Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 13,223 papers

Microglia-Derived Microvesicles Affect Microglia Phenotype in Glioma.

  • Alfonso Grimaldi‎ et al.
  • Frontiers in cellular neuroscience‎
  • 2019‎

Extracellular-released vesicles (EVs), such as microvesicles (MV) and exosomes (Exo) provide a new type of inter-cellular communication, directly transferring a ready to use box of information, consisting of proteins, lipids and nucleic acids. In the nervous system, EVs participate to neuron-glial cross-talk, a bidirectional communication important to preserve brain homeostasis and, when dysfunctional, involved in several CNS diseases. We investigated whether microglia-derived EVs could be used to transfer a protective phenotype to dysfunctional microglia in the context of a brain tumor. When MV, isolated from microglia stimulated with LPS/IFNγ were brain injected in glioma-bearing mice, we observed a phenotype switch of tumor associated myeloid cells (TAMs) and a reduction of tumor size. Our findings indicate that the MV cargo, which contains upregulated transcripts for several inflammation-related genes, can transfer information in the brain of glioma bearing mice modifying microglial gene expression, reducing neuronal death and glioma invasion, thus promoting the recovery of brain homeostasis.


Young microglia restore amyloid plaque clearance of aged microglia.

  • Anna Daria‎ et al.
  • The EMBO journal‎
  • 2017‎

Alzheimer's disease (AD) is characterized by deposition of amyloid plaques, neurofibrillary tangles, and neuroinflammation. In order to study microglial contribution to amyloid plaque phagocytosis, we developed a novel ex vivo model by co-culturing organotypic brain slices from up to 20-month-old, amyloid-bearing AD mouse model (APPPS1) and young, neonatal wild-type (WT) mice. Surprisingly, co-culturing resulted in proliferation, recruitment, and clustering of old microglial cells around amyloid plaques and clearance of the plaque halo. Depletion of either old or young microglial cells prevented amyloid plaque clearance, indicating a synergistic effect of both populations. Exposing old microglial cells to conditioned media of young microglia or addition of granulocyte-macrophage colony-stimulating factor (GM-CSF) was sufficient to induce microglial proliferation and reduce amyloid plaque size. Our data suggest that microglial dysfunction in AD may be reversible and their phagocytic ability can be modulated to limit amyloid accumulation. This novel ex vivo model provides a valuable system for identification, screening, and testing of compounds aimed to therapeutically reinforce microglial phagocytosis.


Taming microglia: the promise of engineered microglia in treating neurological diseases.

  • Echo Yongqi Luo‎ et al.
  • Journal of neuroinflammation‎
  • 2024‎

Microglia, the CNS-resident immune cells, are implicated in many neurological diseases. Nearly one in six of the world's population suffers from neurological disorders, encompassing neurodegenerative and neuroautoimmune diseases, most with dysregulated neuroinflammation involved. Activated microglia become phagocytotic and secret various immune molecules, which are mediators of the brain immune microenvironment. Given their ability to penetrate through the blood-brain barrier in the neuroinflammatory context and their close interaction with neurons and other glial cells, microglia are potential therapeutic delivery vehicles and modulators of neuronal activity. Re-engineering microglia to treat neurological diseases is, thus, increasingly gaining attention. By altering gene expression, re-programmed microglia can be utilized to deliver therapeutics to targeted sites and control neuroinflammation in various neuroinflammatory diseases. This review addresses the current development in microglial engineering, including genetic targeting and therapeutic modulation. Furthermore, we discuss limitations to the genetic engineering techniques and models used to test the functionality of re-engineered microglia, including cell culture and animal models. Finally, we will discuss future directions for the application of engineered microglia in treating neurological diseases.


Elevating microglia TREM2 reduces amyloid seeding and suppresses disease-associated microglia.

  • Na Zhao‎ et al.
  • The Journal of experimental medicine‎
  • 2022‎

TREM2 is exclusively expressed by microglia in the brain and is strongly linked to the risk for Alzheimer's disease (AD). As microglial responses modulated by TREM2 are central to AD pathogenesis, enhancing TREM2 signaling has been explored as an AD therapeutic strategy. However, the effective therapeutic window targeting TREM2 is unclear. Here, by using microglia-specific inducible mouse models overexpressing human wild-type TREM2 (TREM2-WT) or R47H risk variant (TREM2-R47H), we show that TREM2-WT expression reduces amyloid deposition and neuritic dystrophy only during the early amyloid seeding stage, whereas TREM2-R47H exacerbates amyloid burden during the middle amyloid rapid growth stage. Single-cell RNA sequencing reveals suppressed disease-associated microglia (DAM) signature and reduced DAM population upon TREM2-WT expression in the early stage, whereas upregulated antigen presentation pathway is detected with TREM2-R47H expression in the middle stage. Together, our findings highlight the dynamic effects of TREM2 in modulating AD pathogenesis and emphasize the beneficial effect of enhancing TREM2 function in the early stage of AD development.


Microglia replacement by microglia transplantation (Mr MT) in the adult mouse brain.

  • Zhen Xu‎ et al.
  • STAR protocols‎
  • 2021‎

Mutations in microglia may cause brain disorders. Replacement of dysfunctional microglia by allogeneic wild-type microglia from bone marrow transplantation (Mr BMT) or peripheral blood can correct the gene deficiency at the brain-wide scale but cannot achieve precise replacement at specific brain regions. Here, we introduce a strategy with potential clinical relevance-microglia replacement by microglia transplantation (Mr MT), combining tamoxifen-induced ablation of Mr BMT cells and intracranial injection of microglia to mouse brain, to achieve region-sepcific microglia replacement. The original abbreviation of this microglia replacement strategy is mrMT. We hereby change the name to Mr MT. For complete details on the use and execution of this protocol, please refer to Xu et al. (2020).


Bipolar/rod-shaped microglia are proliferating microglia with distinct M1/M2 phenotypes.

  • Wing Yip Tam‎ et al.
  • Scientific reports‎
  • 2014‎

Microglia are generally considered the resident immune cells in the central nervous system (CNS) that regulate the primary events of neuroinflammatory responses. Microglia also play key roles in repair and neurodegeneration of the CNS after injury. Recent studies showed that trains of bipolar/rod-shaped microglia align end-to-end along the CNS injury site during the initial recovery phase. However, the cellular characteristics of bipolar/rod-shaped microglia remain largely unknown. Here, we established a highly reproducible in vitro culture model system to enrich and characterize bipolar/rod-shaped microglia by simply generating multiple scratches on a poly-d-lysine/laminin-coated culture dish. Trains of bipolar/rod-shaped microglia formed and aligned along the scratches in a manner that morphologically resembled microglial trains observed in injured brain. These bipolar/rod-shaped microglia were highly proliferative and expressed various M1/M2 markers. Further analysis revealed that these bipolar/rod-shaped microglia quickly transformed into amoeboid microglia within 30 minutes of lipopolysaccharide treatment, leading to the upregulation of pro-inflammatory cytokine gene expression and the activation of Jak/Stat. In summary, our culture system provides a model to further characterize this highly dynamic cell type. We suggest that bipolar/rod-shaped microglia are crucial for repairing the damaged CNS and that the molecular mechanisms underlying their morphological changes may serve as therapeutic biomarkers.


A paradox promoted by microglia cannibalism shortens the lifespan of developmental microglia.

  • Hannah Gordon‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

The overproduction of cells and subsequent production of debris is a universal principle of neurodevelopment. Here we show an additional feature of the developing nervous system that causes neural debris â€" promoted by the sacrificial nature of embryonic microglia that irreversibly become phagocytic after clearing other neural debris. Described as long-lived, microglia colonize the embryonic brain and persist into adulthood. Using transgenic zebrafish to investigate the microglia debris during brain construction, we identified that unlike other neural cell-types that die in developmental stages after they have expanded, necroptotic-dependent microglial debris is prevalent when microglia are expanding in the zebrafish brain. Time-lapse imaging of microglia demonstrates that this debris is cannibalized by other microglia. To investigate features that promote microglia death and cannibalism, we used time-lapse imaging and fatemapping strategies to track the lifespan of individual developmental microglia. These approaches revealed that instead of embryonic microglia being long-lived cells that completely digest their phagocytic debris, once most developmental microglia in zebrafish become phagocytic they eventually die, including ones that are cannibalistic. These results establish a paradox -- which we tested by increasing neural debris and manipulating phagocytosis -- that once most microglia in the embryo become phagocytic, they die, create debris and then are cannibalized by other microglia, resulting in more phagocytic microglia that are destined to die.


Extracellular cardiolipin regulates select immune functions of microglia and microglia-like cells.

  • Caitlin B Pointer‎ et al.
  • Brain research bulletin‎
  • 2019‎

Cardiolipin is a mitochondrial membrane phospholipid with several well-defined metabolic roles. Cardiolipin can be released extracellularly by damaged cells and has been shown to affect peripheral immune functions. We hypothesized that extracellular cardiolipin can also regulate functions of microglia, the resident immune cells of the central nervous system (CNS). We demonstrate that extracellular cardiolipin increases microglial phagocytosis and neurotrophic factor expression, as well as decreases the release of inflammatory mediators and cytotoxins by activated microglia-like cells. These results identify extracellular cardiolipin as a potential CNS intercellular signaling molecule that can regulate key microglial immune functions associated with neurodegenerative diseases.


Dual extra-retinal origins of microglia in the model of retinal microglia repopulation.

  • Yubin Huang‎ et al.
  • Cell discovery‎
  • 2018‎

Elucidating the origin of microglia is crucial for understanding their functions and homeostasis. Previous study has indicated that Nestin-positive progenitor cells differentiate into microglia and replenish the brain after depleting most brain microglia. Microglia have also shown the capacity to repopulate the retina after eliminating all retinal microglia. However, the origin(s) of repopulated retinal microglia is/are unknown. In this study, we aim to investigate the origins of repopulated microglia in the retina. Interestingly, we find that repopulated retinal microglia are not derived from Nestin-positive progenitor cells. Instead, they have two origins: the center-emerging microglia are derived from residual microglia in the optic nerve and the periphery-emerging microglia are derived from macrophages in the ciliary body/iris. Therefore, we have for the first time identified the extra-retinal origins of microglia in the adult mammalian retina by using a model of microglial repopulation, which may shed light on the target exploration of therapeutic interventions for retinal degenerative disorders.


IRF8 configures enhancer landscape in postnatal microglia and directs microglia specific transcriptional programs.

  • Keita Saeki‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Microglia are innate immune cells in the brain. Transcription factor IRF8 is highly expressed in microglia. However, its role in postnatal microglia development and the mechanism of action is unknown. We demonstrate here that IRF8 binds to enhancer regions of postnatal microglia in a stepwise fashion reaching a maximum after day 14, which coincided with the initiation of microglia function. Constitutive Irf8 deletion led to the loss of microglia identity gene expression and aberrant induction of Alzheimer's disease and neurodegeneration associated genes. Conditional Irf8 deletion in adult microglia showed similar transcriptome profiles, revealing the requirement of continuous IRF8 expression. Additional genome-wide analyses showed IRF8 is critical for setting microglia-specific chromatin accessibility and DNA methylation patterns. Lastly, in the 5xFAD mouse AD model, Irf8 deletion lessened the formation and spread of amyloidβ plaques, thereby reducing neuronal loss. Together, IRF8 sets the microglia epigenome landscape, required for eliciting microglia identity and function.


Microglia and microglia-like cell differentiated from DC inhibit CD4 T cell proliferation.

  • Bo Bai‎ et al.
  • PloS one‎
  • 2009‎

The central nervous system (CNS) is generally regarded as a site of immune privilege, whether the antigen presenting cells (APCs) are involved in the immune homeostasis of the CNS is largely unknown. Microglia and DCs are major APCs in physiological and pathological conditions, respectively. In this work, primary microglia and microglia-like cells obtained by co-culturing mature dendritic cells with CNS endothelial cells in vitro were functional evaluated. We found that microglia not only cannot prime CD4 T cells but also inhibit mature DCs (maDCs) initiated CD4 T cells proliferation. More importantly, endothelia from the CNS can differentiate maDCs into microglia-like cells (MLCs), which possess similar phenotype and immune inhibitory function as microglia. Soluble factors including NO lie behind the suppression of CD4 T cell proliferation induced by both microglia and MLCs. All the data indicate that under physiological conditions, microglia play important roles in maintaining immune homeostasis of the CNS, whereas in a pathological situation, the infiltrated DCs can be educated by the local microenvironment and differentiate into MLCs with inhibitory function.


A novel in vitro human microglia model: characterization of human monocyte-derived microglia.

  • Samar Etemad‎ et al.
  • Journal of neuroscience methods‎
  • 2012‎

Microglia are the innate immune cells of the central nervous system. They help maintaining physiological homeostasis and contribute significantly to inflammatory responses in the course of infection, injury and degenerative processes. To date, there is no standardized simple model available to investigate the biology of human microglia. The aim of this study was to establish a new human microglia model. For that purpose, human peripheral blood monocytes were cultured in serum free medium in the presence of M-CSF, GM-CSF, NGF and CCL2 to generate monocyte-derived microglia (M-MG). M-MG were clearly different in morphology, phenotype and function from freshly isolated monocytes, cultured monocytes in the absence of the cytokines and monocyte-derived dendritic cells (M-DC) cultured in the presence of GM-CSF and IL-4. M-MG acquired a ramified morphology with primary and secondary processes. M-MG displayed a comparable phenotype to the human microglia cell line HMC3, expressing very low levels of CD45, CD14 and HLA-DR, CD11b and CD11c; and undetectable levels of CD40, CD80 and CD83, and a distinct pattern of chemokine receptors (positive for CCR1, CCR2, CCR4, CCR5, CXCR1, CXCR3, CX3CR1; negative for CCR6 and CCR7). In comparison with M-DC, M-MG displayed lower T-lymphocyte stimulatory capacity, as well as lower phagocytosis activity. The described protocol for the generation of human monocyte-derived microglia is feasible, well standardized and reliable, as it uses well defined culture medium and recombinant cytokines, but no serum or conditioned medium. This protocol will certainly be very helpful for future studies investigating the biology and pathology of human microglia.


Human Microglia Extracellular Vesicles Derived from Different Microglia Cell Lines: Similarities and Differences.

  • Lorenzo Ceccarelli‎ et al.
  • ACS omega‎
  • 2022‎

Microglial cells are a component of the innate immune system in the brain that support cell-to-cell communication via secreted molecules and extracellular vesicles (EVs). EVs can be divided into two major populations: large (LEVs) and small (SEVs) EVs, carrying different mediators, such as proteins, lipids, and miRNAs. The microglia EVs cargo crucially reflects the status of parental cells and can lead to both beneficial and detrimental effects in many physiopathological states. Herein, a workflow for the extraction and characterization of SEVs and LEVs from human C20 and HMC3 microglia cell lines derived, respectively, from adult and embryonic microglia is reported. EVs were gathered from the culture media of the two cell lines by sequential ultracentrifugation steps and their biochemical and biophysical properties were analyzed by Western blot, transmission electron microscopy, and dynamic light scattering. Although the C20- and HMC3-derived EVs shared several common features, C20-derived EVs were slightly lower in number and more polydispersed. Interestingly, C20- but not HMC3-SEVs were able to interfere with the proliferation of U87 glioblastoma cells. This correlated with the different relative levels of eight miRNAs involved in neuroinflammation and tumor progression in the C20- and HMC3-derived EVs, which in turn reflected a different basal activation state of the two cell types. Our data fill a gap in the community of microglia EVs, in which the preparations from human cells have been poorly characterized so far. Furthermore, these results shed light on both the differences and similarities of EVs extracted from different human microglia cell models, underlining the need to better characterize the features and biological effects of EVs for therein useful and correct application.


Bioenergetic regulation of microglia.

  • Soumitra Ghosh‎ et al.
  • Glia‎
  • 2018‎

Microglia have diverse actions, ranging from synapse pruning in development to cytotoxic effects in disease. Brain energy metabolism and substrate availability vary under normal and disease states, but how these variations influence microglial function is relatively unknown. Microglia, like most other cell types, express the full complement of gene products required for both glycolytic and oxidative metabolism. Evidence suggests that microglia increase aerobic glycolysis and decrease respiration when activated by various stimuli. Mitochondrial function, glucose availability, and glycolytic rate influence pro-inflammatory gene expression at both transcriptional and post-translational levels. These effects are mediated through CtBP, an NADH-sensitive transcriptional co-repressor; through effects on NLRP3 inflammasome assembly and caspase-1 activation; through formation of advanced glycation end-products; and by less well-defined mechanisms. In addition to these transcriptional effects, microglial glucose metabolism is also required for superoxide production by NADPH oxidase, as glucose is the obligate substrate for regenerating NADPH in the hexose monophosphate shunt. Microglia also metabolize acetoacetate and β-hydroxybutyrate, which are generated during fasting or ketogenic diet, and respond to these ketones as metabolic signals. β-Hydroxybutyrate inhibits histone de-acetylases and activates microglial GRP109A receptors. These actions suppress microglia activation after brain injury and promote neuroprotective microglia phenotypes. As our understanding of microglial activation matures, additional links between energy metabolism and microglial function are likely to be identified.


Histamine modulates microglia function.

  • Raquel Ferreira‎ et al.
  • Journal of neuroinflammation‎
  • 2012‎

Histamine is commonly acknowledged as an inflammatory mediator in peripheral tissues, leaving its role in brain immune responses scarcely studied. Therefore, our aim was to uncover the cellular and molecular mechanisms elicited by this molecule and its receptors in microglia-induced inflammation by evaluating cell migration and inflammatory mediator release.


SALL1 enforces microglia-specific DNA binding and function of SMADs to establish microglia identity.

  • Bethany R Fixsen‎ et al.
  • Nature immunology‎
  • 2023‎

Spalt-like transcription factor 1 (SALL1) is a critical regulator of organogenesis and microglia identity. Here we demonstrate that disruption of a conserved microglia-specific super-enhancer interacting with the Sall1 promoter results in complete and specific loss of Sall1 expression in microglia. By determining the genomic binding sites of SALL1 and leveraging Sall1 enhancer knockout mice, we provide evidence for functional interactions between SALL1 and SMAD4 required for microglia-specific gene expression. SMAD4 binds directly to the Sall1 super-enhancer and is required for Sall1 expression, consistent with an evolutionarily conserved requirement of the TGFβ and SMAD homologs Dpp and Mad for cell-specific expression of Spalt in the Drosophila wing. Unexpectedly, SALL1 in turn promotes binding and function of SMAD4 at microglia-specific enhancers while simultaneously suppressing binding of SMAD4 to enhancers of genes that become inappropriately activated in enhancer knockout microglia, thereby enforcing microglia-specific functions of the TGFβ-SMAD signaling axis.


Lipopolysaccharide distinctively alters human microglia transcriptomes to resemble microglia from Alzheimer's disease mouse models.

  • Jimena Monzón-Sandoval‎ et al.
  • Disease models & mechanisms‎
  • 2022‎

Alzheimer's disease (AD) is the most common form of dementia, and risk-influencing genetics implicates microglia and neuroimmunity in the pathogenesis of AD. Induced pluripotent stem cell (iPSC)-derived microglia (iPSC-microglia) are increasingly used as a model of AD, but the relevance of historical immune stimuli to model AD is unclear. We performed a detailed cross-comparison over time on the effects of combinatory stimulation of iPSC-microglia, and in particular their relevance to AD. We used single-cell RNA sequencing to measure the transcriptional response of iPSC-microglia after 24 h and 48 h of stimulation with prostaglandin E2 (PGE2) or lipopolysaccharide (LPS)+interferon gamma (IFN-γ), either alone or in combination with ATPγS. We observed a shared core transcriptional response of iPSC-microglia to ATPγS and to LPS+IFN-γ, suggestive of a convergent mechanism of action. Across all conditions, we observed a significant overlap, although directional inconsistency to genes that change their expression levels in human microglia from AD patients. Using a data-led approach, we identify a common axis of transcriptomic change across AD genetic mouse models of microglia and show that only LPS provokes a transcriptional response along this axis in mouse microglia and LPS+IFN-γ in human iPSC-microglia. This article has an associated First Person interview with the first author of the paper.


Neuron-Microglia Contact-Dependent Mechanisms Attenuate Methamphetamine-Induced Microglia Reactivity and Enhance Neuronal Plasticity.

  • Joana Bravo‎ et al.
  • Cells‎
  • 2022‎

Exposure to methamphetamine (Meth) has been classically associated with damage to neuronal terminals. However, it is now becoming clear that addiction may also result from the interplay between glial cells and neurons. Recently, we demonstrated that binge Meth administration promotes microgliosis and microglia pro-inflammation via astrocytic glutamate release in a TNF/IP3R2-Ca2+-dependent manner. Here, we investigated the contribution of neuronal cells to this process. As the crosstalk between microglia and neurons may occur by contact-dependent and/or contact-independent mechanisms, we developed co-cultures of primary neurons and microglia in microfluidic devices to investigate how their interaction affects Meth-induced microglia activation. Our results show that neurons exposed to Meth do not activate microglia in a cell-autonomous way but require astrocyte mediation. Importantly, we found that neurons can partially prevent Meth-induced microglia activation via astrocytes, which seems to be achieved by increasing arginase 1 expression and strengthening the CD200/CD200r pathway. We also observed an increase in synaptic individual area, as determined by co-localization of pre- and post-synaptic markers. The present study provides evidence that contact-dependent mechanisms between neurons and microglia can attenuate pro-inflammatory events such as Meth-induced microglia activation.


Homocysteine exaggerates microglia activation and neuroinflammation through microglia localized STAT3 overactivation following ischemic stroke.

  • Shuang Chen‎ et al.
  • Journal of neuroinflammation‎
  • 2017‎

Elevated plasma homocysteine (Hcy) levels have been indicated as a strong and modifiable risk factor of ischemic stroke; the previous studies have shown that exposure to Hcy activates cultured microglia. However, whether neurotoxicity of Hcy involves microglia activation following brain ischemia and the underlying mechanisms remains incompletely understood.


Protocol for induction and characterization of microglia extracellular traps in murine and human microglia cells.

  • Ishan Agrawal‎ et al.
  • STAR protocols‎
  • 2021‎

Extracellular traps (ETs) are composed of decondensed chromatin and are embedded with various antimicrobial proteins like myeloperoxidase and histones. Recently, we reported that dopamine (DA) induces ETs in BV2 microglia cell line and primary adult human microglia in a manner independent of cell death, reactive oxygen species, and actin polymerization. This protocol details how to characterize DA-induced ETs in BV2 microglia and human microglia. The protocols for characterization of ETs may also be used for other adherent cell lines. For complete details on the use and execution of this protocol, please refer to Agrawal et al. (2021).


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: