Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 75 papers

Loss of p53 in quaking viable mice leads to Purkinje cell defects and reduced survival.

  • Christina Gavino‎ et al.
  • Scientific reports‎
  • 2011‎

The qk(v) mutation is a one megabase deletion resulting in abnormal expression of the qkI gene. qk(v) mice exhibit hypomyelination of the central nervous system and display rapid tremors and seizures as adults. The qkI locus on 6q26-27 has also been implicated as a candidate tumor suppressor gene as the qkI locus maps to a region of genetic instability in Glioblastoma Multiforme (GBM), an aggressive brain tumor of astrocytic lineage. As GBM frequently harbors mutations affecting p53, we crossbred qk(v) and p53 mutant mice to examine whether qk(v) mice on a p53(-/-) background have an increased incidence of GBM. qk(v) (/v); p53(-/-) mice had a reduced survival rate compared to p53(-/-) littermates, and the cause of death of the majority of the mice remains unknown. In addition, immunohistochemistry revealed Purkinje cell degeneration in the cerebellum. These results suggest that p53 and qkI are genetically linked for neuronal maintenance and survival.


Patched1 haploinsufficiency impairs ependymal cilia function of the quaking viable mice, leading to fatal hydrocephalus.

  • Christina Gavino‎ et al.
  • Molecular and cellular neurosciences‎
  • 2011‎

The quaking viable (qk(v)) mice harbor an autosomal recessive mutation that deletes the parkin co-regulated gene (pacrg) and parkin (park2) genes, and alters the expression of the quaking (qkI) gene. qk(v) mice have been well-studied for their dysmyelination phenotype caused by the altered expression of the qkI gene. The qk(v) mice exhibit sterility in males and develop acquired mild hydrocephalus due to the lack of PACRG expression. To identify genetic interactors of the pacrg-parkin-qkI locus, we crossbred the qk(v) mice with various mouse strains including the patched1 (ptch1)-deficient mice. The ptch1 heterozygous mice exhibit increased Sonic Hedgehog (Shh) signaling and are prone to several malignancies including tumorigenesis. In the present study, we show that the qk(v/v); ptch1⁺/⁻ mice are distinguished by a dome-shaped skull at 4 to 6weeks of age and exhibit dilation of the lateral and third ventricles leading to fatal acquired hydrocephalus by ~5months of age, unlike their littermate controls that did not develop the condition. The qk(v/v); ptch1⁺/⁻ mice contained normal ciliated ependymal cells lining the ventricles of the brain, but these cells were functionally compromised with a severe cilial mediated flow defect. Our findings suggest that the ptch1 and the pacrg-parkin-qkI loci genetically interact to regulate cilia function of the ependymal cells.


Quaking regulates circular RNA production in cardiomyocytes.

  • Pablo Montañés-Agudo‎ et al.
  • Journal of cell science‎
  • 2023‎

Circular RNAs (circRNAs) are a class of non-coding RNA molecules that are gaining increasing attention for their roles in various pathophysiological processes. The RNA-binding protein quaking (QKI) has been identified as a regulator of circRNA formation. In this study, we investigate the role of QKI in the formation of circRNAs in the heart by performing RNA-sequencing on Qki-knockout mice. Loss of QKI resulted in the differential expression of 17% of the circRNAs in adult mouse hearts. Interestingly, the majority of the QKI-regulated circRNAs (58%) were derived from genes undergoing QKI-dependent splicing, indicating a relationship between back-splicing and linear splicing. We compared these QKI-dependent circRNAs with those regulated by RBM20, another cardiac splicing factor essential for circRNA formation. We found that QKI and RBM20 regulate the formation of a distinct, but partially overlapping set of circRNAs in the heart. Strikingly, many shared circRNAs were derived from the Ttn gene, and they were regulated in an opposite manner. Our findings indicate that QKI not only regulates alternative splicing in the heart but also the formation of circRNAs.


Quaking and miR-155 interactions in inflammation and leukemogenesis.

  • Esmerina Tili‎ et al.
  • Oncotarget‎
  • 2015‎

Quaking (QKI) is a tumor-suppressor gene encoding a conserved RNA-binding protein, whose expression is downregulated in several solid tumors. Here we report that QKI plays an important role in the immune response and suppression of leukemogenesis. We show that the expression of Qki is reduced in lipopolysaccharide (LPS)-challenged macrophages, suggesting that Qki is a key regulator of LPS signaling pathway. Furthermore, LPS-induced downregulation of Qki expression is miR-155-dependent. Qki overexpression impairs LPS-induced phosphorylation of JNK and particularly p38 MAPKs, in addition to increasing the production of anti-inflammatory cytokine IL-10. In contrast, Qki ablation decreases Fas expression and the rate of Caspase3/7 activity, while increasing the levels of IL-1α, IL-1β and IL-6, and p38 phosphorylation. Similarly, the p38 pathway is also a target of QKI activity in chronic lymphocytic leukemia (CLL)-derived MEC2 cells. Finally, B-CLL patients show lower levels of QKI expression compared with B cells from healthy donor, and Qki is similarily downregulated with the progression of leukemia in Eµ-miR-155 transgenic mice. Altogether, these data implicate QKI in the pathophysiology of inflammation and oncogenesis where miR-155 is involved.


Three-dimensional statistical modeling of neuronal populations: illustration with spatial localization of supernumerary neurons in the locus coeruleus of quaking mutant mice.

  • Jasmine Burguet‎ et al.
  • The Journal of comparative neurology‎
  • 2009‎

An algorithm for the three-dimensional statistical representation of neuronal populations was designed and implemented. Using this algorithm a series of 3D models, calculated from repeated histological experiments, can be combined to provide a synthetic vision of a population of neurons taking into account biological and experimental variability. Based on the point process theory, our algorithm allows computation of neuronal density maps from which isodensity surfaces can be readily extracted and visualized as surface models revealing the statistical organization of the neuronal population under study. This algorithm was applied to the spatial distribution of locus coeruleus (LC) neurons of 30- and 90-day-old control and quaking mice. By combining 12 3D models of the LC, a region of the nucleus in which a subpopulation of neurons loses its noradrenergic phenotype between 30 and 90 days postnatally was demonstrated in control mice but not in quaking mice, leading to the hyperplasia previously reported in adult mutants. Altogether, this algorithm allows computation of 3D statistical and graphical models of neuronal populations, providing a contribution to quantitative 3D neuroanatomical modeling.


Quaking Inhibits Doxorubicin-Mediated Cardiotoxicity Through Regulation of Cardiac Circular RNA Expression.

  • Shashi Kumar Gupta‎ et al.
  • Circulation research‎
  • 2018‎

RBPs (RNA-binding proteins) have been described to be expressed and regulated in various organs including the heart. Little is known about the role of RBPs in heart failure induced by the chemotherapy drug doxorubicin and their interaction with circular RNAs.


Quaking regulates Hnrnpa1 expression through its 3' UTR in oligodendrocyte precursor cells.

  • N Ruth Zearfoss‎ et al.
  • PLoS genetics‎
  • 2011‎

In mice, Quaking (Qk) is required for myelin formation; in humans, it has been associated with psychiatric disease. QK regulates the stability, subcellular localization, and alternative splicing of several myelin-related transcripts, yet little is known about how QK governs these activities. Here, we show that QK enhances Hnrnpa1 mRNA stability by binding a conserved 3' UTR sequence with high affinity and specificity. A single nucleotide mutation in the binding site eliminates QK-dependent regulation, as does reduction of QK by RNAi. Analysis of exon expression across the transcriptome reveals that QK and hnRNP A1 regulate an overlapping subset of transcripts. Thus, a simple interpretation is that QK regulates a large set of oligodendrocyte precursor genes indirectly by increasing the intracellular concentration of hnRNP A1. Together, the data show that hnRNP A1 is an important QK target that contributes to its control of myelin gene expression.


MicroRNA-214 modulates neural progenitor cell differentiation by targeting Quaking during cerebral cortex development.

  • Pengcheng Shu‎ et al.
  • Scientific reports‎
  • 2017‎

The accurate generation of an appropriate number of different neuronal and glial subtypes is fundamental to normal brain functions and requires tightly orchestrated spatial and temporal developmental programmes to maintain the balance between the proliferation and the differentiation of neural progenitor cells. However, the molecular mechanism governing this process has not been fully elucidated. Here, we found that miR-214-3p was highly expressed in neural progenitor cells and dynamically regulated during neocortical development. Moreover, our in vivo and in vitro studies showed that miR-214 inhibited self-renewal of neural progenitor cells and promoted neurogenesis. In addition, after target screening, we identified miR-214 targets including Quaking (Qki) by binding the 3'- untranslated region (3'-UTR) of the Qki mRNA, which was specifically expressed in the progenitor cells of the proliferative ventricular zone as 3 Qki isoforms. Furthermore, overexpression and knockdown of Qki showed that the different isoforms of Qki had different functions in the regulation of neural progenitor cells differentiation. Moreover, overexpression of Qki could counteract the function of miR-214 in neurogenesis. Our results revealed that miR-214 maintains the balance between neural progenitor/stem cell proliferation and differentiation together with Quaking, its target gene.


QUAKING Regulates Microexon Alternative Splicing of the Rho GTPase Pathway and Controls Microglia Homeostasis.

  • Jeesan Lee‎ et al.
  • Cell reports‎
  • 2020‎

The role of RNA binding proteins in regulating the phagocytic and cytokine-releasing functions of microglia is unknown. Here, we show that microglia deficient for the QUAKING (QKI) RNA binding protein have increased proinflammatory cytokine release and defects in processing phagocytosed cargo. Splicing analysis reveals a role for QKI in regulating microexon networks of the Rho GTPase pathway. We show an increase in RhoA activation and proinflammatory cytokines in QKI-deficient microglia that are repressed by treating with a Rock kinase inhibitor. During the cuprizone diet, mice with QKI-deficient microglia are inefficient at supporting central nervous system (CNS) remyelination and cause the recruited oligodendrocyte precursor cells to undergo apoptosis. Furthermore, the expression of QKI in microglia is downregulated in preactive, chronic active, and remyelinating white matter lesions of multiple sclerosis (MS) patients. Overall, our findings identify QKI as an alternative splicing regulator governing a network of Rho GTPase microexons with implications for CNS remyelination and MS patients.


Quaking Is a Key Regulator of Endothelial Cell Differentiation, Neovascularization, and Angiogenesis.

  • Amy Cochrane‎ et al.
  • Stem cells (Dayton, Ohio)‎
  • 2017‎

The capability to derive endothelial cell (ECs) from induced pluripotent stem cells (iPSCs) holds huge therapeutic potential for cardiovascular disease. This study elucidates the precise role of the RNA-binding protein Quaking isoform 5 (QKI-5) during EC differentiation from both mouse and human iPSCs (hiPSCs) and dissects how RNA-binding proteins can improve differentiation efficiency toward cell therapy for important vascular diseases. iPSCs represent an attractive cellular approach for regenerative medicine today as they can be used to generate patient-specific therapeutic cells toward autologous cell therapy. In this study, using the model of iPSCs differentiation toward ECs, the QKI-5 was found to be an important regulator of STAT3 stabilization and vascular endothelial growth factor receptor 2 (VEGFR2) activation during the EC differentiation process. QKI-5 was induced during EC differentiation, resulting in stabilization of STAT3 expression and modulation of VEGFR2 transcriptional activation as well as VEGF secretion through direct binding to the 3' UTR of STAT3. Importantly, mouse iPS-ECs overexpressing QKI-5 significantly improved angiogenesis and neovascularization and blood flow recovery in experimental hind limb ischemia. Notably, hiPSCs overexpressing QKI-5, induced angiogenesis on Matrigel plug assays in vivo only 7 days after subcutaneous injection in SCID mice. These results highlight a clear functional benefit of QKI-5 in neovascularization, blood flow recovery, and angiogenesis. Thus, they provide support to the growing consensus that elucidation of the molecular mechanisms underlying EC differentiation will ultimately advance stem cell regenerative therapy and eventually make the treatment of cardiovascular disease a reality. The RNA binding protein QKI-5 is induced during EC differentiation from iPSCs. RNA binding protein QKI-5 was induced during EC differentiation in parallel with the EC marker CD144. Immunofluorescence staining showing that QKI-5 is localized in the nucleus and stained in parallel with CD144 in differentiated ECs (scale bar = 50 µm). Stem Cells 2017 Stem Cells 2017;35:952-966.


Expression of Quaking RNA-Binding Protein in the Adult and Developing Mouse Retina.

  • Takahiko Suiko‎ et al.
  • PloS one‎
  • 2016‎

Quaking (QKI), which belongs to the STAR family of KH domain-containing RNA-binding proteins, functions in pre-mRNA splicing, microRNA regulation, and formation of circular RNA. QKI plays critical roles in myelinogenesis in the central and peripheral nervous systems and has been implicated neuron-glia fate decision in the brain; however, neither the expression nor function of QKI in the neural retina is known. Here we report the expression of QKI RNA-binding protein in the developing and mature mouse retina. QKI was strongly expressed by Müller glial cells in both the developing and adult retina. Intriguingly, during development, QKI was expressed in early differentiating neurons, such as the horizontal and amacrine cells, and subsequently in later differentiating bipolar cells, but not in photoreceptors. Neuronal expression was uniformly weak in the adult. Among QKI isoforms (5, 6, and 7), QKI-5 was the predominantly expressed isoform in the adult retina. To study the function of QKI in the mouse retina, we examined quakingviable(qkv) mice, which have a dysmyelination phenotype that results from deficiency of QKI expression and reduced numbers of mature oligodendrocytes. In homozygous qkv mutant mice (qkv/qkv), the optic nerve expression levels of QKI-6 and 7, but not QKI-5 were reduced. In the retina of the mutant homozygote, QKI-5 levels were unchanged, and QKI-6 and 7 levels, already low, were also unaffected. We conclude that QKI is expressed in developing and adult Müller glia. QKI is additionally expressed in progenitors and in differentiating neurons during retinal development, but expression weakened or diminished during maturation. Among QKI isoforms, we found that QKI-5 predominated in the adult mouse retina. Since Müller glial cells are thought to share properties with retinal progenitor cells, our data suggest that QKI may contribute to maintaining retinal progenitors prior to differentiation into neurons. On the other hand, the expression of QKI in different retinal neurons may suggest a role in neuronal cell type specific fate determination and maturation. The data raises the possibility that QKI may function in retinal cell fate determination and maturation in both glia and neurons.


Quaking 5 suppresses TGF-β-induced EMT and cell invasion in lung adenocarcinoma.

  • Shengjie Wang‎ et al.
  • EMBO reports‎
  • 2021‎

Quaking (QKI) proteins belong to the signal transduction and activation of RNA (STAR) family of RNA-binding proteins that have multiple functions in RNA biology. Here, we show that QKI-5 is dramatically decreased in metastatic lung adenocarcinoma (LUAD). QKI-5 overexpression inhibits TGF-β-induced epithelial-mesenchymal transition (EMT) and invasion, whereas QKI-5 knockdown has the opposite effect. QKI-5 overexpression and silencing suppresses and promotes TGF-β-stimulated metastasis in vivo, respectively. QKI-5 inhibits TGF-β-induced EMT and invasion in a TGFβR1-dependent manner. KLF6 knockdown increases TGFβR1 expression and promotes TGF-β-induced EMT, which is partly abrogated by QKI-5 overexpression. Mechanistically, QKI-5 directly interacts with the TGFβR1 3' UTR and causes post-transcriptional degradation of TGFβR1 mRNA, thereby inhibiting TGF-β-induced SMAD3 phosphorylation and TGF-β/SMAD signaling. QKI-5 is positively regulated by KLF6 at the transcriptional level. In LUAD tissues, KLF6 is lowly expressed and positively correlated with QKI-5 expression, while TGFβR1 expression is up-regulated and inversely correlated with QKI-5 expression. We reveal a novel mechanism by which KLF6 transcriptionally regulates QKI-5 and suggest that targeting the KLF6/QKI-5/TGFβR1 axis is a promising targeting strategy for metastatic LUAD.


The landscape of alternative polyadenylation during EMT and its regulation by the RNA-binding protein Quaking.

  • Daniel P Neumann‎ et al.
  • RNA biology‎
  • 2024‎

Epithelial-mesenchymal transition (EMT) plays important roles in tumour progression and is orchestrated by dynamic changes in gene expression. While it is well established that post-transcriptional regulation plays a significant role in EMT, the extent of alternative polyadenylation (APA) during EMT has not yet been explored. Using 3' end anchored RNA sequencing, we mapped the alternative polyadenylation (APA) landscape following Transforming Growth Factor (TGF)-β-mediated induction of EMT in human mammary epithelial cells and found APA generally causes 3'UTR lengthening during this cell state transition. Investigation of potential mediators of APA indicated the RNA-binding protein Quaking (QKI), a splicing factor induced during EMT, regulates a subset of events including the length of its own transcript. Analysis of QKI crosslinked immunoprecipitation (CLIP)-sequencing data identified the binding of QKI within 3' untranslated regions (UTRs) was enriched near cleavage and polyadenylation sites. Following QKI knockdown, APA of many transcripts is altered to produce predominantly shorter 3'UTRs associated with reduced gene expression. These findings reveal the changes in APA that occur during EMT and identify a potential role for QKI in this process.


The RNA binding protein Quaking represses splicing of the Fibronectin EDA exon and downregulates the interferon response.

  • Kuo-Chieh Liao‎ et al.
  • Nucleic acids research‎
  • 2021‎

Quaking (QKI) controls RNA metabolism in many biological processes including innate immunity, where its roles remain incompletely understood. To illuminate these roles, we performed genome scale transcriptome profiling in QKI knockout cells with or without poly(I:C) transfection, a double-stranded RNA analog that mimics viral infection. Analysis of RNA-sequencing data shows that QKI knockout upregulates genes induced by interferons, suggesting that QKI is an immune suppressor. Furthermore, differential splicing analysis shows that QKI primarily controls cassette exons, and among these events, we noted that QKI silences splicing of the extra domain A (EDA) exon in fibronectin (FN1) transcripts. QKI knockout results in elevated production and secretion of FN1-EDA protein, which is a known activator of interferons. Consistent with an upregulation of the interferon response in QKI knockout cells, our results show reduced production of dengue virus-2 and Japanese encephalitis virus in these cells. In conclusion, we demonstrate that QKI downregulates the interferon system and attenuates the antiviral state.


Noise-Induced Dysregulation of Quaking RNA Binding Proteins Contributes to Auditory Nerve Demyelination and Hearing Loss.

  • Clarisse H Panganiban‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2018‎

Noise exposure causes auditory nerve (AN) degeneration and hearing deficiency, though the proximal biological consequences are not entirely understood. Most AN fibers and spiral ganglion neurons are ensheathed by myelinating glia that provide insulation and ensure rapid transmission of nerve impulses from the cochlea to the brain. Here we show that noise exposure administered to mice of either sex rapidly affects myelinating glial cells, causing molecular and cellular consequences that precede nerve degeneration. This response is characterized by demyelination, inflammation, and widespread expression changes in myelin-related genes, including the RNA splicing regulator Quaking (QKI) and numerous QKI target genes. Analysis of mice deficient in QKI revealed that QKI production in cochlear glial cells is essential for proper myelination of spiral ganglion neurons and AN fibers, and for normal hearing. Our findings implicate QKI dysregulation as a critical early component in the noise response, influencing cochlear glia function that leads to AN demyelination and, ultimately, to hearing deficiency.SIGNIFICANCE STATEMENT Auditory glia cells ensheath a majority of spiral ganglion neurons with myelin, protect auditory neurons, and allow for fast conduction of electrical impulses along the auditory nerve. Here we show that noise exposure causes glial dysfunction leading to myelin abnormality and altered expression of numerous genes in the auditory nerve, including QKI, a gene implicated in regulating myelination. Study of a conditional mouse model that specifically depleted QKI in glia showed that QKI deficiency alone was sufficient to elicit myelin-related abnormality and auditory functional declines. These results establish QKI as a key molecular target in the noise response and a causative agent in hearing loss.


SOCS6 Promotes Mitochondrial Fission and Cardiomyocyte Apoptosis and Is Negatively Regulated by Quaking-Mediated miR-19b.

  • Peng Zhang‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2022‎

Mitochondrial dysfunction and abnormal mitochondrial fission have been implicated in the complications associated with I/R injury as cardiomyocytes are abundant in mitochondria. SOCS6 is known to participate in mitochondrial fragmentation, but its exact involvement and the pathways associated are uncertain.


Quaking promotes monocyte differentiation into pro-atherogenic macrophages by controlling pre-mRNA splicing and gene expression.

  • Ruben G de Bruin‎ et al.
  • Nature communications‎
  • 2016‎

A hallmark of inflammatory diseases is the excessive recruitment and influx of monocytes to sites of tissue damage and their ensuing differentiation into macrophages. Numerous stimuli are known to induce transcriptional changes associated with macrophage phenotype, but posttranscriptional control of human macrophage differentiation is less well understood. Here we show that expression levels of the RNA-binding protein Quaking (QKI) are low in monocytes and early human atherosclerotic lesions, but are abundant in macrophages of advanced plaques. Depletion of QKI protein impairs monocyte adhesion, migration, differentiation into macrophages and foam cell formation in vitro and in vivo. RNA-seq and microarray analysis of human monocyte and macrophage transcriptomes, including those of a unique QKI haploinsufficient patient, reveal striking changes in QKI-dependent messenger RNA levels and splicing of RNA transcripts. The biological importance of these transcripts and requirement for QKI during differentiation illustrates a central role for QKI in posttranscriptionally guiding macrophage identity and function.


The RNA-binding protein quaking maintains endothelial barrier function and affects VE-cadherin and β-catenin protein expression.

  • Ruben G de Bruin‎ et al.
  • Scientific reports‎
  • 2016‎

Proper regulation of endothelial cell-cell contacts is essential for physiological functioning of the endothelium. Interendothelial junctions are actively involved in the control of vascular leakage, leukocyte diapedesis, and the initiation and progression of angiogenesis. We found that the RNA-binding protein quaking is highly expressed by endothelial cells, and that its expression was augmented by prolonged culture under laminar flow and the transcription factor KLF2 binding to the promoter. Moreover, we demonstrated that quaking directly binds to the mRNA of VE-cadherin and β-catenin and can induce mRNA translation mediated by the 3'UTR of these genes. Reduced quaking levels attenuated VE-cadherin and β-catenin expression and endothelial barrier function in vitro and resulted in increased bradykinin-induced vascular leakage in vivo. Taken together, we report that quaking is essential in maintaining endothelial barrier function. Our results provide novel insight into the importance of post-transcriptional regulation in controlling vascular integrity.


A cytoplasmic quaking I isoform regulates the hnRNP F/H-dependent alternative splicing pathway in myelinating glia.

  • Mariana D Mandler‎ et al.
  • Nucleic acids research‎
  • 2014‎

The selective RNA-binding protein quaking I (QKI) plays important roles in controlling alternative splicing (AS). Three QKI isoforms are broadly expressed, which display distinct nuclear-cytoplasmic distribution. However, molecular mechanisms by which QKI isoforms control AS, especially in distinct cell types, still remain elusive. The quakingviable (qk(v)) mutant mice carry deficiencies of all QKI isoforms in oligodendrocytes (OLs) and Schwann cells (SWCs), the myelinating glia of central and peripheral nervous system (CNS and PNS), respectively, resulting in severe dysregulation of AS. We found that the cytoplasmic isoform QKI-6 regulates AS of polyguanine (G-run)-containing transcripts in OLs and rescues aberrant AS in the qk(v) mutant by repressing expression of two canonical splicing factors, heterologous nuclear ribonucleoproteins (hnRNPs) F and H. Moreover, we identified a broad spectrum of in vivo functional hnRNP F/H targets in OLs that contain conserved exons flanked by G-runs, many of which are dysregulated in the qk(v) mutant. Interestingly, AS targets of the QKI-6-hnRNP F/H pathway in OLs are differentially affected in SWCs, suggesting that additional cell-type-specific factors modulate AS during CNS and PNS myelination. Together, our studies provide the first evidence that cytoplasmic QKI-6 acts upstream of hnRNP F/H, which forms a novel pathway to control AS in myelinating glia.


RNA‑binding protein quaking 5 inhibits the progression of non‑small cell lung cancer by upregulating netrin‑4 expression.

  • Zhuo Wu‎ et al.
  • Oncology reports‎
  • 2023‎

It was recently reported that netrin‑4 (Ntn‑4), a component of the extracellular matrix, when downregulated, is involved in the progression of several types of cancer, including breast cancer, colorectal tumours, neuroblastoma and gastric cancer. In the present study, the level of Ntn‑4 was examined in a public non‑small cell lung cancer (NSCLC) dataset from the Netherlands Cancer Institute. This analysis revealed that the mRNA expression level of Ntn‑4 was lower in the samples of patients with NSCLC compared with that in the control samples. Consistent with the mRNA level, the protein level of Ntn‑4 was also found to be decreased in NSCLC cells. However, both the function of Ntn‑4 and the underlying mechanisms of Ntn‑4 downregulation in NSCLC have yet to be fully elucidated. As was anticipated, the overexpression of Ntn‑4 led to a marked decrease in the proliferation, migration and invasion of NSCLC cells. Notably, RNA‑binding protein quaking 5 (Qki‑5) was found to exhibit antitumor activity in lung cancer, not only by enhancing the level of Ntn‑4 by binding to Ntn‑4 mRNA, but also by suppressing the proliferation, invasion and migration of NSCLC cells. However, Qki‑5 is known to be frequently downregulated in NSCLC. Moreover, the knockdown of Ntn‑4 was found to reverse the suppressive effects of Qki‑5 on NSCLC progression both in vitro and in vivo. Taken together, the findings of the present study demonstrate that Ntn‑4 is able to suppress the progression of NSCLC, and that the level of Ntn‑4 can be regulated by Qki‑5. Therefore, Ntn‑4 may be a novel diagnostic and therapeutic target for the treatment of NSCLC.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: