Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 8 papers out of 8 papers

Autosomal-recessive posterior microphthalmos is caused by mutations in PRSS56, a gene encoding a trypsin-like serine protease.

  • Andreas Gal‎ et al.
  • American journal of human genetics‎
  • 2011‎

Posterior microphthalmos (MCOP) is a rare isolated developmental anomaly of the eye characterized by extreme hyperopia due to short axial length. The population of the Faroe Islands shows a high prevalence of an autosomal-recessive form (arMCOP) of the disease. Based on published linkage data, we refined the position of the disease locus (MCOP6) in an interval of 250 kb in chromosome 2q37.1 in two large Faroese families. We detected three different mutations in PRSS56. Patients of the Faroese families were either homozygous for c.926G>C (p.Trp309Ser) or compound heterozygous for c.926G>C and c.526C>G (p.Arg176Gly), whereas a homozygous 1 bp duplication (c.1066dupC) was identified in five patients with arMCOP from a consanguineous Tunisian family. In one patient with MCOP from the Faroe Islands and in another one from Turkey, no PRSS56 mutation was detected, suggesting nonallelic heterogeneity of the trait. Using RT-PCR, PRSS56 transcripts were detected in samples derived from the human adult retina, cornea, sclera, and optic nerve. The expression of the mouse ortholog could be first detected in the eye at E17 and was maintained into adulthood. The predicted PRSS56 protein is a 603 amino acid long secreted trypsin-like serine peptidase. The c.1066dupC is likely to result in a functional null allele, whereas the two point mutations predict the replacement of evolutionary conserved and functionally important residues. Molecular modeling of the p.Trp309Ser mutant suggests that both the affinity and reactivity of the enzyme toward in vivo protein substrates are likely to be substantially reduced.


Membrane frizzled-related protein gene-related ophthalmological syndrome: 30-month follow-up of a sporadic case and review of genotype-phenotype correlation in the literature.

  • Alberto Neri‎ et al.
  • Molecular vision‎
  • 2012‎

To report a new sporadic case of membrane frizzled-related protein gene (MFRP)-related syndrome with a 30-month follow-up, and to review the literature for genotype-phenotype correlation in MFRP mutations.


The Pathogenesis and Treatment of Complications in Nanophthalmos.

  • Ning Yang‎ et al.
  • Journal of ophthalmology‎
  • 2020‎

Microphthalmos is a type of developmental disorder ophthalmopathy, which can occur isolated or combined with other ocular malformations and can occur secondary to a systemic syndrome. Nanophthalmos is one of the clinical phenotypes of microphthalmos. Due to the special and complex structure of nanophthalmic eyes, the disorder is often associated with many complications, including high hyperopia, angle-closure glaucoma, and uveal effusion syndrome. The management of these complications is challenging, and conventional therapeutic methods are often ineffective in treating them. The purpose of this paper was to review the concept of nanophthalmos and present the latest progress in the study of the pathogenesis and treatment of its complications. As it is considerably challenging for ophthalmologists to prevent or treat these nanophthalmos complications, timely diagnosis and a suitable clinical treatment plan are vital to ensure that nanophthalmos patients are treated and managed effectively.


Expression of truncated PITX3 in the developing lens leads to microphthalmia and aphakia in mice.

  • Kenta Wada‎ et al.
  • PloS one‎
  • 2014‎

Microphthalmia is a severe ocular disorder, and this condition is typically caused by mutations in transcription factors that are involved in eye development. Mice carrying mutations in these transcription factors would be useful tools for defining the mechanisms underlying developmental eye disorders. We discovered a new spontaneous recessive microphthalmos mouse mutant in the Japanese wild-derived inbred strain KOR1/Stm. The homozygous mutant mice were histologically characterized as microphthalmic by the absence of crystallin in the lens, a condition referred to as aphakia. By positional cloning, we identified the nonsense mutation c.444C>A outside the genomic region that encodes the homeodomain of the paired-like homeodomain transcription factor 3 gene (Pitx3) as the mutation responsible for the microphthalmia and aphakia. We examined Pitx3 mRNA expression of mutant mice during embryonic stages using RT-PCR and found that the expression levels are higher than in wild-type mice. Pitx3 over-expression in the lens during developmental stages was also confirmed at the protein level in the microphthalmos mutants via immunohistochemical analyses. Although lens fiber differentiation was not observed in the mutants, strong PITX3 protein signals were observed in the lens vesicles of the mutant lens. Thus, we speculated that abnormal PITX3, which lacks the C-terminus (including the OAR domain) as a result of the nonsense mutation, is expressed in mutant lenses. We showed that the expression of the downstream genes Foxe3, Prox1, and Mip was altered because of the Pitx3 mutation, with large reductions in the lens vesicles in the mutants. Similar profiles were observed by immunohistochemical analysis of these proteins. The expression profiles of crystallins were also altered in the mutants. Therefore, we speculated that the microphthalmos/aphakia in this mutant is caused by the expression of truncated PITX3, resulting in the abnormal expression of downstream targets and lens fiber proteins.


Developmental eye abnormalities in mouse fetuses induced by retinoic acid.

  • H Ozeki‎ et al.
  • Japanese journal of ophthalmology‎
  • 1998‎

To clarify the relationship between neural crest cells and various developmental eye abnormalities, pregnant mice were administered an intraperitoneal injection of 12.5 mg/kg retinoic acid (RA) suspended in corn oil on day 7 of pregnancy (RA group). Control mice received an equal volume of corn oil only (control group). The fetuses were removed by laparotomy on day 18 of gestation. The fetal mortality was 46.3% in the RA group and 2.2% in the control group. The live fetuses in both groups were observed grossly, and the eyes were examined histologically in serial sections. In the RA group, gross malformations were observed, including microphthalmos (95.5%), cleft lip and palate (36.4%), and central nervous system anomalies (31.8%). In the control group, these malformations were seen in only 6.7%, 0%, and 2.2%, respectively. Histologic examinations in the RA group revealed microphthalmos (47.7%), anophthalmos (38.6%), faulty closure of the embryonic fissure (36.4%), developmental abnormalities of the vitreous (34.1%), aphakia (22.7%), goniodysgenesis (18.2%), and faulty separation of the lens vesicle (15.9%). They were detected in only 3.3%, 1.1%, 3.3%, 8.9%, 1.l%, 2.2%, and 2.2%, respectively, of the control group. These developmental eye abnormalities arose from abnormal migration of neural crest cells.


Heterozygous mutation in OTX2 associated with early-onset retinal dystrophy with atypical maculopathy.

  • Maram Ea Abdalla-Elsayed‎ et al.
  • Molecular vision‎
  • 2017‎

Heterozygous mutations in OTX2 have been associated with a range of ocular and pituitary abnormalities. We report a novel heterozygous deletion in OTX2 underlying early-onset retinal dystrophy with atypical maculopathy.


Abnormal retinal pigment epithelium melanogenesis as a major determinant for radiation-induced congenital eye defects.

  • Kai Craenen‎ et al.
  • Reproductive toxicology (Elmsford, N.Y.)‎
  • 2020‎

Recent studies highlighted a link between ionizing radiation exposure during neurulation and birth defects such as microphthalmos and anophthalmos. Because the mechanisms underlying these defects remain largely unexplored, we irradiated pregnant C57BL/6J mice (1.0 Gy, X-rays) at embryonic day (E)7.5, followed by histological and gene/protein expression analyses at defined days. Irradiation impaired embryonic development at E9 and we observed a delayed pigmentation of the retinal pigment epithelium (RPE) at E11. In addition, a reduced RNA expression and protein abundance of critical eye-development genes (e.g. Pax6 and Lhx2) was observed. Furthermore, a decreased expression of Mitf, Tyr and Tyrp1 supported the radiation-induced perturbation in RPE pigmentation. Finally, via immunostainings for proliferation (Ki67) and mitosis (phosphorylated histone 3), a decreased mitotic index was observed in the E18 retina after exposure at E7.5. Overall, we propose a plausible etiological model for radiation-induced eye-size defects, with RPE melanogenesis as a major determining factor.


Folic Acid Fortification Prevents Morphological and Behavioral Consequences of X-Ray Exposure During Neurulation.

  • Kai Craenen‎ et al.
  • Frontiers in behavioral neuroscience‎
  • 2020‎

Previous studies suggested a causal link between pre-natal exposure to ionizing radiation and birth defects such as microphthalmos and exencephaly. In mice, these defects arise primarily after high-dose X-irradiation during early neurulation. However, the impact of sublethal (low) X-ray doses during this early developmental time window on adult behavior and morphology of central nervous system structures is not known. In addition, the efficacy of folic acid (FA) in preventing radiation-induced birth defects and persistent radiation-induced anomalies has remained unexplored. To assess the efficacy of FA in preventing radiation-induced defects, pregnant C57BL6/J mice were X-irradiated at embryonic day (E)7.5 and were fed FA-fortified food. FA partially prevented radiation-induced (1.0 Gy) anophthalmos, exencephaly and gastroschisis at E18, and reduced the number of pre-natal deaths, fetal weight loss and defects in the cervical vertebrae resulting from irradiation. Furthermore, FA food fortification counteracted radiation-induced impairments in vision and olfaction, which were evidenced after exposure to doses ≥0.1 Gy. These findings coincided with the observation of a reduction in thickness of the retinal ganglion cell and nerve fiber layer, and a decreased axial length of the eye following exposure to 0.5 Gy. Finally, MRI studies revealed a volumetric decrease of the hippocampus, striatum, thalamus, midbrain and pons following 0.5 Gy irradiation, which could be partially ameliorated after FA food fortification. Altogether, our study is the first to offer detailed insights into the long-term consequences of X-ray exposure during neurulation, and supports the use of FA as a radioprotectant and antiteratogen to counter the detrimental effects of X-ray exposure during this crucial period of gestation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: