differences between this novel cell type and other nonhormone-producing cells have not been clarified. Therefore, we introduced several microscopic techniques to gain insight into the morphological characteristics of this novel DIP cell. We succeeded in identifying novel DIP cells under light microscopy using desmin immunocryosection, combining resin embedding blocks and immunoelectron microscopy. In conventional transmission electron microscopy, folliculostellate cells, capsular fibroblasts, macrophages, and pericytes presented a flat cisternae of rough endoplasmic reticulum, whereas those of novel DIP cells had a dilated pattern. The number of novel DIP cells was greatest in the intact rats, though nearly disappeared under prolactinoma conditions. Additionally, focused ion beam scanning electron microscopy showed that these novel DIP cells had multidirectional processes and some processes reached the capillary, but these processes did not tightly wrap the vessel, as is the case with pericytes. Interestingly, we found that the rough endoplasmic reticulum was globular and dispersed throughout the cytoplasmic processes after three-dimensional reconstruction. This study clearly confirms that novel DIP cells are a new cell type in the rat anterior pituitary gland, with unique characteristics.


Three-dimensional correlative light and focused ion beam scanning electron microscopy reveals the distribution and ultrastructure of lanceolate nerve endings surrounding terminal hair follicles in human scalp skin.

  • Haruyo Yamanishi‎ et al.
  • Journal of anatomy‎
  • 2023‎

Lanceolate nerve endings (LNEs) surrounding hair follicles (HFs) play an important role in detecting hair deflection. Complexes of the LNEs form a palisade-like structure along the longitudinal axis of hair roots in which axons are sandwiched between two processes of terminal Schwann cells (tSCs) at the isthmus of HFs. The structure and molecular mechanism of LNEs in animal sinus hair, pelage, and human vellus hairs have been investigated. Despite the high density of HFs in human scalp skin, the LNEs in human terminal HFs have not been investigated. In this study, we aimed to reveal the distribution and ultrastructure of LNEs in terminal HFs of human scalp skin. Using light-sheet microscopy and immunostaining, the LNEs were observed at one terminal HF but not at the other terminal HFs in the same follicular unit. The ultrastructure of the LNEs of terminal HFs in human scalp skin was characterized using correlated light and electron microscopy (CLEM). Confocal laser microscopy and transmission electron microscopy of serial transverse sections of HFs revealed that LNEs were aligned adjacent to the basal lamina outside the outer root sheath (ORS), at the isthmus of terminal HFs, and adjacent to CD200-positive ORS cells in the upper bulge region. Moreover, axons with abundant mitochondria were sandwiched between tSCs. Three-dimensional CLEM, specifically confocal laser microscopy and focused ion beam scanning electron microscopy, of stained serial transverse sections revealed that LNEs were wrapped with type I and type II tSCs, with the processes protruding from the space between the Schwann cells. Moreover, the ultrastructures of LNEs at miniaturized HFs were similar to those of LNEs at terminal HFs. Preembedding immunoelectron microscopy revealed that Piezo-type mechanosensitive ion channel component 2 (Piezo2), a gated ion channel, was in axons and tSCs and adjacent to the cell membrane of axons and tSCs, suggesting that LNEs function as mechanosensors. The number of LNEs increased as the diameter of the ORS decreased, suggesting that LNEs dynamically adapt to the HF environment as terminal HFs miniaturize into vellus-like hair. These findings will provide insights for investigations of mechanosensory organs, aging, and re-innervation during wound healing.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: