Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 426 papers

Micrococcal nuclease does not substantially bias nucleosome mapping.

  • James Allan‎ et al.
  • Journal of molecular biology‎
  • 2012‎

We have mapped sequence-directed nucleosome positioning on genomic DNA molecules using high-throughput sequencing. Chromatins, prepared by reconstitution with either chicken or frog histones, were separately digested to mononucleosomes using either micrococcal nuclease (MNase) or caspase-activated DNase (CAD). Both enzymes preferentially cleave internucleosomal (linker) DNA, although they do so by markedly different mechanisms. MNase has hitherto been very widely used to map nucleosomes, although concerns have been raised over its potential to introduce bias. Having identified the locations and quantified the strength of both the chicken or frog histone octamer binding sites on each DNA, the results obtained with the two enzymes were compared using a variety of criteria. Both enzymes displayed sequence specificity in their preferred cleavage sites, although the nature of this selectivity was distinct for the two enzymes. In addition, nucleosomes produced by CAD nuclease are 8-10 bp longer than those produced with MNase, with the CAD cleavage sites tending to be 4-5 bp further out from the nucleosomal dyad than the corresponding MNase cleavage sites. Despite these notable differences in cleavage behaviour, the two nucleases identified essentially equivalent patterns of nucleosome positioning sites on each of the DNAs tested, an observation that was independent of the histone type. These results indicate that biases in nucleosome positioning data collected using MNase are, under our conditions, not significant.


The effect of micrococcal nuclease digestion on nucleosome positioning data.

  • Ho-Ryun Chung‎ et al.
  • PloS one‎
  • 2010‎

Eukaryotic genomes are packed into chromatin, whose basic repeating unit is the nucleosome. Nucleosome positioning is a widely researched area. A common experimental procedure to determine nucleosome positions involves the use of micrococcal nuclease (MNase). Here, we show that the cutting preference of MNase in combination with size selection generates a sequence-dependent bias in the resulting fragments. This strongly affects nucleosome positioning data and especially sequence-dependent models for nucleosome positioning. As a consequence we see a need to re-evaluate whether the DNA sequence is a major determinant of nucleosome positioning in vivo. More generally, our results show that data generated after MNase digestion of chromatin requires a matched control experiment in order to determine nucleosome positions.


HAT2 mediates histone H4K4 acetylation and affects micrococcal nuclease sensitivity of chromatin in Leishmania donovani.

  • Pravin K Jha‎ et al.
  • PloS one‎
  • 2017‎

Histone post-translational modifications (PTMs) such as acetylation and methylation are known to affect chromatin higher order structures. Primary targets of these modifications include basic residues present at N-terminus tail region of core histones. Four histone acetyltransferase (HAT) genes have been identified in trypanosomatids. HAT1, HAT3 and HAT4 of Leishmania donovani have been partially characterized. However, there is no report about HAT2 of Leishmania donovani. Lysine residues present on the N-terminal tail of Leishmania donovani histone H4 are conserved in other trypanosomatids and humans. PTMs of lysines modulate various functions at chromatin level. The four histone acetyltransferases encoded in Leishmania genome were over-expressed to analyse their functional activity. All four HATs were found actively acetylating core histones H3/H4. Similar to L. donovani HAT3 and HAT4, HAT2 was found to be a member of MYST family protein and have SAS2 type domain. Over-expression of HAT2 significantly increases acetylation of H4K4. To analyse the effect of HAT2 over-expression on chromatin accessibility, micrococcal nuclease digestion assay was performed. MNase digestion resulted in a higher proportion of the mononucleosomes and dinucleosomes in HAT2 over-expressing cells as compared to WT L. donovani cells. Acetylation of lysine-4 neutralizes the amino terminal region of histone H4. This weakens its interaction with neighbouring nucleosomes and the linker DNA. HAT2 over-expression in L. donovani resulted in highly accessible chromatin suggesting chromatin decondensation. HAT2 may have an important role to play in global regulation of transcription in L. donovani. Better understanding of these epigenetic determinants of parasite would help in designing novel therapeutic strategies.


Contribution of H3K4 demethylase KDM5B to nucleosome organization in embryonic stem cells revealed by micrococcal nuclease sequencing.

  • Jiji T Kurup‎ et al.
  • Epigenetics & chromatin‎
  • 2019‎

Positioning of nucleosomes along DNA is an integral regulator of chromatin accessibility and gene expression in diverse cell types. However, the precise nature of how histone demethylases including the histone 3 lysine 4 (H3K4) demethylase, KDM5B, impacts nucleosome positioning around transcriptional start sites (TSS) of active genes is poorly understood.


Parallel mapping with site-directed hydroxyl radicals and micrococcal nuclease reveals structural features of positioned nucleosomes in vivo.

  • Tomohiro Fuse‎ et al.
  • PloS one‎
  • 2017‎

Micrococcal nuclease (MNase) has been widely used for analyses of nucleosome locations in many organisms. However, due to its sequence preference, the interpretations of the positions and occupancies of nucleosomes using MNase have remained controversial. Next-generation sequencing (NGS) has also been utilized for analyses of MNase-digests, but some technical biases are commonly present in the NGS experiments. Here, we established a gel-based method to map nucleosome positions in Saccharomyces cerevisiae, using isolated nuclei as the substrate for the histone H4 S47C-site-directed chemical cleavage in parallel with MNase digestion. The parallel mapping allowed us to compare the chemically and enzymatically cleaved sites by indirect end-labeling and primer extension mapping, and thus we could determine the nucleosome positions and the sizes of the nucleosome-free regions (or nucleosome-depleted regions) more accurately, as compared to nucleosome mapping by MNase alone. The analysis also revealed that the structural features of the nucleosomes flanked by the nucleosome-free region were different from those within regularly arrayed nucleosomes, showing that the structures and dynamics of individual nucleosomes strongly depend on their locations. Moreover, we demonstrated that the parallel mapping results were generally consistent with the previous genome-wide chemical mapping and MNase-Seq results. Thus, the gel-based parallel mapping will be useful for the analysis of a specific locus under various conditions.


Mapping Native R-Loops Genome-wide Using a Targeted Nuclease Approach.

  • Qingqing Yan‎ et al.
  • Cell reports‎
  • 2019‎

R-loops are three-stranded DNA:RNA hybrids that are implicated in many nuclear processes. While R-loops may have physiological roles, the formation of stable, aberrant R-loops has been observed in neurological disorders and cancers. Current methods to assess their genome-wide distribution rely on affinity purification, which is plagued by large input requirements, high noise, and poor sensitivity for dynamic R-loops. Here, we present MapR, a method that utilizes RNase H to guide micrococcal nuclease to R-loops, which are subsequently cleaved, released, and identified by sequencing. MapR detects R-loops formed at promoters and active enhancers that are likely to form transient R-loops due to the low transcriptional output of these regulatory elements and the short-lived nature of enhancer RNAs. MapR is as specific as existing techniques and more sensitive, allowing for genome-wide coverage with low input material in a fraction of the time.


Noninvasive imaging of Staphylococcus aureus infections with a nuclease-activated probe.

  • Frank J Hernandez‎ et al.
  • Nature medicine‎
  • 2014‎

Technologies that enable the rapid detection and localization of bacterial infections in living animals could address an unmet need for infectious disease diagnostics. We describe a molecular imaging approach for the specific, noninvasive detection of S. aureus based on the activity of the S. aureus secreted nuclease, micrococcal nuclease (MN). Several short synthetic oligonucleotides, rendered resistant to mammalian serum nucleases by various chemical modifications and flanked with a fluorophore and quencher, were activated upon degradation by purified MN and in S. aureus culture supernatants. A probe consisting of a pair of deoxythymidines flanked by several 2'-O-methyl-modified nucleotides was activated in culture supernatants of S. aureus but not in culture supernatants of several other pathogenic bacteria. Systemic administration of this probe to mice bearing S. aureus muscle infections resulted in probe activation at the infection sites in an MN-dependent manner. This new bacterial imaging approach has potential clinical applicability for infections with S. aureus and several other medically important pathogens.


Local tertiary structure probing of ribonucleoprotein particles by nuclease fusion proteins.

  • Uli Ohmayer‎ et al.
  • PloS one‎
  • 2012‎

Analyses of the conformational dynamics of the numerous cellular ribonucleoprotein particles (RNP) significantly contribute to the understanding of their modes of action. Here, we tested whether ribonuclease fusion proteins incorporated into RNPs can be used as molecular probes to characterize the local RNA environment of these proteins. Fusion proteins of micrococcal nuclease (MNase) with ribosomal proteins were expressed in S. cerevisae to produce in vivo recombinant ribosomes which have a ribonuclease tethered to specific sites. Activation of the MNase activity by addition of calcium led to specific rRNA cleavage events in proximity to the ribosomal binding sites of the fusion proteins. The dimensions of the RNP environment which could be probed by this approach varied with the size of the linker sequence between MNase and the fused protein. Advantages and disadvantages of the use of MNase fusion proteins for local tertiary structure probing of RNPs as well as alternative applications for this type of approach in RNP research are discussed.


Nuclease Footprints in Sperm Project Past and Future Chromatin Regulatory Events.

  • Graham D Johnson‎ et al.
  • Scientific reports‎
  • 2016‎

Nuclear remodeling to a condensed state is a hallmark of spermatogenesis. This is achieved by replacement of histones with protamines. Regions retaining nucleosomes may be of functional significance. To determine their potential roles, sperm from wild type and transgenic mice harboring a single copy insert of the human protamine cluster were subjected to Micrococcal Nuclease-seq. CENTIPEDE, a hierarchical Bayesian model, was used to identify multiple spatial patterns, "footprints", of MNase-seq reads along the sperm genome. Regions predicted by CENTIPEDE analysis to be bound by a regulatory factor in sperm were correlated with genomic landmarks and higher order chromatin structure datasets to identify potential roles for these factors in regulating either prior or post spermatogenic, i.e., early embryonic events. This approach linked robust endogenous protamine transcription and transgene suppression to its chromatin environment within topologically associated domains. Of the candidate enhancer-bound regulatory proteins, Ctcf, was associated with chromatin domain boundaries in testes and embryonic stem cells. The continuity of Ctcf binding through the murine germline may permit rapid reconstitution of chromatin organization following fertilization. This likely reflects its preparation for early zygotic genome activation and comparatively accelerated preimplantation embryonic development program observed in mouse as compared to human and bull.


Visualization of Nuclease- and Serum-Mediated Chromatin Degradation with DNA-Histone Mesostructures.

  • Midori L Wasielewski‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

This study analyzed the nuclease- and serum-driven degradation of millimeter-scale, circular DNA-histone mesostructures (DHMs). DHMs are bioengineered chromatin meshes of defined DNA and histone compositions designed as minimal mimetics of physiological extracellular chromatin structures, such as neutrophil extracellular traps (NETs). Taking advantage of the defined circular shape of the DHMs, an automated time-lapse imaging and image analysis method was developed and used to track DHM degradation and shape changes over time. DHMs were degraded well by 10 U/mL concentrations of deoxyribonuclease I (DNase I) but not by the same level of micrococcal nuclease (MNase), whereas NETs were degraded well by both nucleases. These comparative observations suggest that DHMs have a less accessible chromatin structure compared to NETs. DHMs were degraded by normal human serum, although at a slower rate than NETs. Interestingly, time-lapse images of DHMs revealed qualitative differences in the serum-mediated degradation process compared to that mediated by DNase I. Importantly, despite their reduced susceptibility to degradation and compositional simplicity, the DHMs mimicked NETs in being degraded to a greater extent by normal donor serum compared to serum from a lupus patient with high disease activity. These methods and insights are envisioned to guide the future development and expanded use of DHMs, beyond the previously reported antibacterial and immunostimulatory analyses, to extracellular chromatin-related pathophysiological and diagnostic studies.


Ex Vivo Tracer Efficacy in Optical Imaging of Staphylococcus Aureus Nuclease Activity.

  • Colin W K Rosman‎ et al.
  • Scientific reports‎
  • 2018‎

The key to effective treatment of bacterial infections is a swift and reliable diagnosis. Current clinical standards of bacterial diagnosis are slow and laborious. There are several anatomical imaging modalities that can detect inflammation, but none can distinguish between bacterial and sterile inflammation. Novel tracers such as smart activatable fluorescent probes represent a promising development that allow fast and specific testing without the use of ionizing radiation. Previously, a smart activatable probe was developed that is a substrate for the micrococcal nuclease as produced by Staphylococcus aureus. In the present study, the function of this probe was validated. Practical applicability in terms of sensitivity was assessed by incubation of the probe with 26 clinical S. aureus isolates, and probe specificity was verified by incubation with 30 clinical isolates and laboratory strains of various bacterial pathogens. The results show that the nuclease-specific probe was activated by all tested S. aureus isolates and laboratory strains with a threshold of ~106-107 cells/mL. The probe was also activated by certain opportunistic staphylococci. We therefore propose that the studied nuclease probe represents a significant step forward to address the need for a rapid, practical, and precise method to detect infections caused by S. aureus.


An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites.

  • Peter J Skene‎ et al.
  • eLife‎
  • 2017‎

We describe Cleavage Under Targets and Release Using Nuclease (CUT&RUN), a chromatin profiling strategy in which antibody-targeted controlled cleavage by micrococcal nuclease releases specific protein-DNA complexes into the supernatant for paired-end DNA sequencing. Unlike Chromatin Immunoprecipitation (ChIP), which fragments and solubilizes total chromatin, CUT&RUN is performed in situ, allowing for both quantitative high-resolution chromatin mapping and probing of the local chromatin environment. When applied to yeast and human nuclei, CUT&RUN yielded precise transcription factor profiles while avoiding crosslinking and solubilization issues. CUT&RUN is simple to perform and is inherently robust, with extremely low backgrounds requiring only ~1/10th the sequencing depth as ChIP, making CUT&RUN especially cost-effective for transcription factor and chromatin profiling. When used in conjunction with native ChIP-seq and applied to human CTCF, CUT&RUN mapped directional long range contact sites at high resolution. We conclude that in situ mapping of protein-DNA interactions by CUT&RUN is an attractive alternative to ChIP-seq.


Increased neutrophil extracellular trap-mediated Staphylococcus aureus clearance through inhibition of nuclease activity by clindamycin and immunoglobulin.

  • Katrin Schilcher‎ et al.
  • The Journal of infectious diseases‎
  • 2014‎

The Gram-positive human pathogen Staphylococcus aureus causes a variety of human diseases such as skin infections, pneumonia, and endocarditis. The micrococcal nuclease Nuc1 is one of the major S. aureus virulence factors and allows the bacterium to avoid neutrophil extracellular trap (NET)-mediated killing. We found that addition of the protein synthesis inhibitor clindamycin to S. aureus LAC cultures decreased nuc1 transcription and subsequently blunted nuclease activity in a molecular beacon-based fluorescence assay. We also observed reduced NET degradation through Nuc1 inhibition translating into increased NET-mediated clearance. Similarly, pooled human immunoglobulin specifically inhibited nuclease activity in a concentration-dependent manner. Inhibition of nuclease activity by clindamycin and immunoglobulin enhanced S. aureus clearance and should be considered in the treatment of S. aureus infections.


Chromatin structure profile data from DNS-seq: Differential nuclease sensitivity mapping of four reference tissues of B73 maize (Zea mays L).

  • Zachary M Turpin‎ et al.
  • Data in brief‎
  • 2018‎

Presented here are data from Next-Generation Sequencing of differential micrococcal nuclease digestions of formaldehyde-crosslinked chromatin in selected tissues of maize (Zea mays) inbred line B73. Supplemental materials include a wet-bench protocol for making DNS-seq libraries, the DNS-seq data processing pipeline for producing genome browser tracks. This report also includes the peak-calling pipeline using the iSeg algorithm to segment positive and negative peaks from the DNS-seq difference profiles. The data repository for the sequence data is the NCBI SRA, BioProject Accession PRJNA445708.


Nucleosome positioning in the regulatory region of SV40 chromatin correlates with the activation and repression of early and late transcription during infection.

  • Meera Ajeet Kumar‎ et al.
  • Virology‎
  • 2017‎

The location of nucleosomes in SV40 virions and minichromosomes isolated during infection were determined by next generation sequencing (NGS). The patterns of reads within the regulatory region of chromatin from wild-type virions indicated that micrococcal nuclease-resistant nucleosomes were specifically positioned at nt 5223 and nt 363, while in minichromosomes isolated 48 h post-infection we observed nuclease-resistant nucleosomes at nt 5119 and nt 212. The nucleosomes at nt 5223 and nt 363 in virion chromatin would be expected to repress early and late transcription, respectively. In virions from the mutant cs1085, which does not repress early transcription, we found that these two nucleosomes were significantly reduced compared to wild-type virions confirming a repressive role for them. In chromatin from cells infected for only 30min with wild-type virus, we observed a significant reduction in the nucleosomes at nt 5223 and nt 363 indicating that the potential repression by these nucleosomes appeared to be relieved very early in infection.


Particle-based analysis elucidates the real retention capacities of virus filters and enables optimal virus clearance study design with evaluation systems of diverse virological characteristics.

  • Taiki Kayukawa‎ et al.
  • Biotechnology progress‎
  • 2022‎

In virus clearance study (VCS) design, the amount of virus loaded onto the virus filters (VF) must be carefully controlled. A large amount of virus is required to demonstrate sufficient virus removal capability; however, too high a viral load causes virus breakthrough and reduces log reduction values. We have seen marked variation in the virus removal performance for VFs even with identical VCS design. Understanding how identical virus infectivity, materials and operating conditions can yield such different results is key to optimizing VCS design. The present study developed a particle number-based method for VCS and investigated the effects on VF performance of discrepancies between apparent virus amount and total particle number of minute virus of mice. Co-spiking of empty and genome-containing particles resulted in a decrease in the virus removal performance proportional to the co-spike ratio. This suggests that empty particles are captured in the same way as genome-containing particles, competing for retention capacity. In addition, between virus titration methods with about 2.0 Log10 difference in particle-to-infectivity ratios, there was a 20-fold decrease in virus retention capacity limiting the throughput that maintains the required LRV (e.g., 4.0), calculated using infectivity titers. These findings suggest that ignoring virus particle number in VCS design can cause virus overloading and accelerate filter breakthrough. This article asserts the importance of focusing on virus particle number and discusses optimization of VCS design that is unaffected by virological characteristics of evaluation systems and adequately reflect the VF retention capacity.


Immunochemical detection of oxidative DNA damage in cancer and aging using anti-reactive oxygen species modified DNA monoclonal antibody.

  • B T Ashok‎ et al.
  • The international journal of biochemistry & cell biology‎
  • 1998‎

The formation of reactive oxygen species (ROS), although a normal cellular activity, is considerably enhanced under chronic inflammatory conditions and ischemia. These species have been implicated in various disorders, mutagenesis, carcinogenesis and aging. Of many macromolecules, DNA is the most susceptible to hydroxyl radical, the most reactive of the ROS. The present study is designed to detect oxidative DNA damage in cancer patients and healthy aged humans using an anti-ROS-DNA monoclonal antibody (mAb). Purified calf thymus DNA fragments (approximate size 400 bp) were modified with OH, generated by UV-irradiation (254 nm) of hydrogen peroxide. ROS-modified DNA was characterized by UV-spectroscopy, melting temperature, alkaline sucrose density gradient ultracentrifugation and ion-exchange chromatography. ROS-DNA showed single strand breaks, decrease in Tm, modification of thymine (58.3%) and guanine (20%). The mAb generated against ROS-DNA was characterized for antigen binding specificity by competition ELISA. Monoclonal antibody showed strong binding to ROS-modified DNA, its modified fragments, polynucleotides and bases. With the exception of native DNA, binding of unmodified polynucleotides and bases was much lower. The mAb distinctly recognized DNA samples from lymphocytes of healthy aged humans and gave maximum inhibitions of 49, 53, 64 and 70%, while not reacting with DNA from young population. Similarly, oxidative lesions in DNA from cancer patients were also efficiently recognized by the mAb. DNA from healthy controls served as negative control. The studies demonstrate that the mAb, although cross-reactive, preferentially binds ROS-modified epitopes on DNA. High reactivity of mAb to DNA samples from cancer patients and healthy aged humans indicates increased oxidative stress leading to DNA damage.


Chromatin particle spectrum analysis: a method for comparative chromatin structure analysis using paired-end mode next-generation DNA sequencing.

  • Nicholas A Kent‎ et al.
  • Nucleic acids research‎
  • 2011‎

Microarray and next-generation sequencing techniques which allow whole genome analysis of chromatin structure and sequence-specific protein binding are revolutionizing our view of chromosome architecture and function. However, many current methods in this field rely on biochemical purification of highly specific fractions of DNA prepared from chromatin digested with either micrococcal nuclease or DNaseI and are restricted in the parameters they can measure. Here, we show that a broad size-range of genomic DNA species, produced by partial micrococcal nuclease digestion of chromatin, can be sequenced using paired-end mode next-generation technology. The paired sequence reads, rather than DNA molecules, can then be size-selected and mapped as particle classes to the target genome. Using budding yeast as a model, we show that this approach reveals position and structural information for a spectrum of nuclease resistant complexes ranging from transcription factor-bound DNA elements up to mono- and poly-nucleosomes. We illustrate the utility of this approach in visualizing the MNase digestion landscape of protein-coding gene transcriptional start sites, and demonstrate a comparative analysis which probes the function of the chromatin-remodelling transcription factor Cbf1p.


A User's Guide to Cell-Free Protein Synthesis.

  • Nicole E Gregorio‎ et al.
  • Methods and protocols‎
  • 2019‎

Cell-free protein synthesis (CFPS) is a platform technology that provides new opportunities for protein expression, metabolic engineering, therapeutic development, education, and more. The advantages of CFPS over in vivo protein expression include its open system, the elimination of reliance on living cells, and the ability to focus all system energy on production of the protein of interest. Over the last 60 years, the CFPS platform has grown and diversified greatly, and it continues to evolve today. Both new applications and new types of extracts based on a variety of organisms are current areas of development. However, new users interested in CFPS may find it challenging to implement a cell-free platform in their laboratory due to the technical and functional considerations involved in choosing and executing a platform that best suits their needs. Here we hope to reduce this barrier to implementing CFPS by clarifying the similarities and differences amongst cell-free platforms, highlighting the various applications that have been accomplished in each of them, and detailing the main methodological and instrumental requirement for their preparation. Additionally, this review will help to contextualize the landscape of work that has been done using CFPS and showcase the diversity of applications that it enables.


Oxidative stress damages rRNA inside the ribosome and differentially affects the catalytic center.

  • Jessica Willi‎ et al.
  • Nucleic acids research‎
  • 2018‎

Intracellular levels of reactive oxygen species (ROS) increase as a consequence of oxidative stress and represent a major source of damage to biomolecules. Due to its high cellular abundance RNA is more frequently the target for oxidative damage than DNA. Nevertheless the functional consequences of damage on stable RNA are poorly understood. Using a genome-wide approach, based on 8-oxo-guanosine immunoprecipitation, we present evidence that the most abundant non-coding RNA in a cell, the ribosomal RNA (rRNA), is target for oxidative nucleobase damage by ROS. Subjecting ribosomes to oxidative stress, we demonstrate that oxidized 23S rRNA inhibits the ribosome during protein biosynthesis. Placing single oxidized nucleobases at specific position within the ribosome's catalytic center by atomic mutagenesis resulted in markedly different functional outcomes. While some active site nucleobases tolerated oxidative damage well, oxidation at others had detrimental effects on protein synthesis by inhibiting different sub-steps of the ribosomal elongation cycle. Our data provide molecular insight into the biological consequences of RNA oxidation in one of the most central cellular enzymes and reveal mechanistic insight on the role of individual active site nucleobases during translation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: