Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,444 papers

Low microsatellite instability: A distinct instability type in gastric cancer?

  • Meike Kohlruss‎ et al.
  • Journal of cancer research and clinical oncology‎
  • 2023‎

We recently showed that low microsatellite instability (MSI-L) is associated with a good response to platinum/5-fluorouracil (5-FU) neoadjuvant chemotherapy (CTx) in gastric cancer. The purpose of this study was to characterize the instability pattern and to investigate an association of MSI-L tumors with mutations in genes of DNA repair pathways and with total tumor mutation burden (TMB).


Endometrial cancer and microsatellite instability status.

  • Daiva Kanopiene‎ et al.
  • Open medicine (Warsaw, Poland)‎
  • 2015‎

Microsatellite instability (MSI) is an important factor in the development of various cancers as an identifier of a defective DNA mismatch repair system. The objective of our study was to define the association between microsatellite instability status and traditional clinicopathologic characteristics of endometrioid type adenocarcinoma.


Elevated microsatellite instability at selected tetranucleotide (EMAST) repeats in gastric cancer: a distinct microsatellite instability type with potential clinical impact?

  • Anna-Lina Herz‎ et al.
  • The journal of pathology. Clinical research‎
  • 2022‎

We investigated the clinical impact of elevated microsatellite instability at selected tetranucleotide (EMAST) repeats in the context of neoadjuvant chemotherapy (CTx) in gastric/gastro-oesophageal adenocarcinomas. We analysed 583 resected tumours (272 without and 311 after CTx) and 142 tumour biopsies before CTx. If at least two or three of the five tetranucleotide repeat markers tested showed instability, the tumours were defined as EMAST (2+) or EMAST (3+), respectively. Expression of mismatch repair proteins including MSH3 was analysed using immunohistochemistry. Microsatellite instability (MSI) and Epstein-Barr virus (EBV) positivity were determined using standard assays. EMAST (2+) and (3+) were detected in 17.8 and 11.5% of the tumours, respectively. The frequency of EMAST (2+) or (3+) in MSI-high (MSI-H) tumours was 96.2 or 92.5%, respectively, demonstrating a high overlap with this molecular subtype, and the association of EMAST and MSI status was significant (each overall p < 0.001). EMAST (2+ or 3+) alone in MSI-H and EBV-negative tumours demonstrated only a statistically significant association of EMAST (2+) positivity and negative lymph node status (42.3% in EMAST (2+) and 28.8% in EMAST negative, p = 0.045). EMAST alone by neither definition was significantly associated with overall survival (OS) of the patients. The median OS for EMAST (2+) patients was 40.0 months (95% confidence interval [CI] 16.4-63.6) compared with 38.7 months (95% CI 26.3-51.1) for the EMAST-negative group (p = 0.880). The median OS for EMAST (3+) patients was 46.7 months (95% CI 18.2-75.2) and 38.7 months (95% CI 26.2-51.2) for the negative group (p = 0.879). No statistically significant association with response to neoadjuvant CTx was observed (p = 0.992 and p = 0.433 for EMAST (2+) and (3+), respectively). In conclusion, our results demonstrate a nearly complete intersection between MSI-H and EMAST and they indicate that EMAST alone is not a distinct instability type associated with noticeable clinico-pathological characteristics of gastric carcinoma patients.


Subtyping of microsatellite instability-high colorectal cancer.

  • Wangxiong Hu‎ et al.
  • Cell communication and signaling : CCS‎
  • 2019‎

Patients with microsatellite instability-high (MSI-H) colorectal cancer (CRC) generally have a better prognosis than patients with microsatellite stable (MSS) CRC. However, some MSI-H CRC patients do not gain overall survival benefits from immune checkpoint-blockade treatment. In other words, heterogeneity within the subgroup of MSI-H tumors remains poorly understood. Thus, an in-depth molecular characterization of MSI-H tumors is urgently required.


GTn Repeat Microsatellite Instability in Uterine Fibroids.

  • Bineta Kénémé‎ et al.
  • Frontiers in genetics‎
  • 2019‎

Background: Type I collagen is a triple helix structure with two α1 and one α2 chains. Coordinated biosynthesis of α1 and α2 subunits is very important for tissue morphogenesis, growth, and repair. In contrast, abnormal deposition in response to proinflammatory cytokines is associated with organ dysfunction. In humans, COL1A2 contains two microsatellite loci: one located at the 5'-flanking region is composed of poly CA and poly CG; the other located in the 1st intron is constituted of poly GT. Expression of COL1A2 has been noted in gastric cancer and was positively correlated with degree of invasion and metastases. But no genetic study taking into account polymorphism of COL1A2 in uterine fibroids has been undertaken. Methods: In this study, repeated dinucleotide GT n of intron 1 COL1A2 was highlighted in 55 patients with uterine fibroids (UF). Clinical and pathological data were obtained from patient's records, and other parameters were recorded. Mutation Surveyor version 5.0.1, DnaSP version 5.10, MEGA version 7.0.26, and Arlequin version 3.5.1.3 were used to determine genetics parameters. To estimate genetic variation according to epidemiological parameters, index of genetic differentiation (Fst) and genetic structure (AMOVA) were determined with Arlequin version. Results: Based on reference microsatellite pattern (GT) 14 CT(GT) 3 CT(GT) 3 , 15 haplotypes were found. Among the 15 haplotypes, 12 have mutation at position 2284C > G and 7 at position 2292C > G. Insertions of repeated dinucleotide GTn were found on three haplotypes against eight haplotypes in which they are deletions. Intron 1 of COL1A2 gene exhibits high genetic diversity in uterine fibroids with 35.34% polymorphic sites, 95.74% of which were parsimoniously variable and an average number of nucleotide difference of 10.442, which reflects an important genetic variability. According to epidemiological parameters, our results showed, for the first time, a genetic structuring of uterine fibroids according to ethnicity, marital status, use of contraception, diet, and physical activity, beyond confirming the involvement dinucleotide length polymorphism GTn in occurrence of uterine fibroids in Senegalese women. Conclusion: Results obtained open up avenues for understanding the mechanisms involved in the racial variation in the prevalence of uterine fibroids as well as the predisposing factors.


Adjuvant Chemotherapy in Microsatellite Instability-High Gastric Cancer.

  • Jin Won Kim‎ et al.
  • Cancer research and treatment‎
  • 2020‎

Microsatellite instability (MSI) status may affect the efficacy of adjuvant chemotherapy in gastric cancer. In this study, the clinical characteristics of MSI-high (MSI-H) gastric cancer and the predictive value of MSI-H for adjuvant chemotherapy in large cohorts of gastric cancer patients were evaluated.


Independent Mechanisms Lead to Genomic Instability in Hodgkin Lymphoma: Microsatellite or Chromosomal Instability †.

  • Corina Cuceu‎ et al.
  • Cancers‎
  • 2018‎

Background: Microsatellite and chromosomal instability have been investigated in Hodgkin lymphoma (HL). Materials and Methods: We studied seven HL cell lines (five Nodular Sclerosis (NS) and two Mixed Cellularity (MC)) and patient peripheral blood lymphocytes (100 NS-HL and 23 MC-HL). Microsatellite instability (MSI) was assessed by PCR. Chromosomal instability and telomere dysfunction were investigated by FISH. DNA repair mechanisms were studied by transcriptomic and molecular approaches. Results: In the cell lines, we observed high MSI in L428 (4/5), KMH2, and HDLM2 (3/5), low MSI in L540, L591, and SUP-HD1, and none in L1236. NS-HL cell lines showed telomere shortening, associated with alterations of nuclear shape. Small cells were characterized by telomere loss and deletion, leading to chromosomal fusion, large nucleoplasmic bridges, and breakage/fusion/bridge (B/F/B) cycles, leading to chromosomal instability. The MC-HL cell lines showed substantial heterogeneity of telomere length. Intrachromosmal double strand breaks induced dicentric chromosome formation, high levels of micronucleus formation, and small nucleoplasmic bridges. B/F/B cycles induced complex chromosomal rearrangements. We observed a similar pattern in circulating lymphocytes of NS-HL and MC-HL patients. Transcriptome analysis confirmed the differences in the DNA repair pathways between the NS and MC cell lines. In addition, the NS-HL cell lines were radiosensitive and the MC-cell lines resistant to apoptosis after radiation exposure. Conclusions: In mononuclear NS-HL cells, loss of telomere integrity may present the first step in the ongoing process of chromosomal instability. Here, we identified, MSI as an additional mechanism for genomic instability in HL.


Lack of microsatellite instability in gastrointestinal stromal tumors.

  • Nathália C Campanella‎ et al.
  • Oncology letters‎
  • 2017‎

The microsatellite instability (MSI) phenotype may constitute an important biomarker for patient response to immunotherapy, particularly to anti-programmed death-1 inhibitors. MSI is a type of genomic instability caused by a defect in DNA mismatch repair (MMR) proteins, which is present mainly in colorectal cancer and its hereditary form, hereditary nonpolyposis colorectal cancer. Gastrointestinal stromal tumor (GIST) development is associated with activating mutations of KIT proto-oncogene receptor tyrosine kinase (KIT) or platelet-derived growth factor receptor α (PDGFRA), which are oncogenes that predict the response to imatinib mesylate. In addition to KIT/PDGFRA mutations, other molecular alterations are important in GIST development. In GISTs, the characterization of the MSI phenotype is scarce and the results are not consensual. The present study aimed to assess MSI in a series of 79 GISTs. The evaluation of MSI was performed by pentaplex polymerase chain reaction comprising five markers, followed by capillary electrophoresis. The expression of MMR proteins was evaluated by immunohistochemistry. Regarding the KIT/PDGFRA/B-Raf proto-oncogene, serine/threonine kinase molecular profile of the 79 GISTs, 83.6% of the tumors possessed KIT mutations, 10.1% had PDGFRA mutations and 6.3% were triple wild-type. The mutated-PDGFRA cases were associated with gastric location and a lower mitotic index compared with KIT-mutated and wild-types, and these patients were more likely to be alive and without cancer. MSI analysis identified 4 cases with instability in one marker, however, additional evaluation of normal tissue and immunohistochemical staining of MMR proteins confirmed their microsatellite-stable nature. The results of the present study indicated that MSI is not involved in GIST tumorigenesis and, therefore, cannot serve as a biomarker to immunotherapy response in GIST.


Mutational profiling of colorectal cancers with microsatellite instability.

  • Elaine I Lin‎ et al.
  • Oncotarget‎
  • 2015‎

Microsatellite instability (MSI) is caused by defective mismatch repair in 15-20% of colorectal cancers (CRCs). Higher mutation loads in tumors with mismatch repair deficiency can predict response to pembrolizumab, an anti-programmed death 1 (PD-1) immune checkpoint inhibitor. We analyzed the mutations in 113 CRCs without MSI (MSS) and 29 CRCs with MSI-High (MSI-H) using the 50-gene AmpliSeq cancer panel. Overall, MSI-H CRCs showed significantly higher mutations than MSS CRCs, including insertion/deletion mutations at repeat regions. MSI-H CRCs showed higher incidences of mutations in the BRAF, PIK3CA, and PTEN genes as well as mutations in the receptor tyrosine kinase families. While the increased mutations in BRAF and PTEN in MSI-H CRCs are well accepted, we also support findings of mutations in the mTOR pathway and receptor tyrosine kinase family genes. MSS CRCs showed higher incidences of mutations in the APC, KRAS and TP53 genes, confirming previous findings. NGS assays may be designed to detect driver mutations for targeted therapeutics and to identify tumors with high mutation loads for potential treatment with immune checkpoint blockade therapies. Further studies may be warranted to elucidate potential targeted therapeutics against mutations in the mTOR pathway and the receptor tyrosine kinase family in MSI-H CRCs as well as the benefit of anti-PD-1 immunotherapy in hypermutated MSS CRCs or other cancers.


Microsatellite Instability in Mouse Models of Colorectal Cancer.

  • Nicola Currey‎ et al.
  • Canadian journal of gastroenterology & hepatology‎
  • 2018‎

Microsatellite instability (MSI) is caused by DNA mismatch repair deficiency and is an important prognostic and predictive biomarker in colorectal cancer but relatively few studies have exploited mouse models in the study of its clinical utility. Furthermore, most previous studies have looked at MSI in the small intestine rather than the colon of mismatch repair deficient Msh2-knockout (KO) mice. Here we compared Msh2-KO, p53-KO, and wild type (WT) mice that were treated with the carcinogen azoxymethane (AOM) and the nonsteroidal anti-inflammatory drug sulindac or received no treatment. The induced tumors and normal tissue specimens from the colon were analysed with a panel of five mononucleotide repeat markers. MSI was detected throughout the normal colon in untreated Msh2-KO mice and this involved contraction of the repeat sequences compared to WT. The markers with longer mononucleotide repeats (37-59) were the most sensitive for MSI while the markers with shorter repeats (24) showed only minor change. AOM exposure caused further contraction of the Bat37 and Bat59 repeats in the distal colon of Msh2-KO mice which was reversed by sulindac. Thus AOM-induced carcinogenesis is associated with increased instability of mononucleotide repeats in the colon of Msh2-KO mice but not in WT or p53-KO mice. Chemoprevention of these tumors by sulindac treatment reversed or prevented the increased MSI.


Population bias in somatic measurement of microsatellite instability status.

  • Michelle Saul‎ et al.
  • Cancer medicine‎
  • 2020‎

Microsatellite instability (MSI) is a key secondary effect of a defective DNA mismatch repair mechanism resulting in incorrectly replicated microsatellites in many malignant tumors. Historically, MSI detection has been performed by fragment analysis (FA) on a panel of representative genomic markers. More recently, using next-generation sequencing (NGS) to analyze thousands of microsatellites has been shown to improve the robustness and sensitivity of MSI detection. However, NGS-based MSI tests can be prone to population biases if NGS results are aligned to a reference genome instead of patient-matched normal tissue. We observed an increased rate of false positives in patients of African ancestry with an NGS-based diagnostic for MSI status utilizing 7317 microsatellite loci. We then minimized this bias by training a modified calling model that utilized 2011 microsatellite loci. With these adjustments 100% (95% CI: 89.1% to 100%) of African ancestry patients in an independent validation test were called correctly using the updated model. This poses not only a significant technical improvement but also has an important clinical impact on directing immune checkpoint inhibitor therapy.


Improved Detection of Microsatellite Instability in Early Colorectal Lesions.

  • Jeffery W Bacher‎ et al.
  • PloS one‎
  • 2015‎

Microsatellite instability (MSI) occurs in over 90% of Lynch syndrome cancers and is considered a hallmark of the disease. MSI is an early event in colon tumor development, but screening polyps for MSI remains controversial because of reduced sensitivity compared to more advanced neoplasms. To increase sensitivity, we investigated the use of a novel type of marker consisting of long mononucleotide repeat (LMR) tracts. Adenomas from 160 patients, ranging in age from 29-55 years old, were screened for MSI using the new markers and compared with current marker panels and immunohistochemistry standards. Overall, 15 tumors were scored as MSI-High using the LMRs compared to 9 for the NCI panel and 8 for the MSI Analysis System (Promega). This difference represents at least a 1.7-fold increase in detection of MSI-High lesions over currently available markers. Moreover, the number of MSI-positive markers per sample and the size of allelic changes were significantly greater with the LMRs (p = 0.001), which increased confidence in MSI classification. The overall sensitivity and specificity of the LMR panel for detection of mismatch repair deficient lesions were 100% and 96%, respectively. In comparison, the sensitivity and specificity of the MSI Analysis System were 67% and 100%; and for the NCI panel, 75% and 97%. The difference in sensitivity between the LMR panel and the other panels was statistically significant (p<0.001). The increased sensitivity for detection of MSI-High phenotype in early colorectal lesions with the new LMR markers indicates that MSI screening for the early detection of Lynch syndrome might be feasible.


MSIsensor-ct: microsatellite instability detection using cfDNA sequencing data.

  • Xinyin Han‎ et al.
  • Briefings in bioinformatics‎
  • 2021‎

Microsatellite instability (MSI) is a promising biomarker for cancer prognosis and chemosensitivity. Techniques are rapidly evolving for the detection of MSI from tumor-normal paired or tumor-only sequencing data. However, tumor tissues are often insufficient, unavailable, or otherwise difficult to procure. Increasing clinical evidence indicates the enormous potential of plasma circulating cell-free DNA (cfNDA) technology as a noninvasive MSI detection approach.


A versatile microsatellite instability reporter system in human cells.

  • Wouter Koole‎ et al.
  • Nucleic acids research‎
  • 2013‎

Here, we report the investigation of microsatellite instability (MSI) in human cells with a newly developed reporter system based on fluorescence. We composed a vector into which microsatellites of different lengths and nucleotide composition can be introduced between a functional copy of the fluorescent protein mCherry and an out-of-frame copy of EGFP; in vivo frameshifting will lead to EGFP expression, which can be quantified by fluorescence activated cell sorting (FACS). Via targeted recombineering, single copy reporters were introduced in HEK293 and MCF-7 cells. We found predominantly -1 and +1 base pair frameshifts, the levels of which are kept in tune by mismatch repair. We show that tract length and composition greatly influences MSI. In contrast, a tracts' potential to form a G-quadruplex structure, its strand orientation or its transcriptional status is not affecting MSI. We further validated the functionality of the reporter system for screening microsatellite mutagenicity of compounds and for identifying modifiers of MSI: using a retroviral miRNA expression library, we identified miR-21, which targets MSH2, as a miRNA that induces MSI when overexpressed. Our data also provide proof of principle for the strategy of combining fluorescent reporters with next-generation sequencing technology to identify genetic factors in specific pathways.


Rare Occurrence of Microsatellite Instability in Gastrointestinal Stromal Tumors.

  • Joonhong Park‎ et al.
  • Medicina (Kaunas, Lithuania)‎
  • 2021‎

Background and Objectives: This study aimed to objectively determine microsatellite instability (MSI) status using a next-generation sequencing (NGS)-based MSI panel and to resolve the discrepancy regarding whether or not MSI is a rare phenomenon, irrespective of diverse genomic alterations in gastrointestinal stromal tumors (GISTs). Materials and Methods: Genomic DNA was subjected to MSI panel sequencing using an Ion AmpliSeq Microsatellite Instability Assay, as well as to cancer gene panel sequencing using an Oncomine Focus DNA Assay. Results: All of our GIST patients showed microsatellite-stable (MSS) status, which confirmed that MSI status did not affect the molecular pathogenesis of GIST. The KIT gene (79%, 38/48) was the most frequently mutated gene, followed by the PDGFRA (8%, 4/48), PIK3CA (8%, 4/48), and ERBB2 (4%, 2/48) mutations. KIT exon 11 mutant patients were more favorable in responding to imatinib than those with exon 9 mutant or wild-type GISTs, and compared to non-KIT exon 11 mutant GISTs (p = 0.041). The NGS-based MSI panel with MSICall confirmed a rare phenomenon of microsatellite instability in GISTs irrespective of diverse genomic alterations. Conclusion: Massively parallel sequencing can simultaneously provide the MSI status as well as the somatic mutation profile in a single test. This combined approach may help us to understand the molecular pathogenesis of GIST carcinogenesis and malignant progression.


A molecular portrait of microsatellite instability across multiple cancers.

  • Isidro Cortes-Ciriano‎ et al.
  • Nature communications‎
  • 2017‎

Microsatellite instability (MSI) refers to the hypermutability of short repetitive sequences in the genome caused by impaired DNA mismatch repair. Although MSI has been studied for decades, large amounts of sequencing data now available allows us to examine the molecular fingerprints of MSI in greater detail. Here, we analyse ∼8,000 exomes and ∼1,000 whole genomes of cancer patients across 23 cancer types. Our analysis reveals that the frequency of MSI events is highly variable within and across tumour types. We also identify genes in DNA repair and oncogenic pathways recurrently subject to MSI and uncover non-coding loci that frequently display MSI. Finally, we propose a highly accurate exome-based predictive model for the MSI phenotype. These results advance our understanding of the genomic drivers and consequences of MSI, and our comprehensive catalogue of tumour-type-specific MSI loci will enable panel-based MSI testing to identify patients who are likely to benefit from immunotherapy.


Imbalanced adaptive responses associated with microsatellite instability in cholangiocarcinoma.

  • Watcharin Loilome‎ et al.
  • Oncology letters‎
  • 2017‎

The adaptive response of the genome protection mechanism occurs in cells when exposed to genotoxic stress due to the overproduction of free radicals via inflammation and infection. In such circumstances, cells attempt to maintain health via several genome protection mechanisms. However, evidence is increasing that this adaptive response may have deleterious effect; a reduction of antioxidant enzymes and/or imbalance in the DNA repair system generates microsatellite instability (MSI), which has procarcinogenic implications. Therefore, the present study hypothesized that MSI caused by imbalanced responses of antioxidant enzymes and/or DNA repair enzymes as a result of oxidative/nitrative stress arising from the inflammatory response is involved in liver fluke-associated cholangiocarcinogenesis. The present study investigated this hypothesis by identifying the expression patterns of antioxidant enzymes, including superoxide dismutase 2 (SOD2) and catalase (CAT), and DNA repair enzymes, including alkyladenine DNA glycosylase (AAG), apurinic endonuclease (APE) and DNA polymerase β (DNA pol β). In addition, the activities of the antioxidant enzymes, SOD2 and CAT, were examined in human cholangiocarcinoma (CCA) tissues using immunohistochemical staining. MSI was also analyzed in human CCA tissues. The resulting data demonstrated that the expression levels of the SOD2 and CAT enzymes decreased. The activities of SOD2 and CAT decreased significantly in the CCA tissues, compared with the hepatic tissue of cadaveric donors. In the DNA repairing enzymes, it was found that the expression levels of AAG and DNA pol β enzymes increased, whereas the expression of APE decreased. In addition, it was found that MSI-high was present in 69% of patients, whereas MSI-low was present in 31% of patients, with no patients classified as having microsatellite stability. In the patients, a MSI-high was correlated with poor prognosis, indicated by a shorter survival rate. These results indicated that the reduction of antioxidant enzymes and adaptive imbalance of base excision repair enzymes in human CCA caused MSI, and may be associated with the progression of cancer.


Chromosomal instability in BRAF mutant, microsatellite stable colorectal cancers.

  • Catherine E Bond‎ et al.
  • PloS one‎
  • 2012‎

The BRAF oncogene is mutated in 15% of sporadic colorectal cancers. Approximately half of these BRAF mutant cancers demonstrate frequent frameshift mutations termed microsatellite instability (MSI), but are diploid and chromosomally stable. BRAF wild type cancers are typically microsatellite stable (MSS) and instead acquire chromosomal instability (CIN). In these cancers, CIN is associated with a poor outcome. BRAF mutant cancers that are MSS, typically present at an advanced stage and have a particularly poor prognosis. We have previously demonstrated clinical and molecular similarities between MSS cancers with or without a BRAF mutation, and therefore hypothesised that CIN may also be frequent in BRAF mutant/MSS cancers. BRAF mutant/MSS (n = 60), and BRAF wild type/MSS CRCs (n = 90) were investigated for CIN using loss of heterozygosity analysis over twelve loci encompassing chromosomal regions 5q, 8p, 17p and 18q. CIN was frequent in BRAF mutant/MSS cancers (41/57, 72%), which was comparable to the rate found in BRAF wild type/MSS cancers (74/90, 82%). The greatest loss in BRAF mutant/MSS cancers occurred at 8p (26/44, 59%), and the least at 5q (19/49, 39%). CIN in BRAF mutant/MSS cancers correlated with advanced stage (AJCC III/IV: 15/17, 88%; p = 0.02); showed high rates of co-occurrence with the CpG Island Methylator Phenotype (17/23, 74%); and CIN at 18q and 8p associated with worse survival (p = 0.02, p<0.05). This study demonstrates that CIN commonly occurs in advanced BRAF mutant/MSS colorectal cancers where it may contribute to poorer survival, and further highlights molecular similarities occurring between these and BRAF wild type cancers.


Modal variety of microsatellite instability in human endometrial carcinomas.

  • Takako Eto‎ et al.
  • Journal of cancer research and clinical oncology‎
  • 2016‎

Microsatellite instability (MSI) in human endometrial cancer (EC) was analysed using a unique fluorescent technique. MSI is associated with various human neoplasms. However, the reported frequency of MSI differs widely in each malignancy. Methodological difficulties have in fact been pointed out in its assay techniques.


Molecular Noninvasive Diagnosis of Hepatocellular Carcinoma Using Microsatellite Instability.

  • Samah Mamdouh‎ et al.
  • Asian Pacific journal of cancer prevention : APJCP‎
  • 2021‎

Hepatocellular carcinoma (HCC) accounts for more than 80% of primary liver cancers. Moreover, in the next 10 years, more than one million patients are expected to die from liver cancer as estimated by the World Health Organization. The aim of the present study is to define the microsatellite phenotype in the blood, tumor and nontumor tissue samples from hepatocellular carcinoma cases to develop a simple non-invasive method for diagnosis and detection of the disease.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: