Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 145 papers

Helios represses megakaryocyte priming in hematopoietic stem and progenitor cells.

  • Giovanni Cova‎ et al.
  • The Journal of experimental medicine‎
  • 2021‎

Our understanding of cell fate decisions in hematopoietic stem cells is incomplete. Here, we show that the transcription factor Helios is highly expressed in murine hematopoietic stem and progenitor cells (HSPCs), where it is required to suppress the separation of the platelet/megakaryocyte lineage from the HSPC pool. Helios acts mainly in quiescent cells, where it directly represses the megakaryocyte gene expression program in cells as early as the stem cell stage. Helios binding promotes chromatin compaction, notably at the regulatory regions of platelet-specific genes recognized by the Gata2 and Runx1 transcriptional activators, implicated in megakaryocyte priming. Helios null HSPCs are biased toward the megakaryocyte lineage at the expense of the lymphoid and partially resemble cells of aging animals. We propose that Helios acts as a guardian of HSPC pluripotency by continuously repressing the megakaryocyte fate, which in turn allows downstream lymphoid priming to take place. These results highlight the importance of negative and positive priming events in lineage commitment.


Characterization of dengue virus 2 growth in megakaryocyte-erythrocyte progenitor cells.

  • Kristina B Clark‎ et al.
  • Virology‎
  • 2016‎

Megakaryocyte-erythrocyte progenitor (MEP) cells are potential in vivo targets of dengue virus (DENV); the virus has been found associated with megakaryocytes ex vivo and platelets during DENV-induced thrombocytopenia. We report here that DENV serotype 2 (DENV2) propagates well in human nondifferentiated MEP cell lines (Meg01 and K562). In comparison to virus propagated in Vero cells, viruses from MEP cell lines had similar structure and buoyant density. However, differences in MEP-DENV2 stability and composition were suggested by distinct protein patterns in western blot analysis. Also, antibody neutralization of envelope domain I/II on MEP-DENV2 was reduced relative to that on Vero-DENV2. Infectious DENV2 was produced at comparable kinetics and magnitude in MEP and Vero cells. However, fewer virion structures appeared in electron micrographs of MEP cells. We propose that DENV2 infects and produces virus efficiently in megakaryocytes and that megakaryocyte impairment might contribute to dengue disease pathogenesis.


High-throughput enrichment and isolation of megakaryocyte progenitor cells from the mouse bone marrow.

  • Lucas M Bush‎ et al.
  • Scientific reports‎
  • 2021‎

Megakaryocytes are a rare population of cells that develop in the bone marrow and function to produce platelets that circulate throughout the body and form clots to stop or prevent bleeding. A major challenge in studying megakaryocyte development, and the diseases that arise from their dysfunction, is the identification, classification, and enrichment of megakaryocyte progenitor cells that are produced during hematopoiesis. Here, we present a high throughput strategy for identifying and isolating megakaryocytes and their progenitor cells from a heterogeneous population of bone marrow samples. Specifically, we couple thrombopoietin (TPO) induction, image flow cytometry, and principal component analysis (PCA) to identify and enrich for megakaryocyte progenitor cells that are capable of self-renewal and directly differentiating into mature megakaryocytes. This enrichment strategy distinguishes megakaryocyte progenitors from other lineage-committed cells in a high throughput manner. Furthermore, by using image flow cytometry with PCA, we have identified a combination of markers and characteristics that can be used to isolate megakaryocyte progenitor cells using standard flow cytometry methods. Altogether, these techniques enable the high throughput enrichment and isolation of cells in the megakaryocyte lineage and have the potential to enable rapid disease identification and diagnoses ahead of severe disease progression.


Ricolinostat promotes the generation of megakaryocyte progenitors from human hematopoietic stem and progenitor cells.

  • Jianan Jiang‎ et al.
  • Stem cell research & therapy‎
  • 2022‎

Ex vivo production of induced megakaryocytes (MKs) and platelets from stem cells is an alternative approach for supplying transfusible platelets. However, it is difficult to generate large numbers of MKs and platelets from hematopoietic stem cells and progenitor cells (HSPCs).


Silencing of p53 and CDKN1A establishes sustainable immortalized megakaryocyte progenitor cells from human iPSCs.

  • Masamitsu Sone‎ et al.
  • Stem cell reports‎
  • 2021‎

Platelet transfusions are critical for severe thrombocytopenia but depend on blood donors. The shortage of donors and the potential of universal HLA-null platelet products have stimulated research on the ex vivo differentiation of human pluripotent stem cells (hPSCs) to platelets. We recently established expandable immortalized megakaryocyte cell lines (imMKCLs) from hPSCs by transducing MYC, BMI1, and BCL-XL (MBX). imMKCLs can act as cryopreservable master cells to supply platelet concentrates. However, the proliferation rates of the imMKCLs vary with the starting hPSC clone. In this study, we reveal from the gene expression profiles of several MKCL clones that the proliferation arrest is correlated with the expression levels of specific cyclin-dependent kinase inhibitors. Silencing CDKN1A and p53 with the overexpression of MBX was effective at stably inducing imMKCLs that generate functional platelets irrespective of the hPSC clone. Collectively, this improvement in generating imMKCLs should contribute to platelet industrialization and platelet biology.


Megakaryocyte membrane-wrapped nanoparticles for targeted cargo delivery to hematopoietic stem and progenitor cells.

  • Samik Das‎ et al.
  • Bioengineering & translational medicine‎
  • 2023‎

Hematopoietic stem and progenitor cells (HSPCs) are desirable targets for gene therapy but are notoriously difficult to target and transfect. Existing viral vector-based delivery methods are not effective in HSPCs due to their cytotoxicity, limited HSPC uptake and lack of target specificity (tropism). Poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) are attractive, nontoxic carriers that can encapsulate various cargo and enable its controlled release. To engineer PLGA NP tropism for HSPCs, megakaryocyte (Mk) membranes, which possess HSPC-targeting moieties, were extracted and wrapped around PLGA NPs, producing MkNPs. In vitro, fluorophore-labeled MkNPs are internalized by HSPCs within 24 h and were selectively taken up by HSPCs versus other physiologically related cell types. Using membranes from megakaryoblastic CHRF-288 cells containing the same HSPC-targeting moieties as Mks, CHRF-wrapped NPs (CHNPs) loaded with small interfering RNA facilitated efficient RNA interference upon delivery to HSPCs in vitro. HSPC targeting was conserved in vivo, as poly(ethylene glycol)-PLGA NPs wrapped in CHRF membranes specifically targeted and were taken up by murine bone marrow HSPCs following intravenous administration. These findings suggest that MkNPs and CHNPs are effective and promising vehicles for targeted cargo delivery to HSPCs.


Megakaryocyte progenitor cell function is enhanced upon aging despite the functional decline of aged hematopoietic stem cells.

  • Donna M Poscablo‎ et al.
  • Stem cell reports‎
  • 2021‎

Age-related morbidity is associated with a decline in hematopoietic stem cell (HSC) function, but the mechanisms of HSC aging remain unclear. We performed heterochronic HSC transplants followed by quantitative analysis of cell reconstitution. Although young HSCs outperformed old HSCs in young recipients, young HSCs unexpectedly failed to outcompete the old HSCs of aged recipients. Interestingly, despite substantial enrichment of megakaryocyte progenitors (MkPs) in old mice in situ and reported platelet (Plt) priming with age, transplanted old HSCs were deficient in reconstitution of all lineages, including MkPs and Plts. We therefore performed functional analysis of young and old MkPs. Surprisingly, old MkPs displayed unmistakably greater regenerative capacity compared with young MkPs. Transcriptome analysis revealed putative molecular regulators of old MkP expansion. Collectively, these data demonstrated that aging affects HSCs and megakaryopoiesis in fundamentally different ways: whereas old HSCs functionally decline, MkPs gain expansion capacity upon aging.


Effects of CXCR1 and CXCR2 inhibition on expansion and differentiation of umbilical cord blood CD133(+) cells into megakaryocyte progenitor cells.

  • Elham Khalaf Adeli‎ et al.
  • Cytokine‎
  • 2011‎

There have been various reports on the roles of CXC receptors (CXCR) in modulation of hematopoiesis. In the present study, we investigated the effects of CXCR1 and/or CXCR2 inhibition on expansion and differentiation of umbilical cord blood (UCB) CD133(+) cells into megakaryocytic progenitors.


Downregulation of SATB1 by miRNAs reduces megakaryocyte/erythroid progenitor expansion in preclinical models of Diamond-Blackfan anemia.

  • Mark C Wilkes‎ et al.
  • Experimental hematology‎
  • 2022‎

Diamond-Blackfan Anemia (DBA) is an inherited bone marrow failure syndrome that is associated with anemia, congenital anomalies, and cancer predisposition. It is categorized as a ribosomopathy, because more than 80% or patients have haploinsufficiency of either a small or large subunit-associated ribosomal protein (RP). The erythroid pathology is due predominantly to a block and delay in early committed erythropoiesis with reduced megakaryocyte/erythroid progenitors (MEPs). To understand the molecular pathways leading to pathogenesis of DBA, we performed RNA sequencing on mRNA and miRNA from RPS19-deficient human hematopoietic stem and progenitor cells (HSPCs) and compared existing database documenting transcript fluctuations across stages of early normal erythropoiesis. We determined the chromatin regulator, SATB1 was prematurely downregulated through the coordinated action of upregulated miR-34 and miR-30 during differentiation in ribosomal insufficiency. Restoration of SATB1 rescued MEP expansion, leading to a modest improvement in erythroid and megakaryocyte expansion in RPS19 insufficiency. However, SATB1 expression did not affect expansion of committed erythroid progenitors, indicating ribosomal insufficiency affects multiple stages during erythroid differentiation.


The stem/progenitor landscape is reshaped in a mouse model of essential thrombocythemia and causes excess megakaryocyte production.

  • Daniel Prins‎ et al.
  • Science advances‎
  • 2020‎

Frameshift mutations in CALR (calreticulin) are associated with essential thrombocythemia (ET), but the stages at and mechanisms by which mutant CALR drives transformation remain incompletely defined. Here, we use single-cell approaches to examine the hematopoietic stem/progenitor cell landscape in a mouse model of mutant CALR-driven ET. We identify a trajectory linking hematopoietic stem cells (HSCs) with megakaryocytes and prospectively identify a previously unknown intermediate population that is overrepresented in the disease state. We also show that mutant CALR drives transformation primarily from the earliest stem cell compartment, with some contribution from megakaryocyte progenitors. Last, relative to wild-type HSCs, mutant CALR HSCs show increases in JAK-STAT signaling, the unfolded protein response, cell cycle, and a previously undescribed up-regulation of cholesterol biosynthesis. Overall, we have identified a novel megakaryocyte-biased cell population that is increased in a mouse model of ET and described transcriptomic changes linking CALR mutations to increased HSC proliferation and megakaryopoiesis.


Involvement of autophagy in diosgenin‑induced megakaryocyte differentiation in human erythroleukemia cells.

  • Dima Diab‎ et al.
  • Molecular medicine reports‎
  • 2021‎

Natural agents have been used to restart the process of differentiation that is inhibited during leukemic transformation of hematopoietic stem or progenitor cells. Autophagy is a housekeeping pathway that maintains cell homeostasis against stress by recycling macromolecules and organelles and plays an important role in cell differentiation. In the present study, an experimental model was established to investigate the involvement of autophagy in the megakaryocyte differentiation of human erythroleukemia (HEL) cells induced by diosgenin [also known as (25R)‑Spirosten‑5‑en‑3b‑ol]. It was demonstrated that Atg7 expression was upregulated from day 1 of diosgenin‑induced differentiation and was accompanied by a significant elevation in the conversion of light chain 3 A/B (LC3‑A/B)‑I to LC3‑A/B‑II. Autophagy was modulated before or after the induction of megakaryocyte differentiation using 3‑methyladenine (3‑MA, autophagy inhibitor) and metformin (Met, autophagy initiation activator). 3‑MA induced a significant accumulation of the LC3 A/B‑II form at day 8 of differentiation. It was revealed that 3‑MA had a significant repressive effect on the nuclear (polyploidization) and membrane glycoprotein V [(GpV) expression] maturation. On the other hand, autophagy activation increased GpV genomic expression, but did not change the nuclear maturation profile after HEL cells treatment with Met. It was concluded that autophagy inhibition had a more prominent effect on the diosgenin‑differentiated cells than autophagy activation.


Single-cell profiling of human megakaryocyte-erythroid progenitors identifies distinct megakaryocyte and erythroid differentiation pathways.

  • Bethan Psaila‎ et al.
  • Genome biology‎
  • 2016‎

Recent advances in single-cell techniques have provided the opportunity to finely dissect cellular heterogeneity within populations previously defined by "bulk" assays and to uncover rare cell types. In human hematopoiesis, megakaryocytes and erythroid cells differentiate from a shared precursor, the megakaryocyte-erythroid progenitor (MEP), which remains poorly defined.


Adipocyte Fatty Acid Transfer Supports Megakaryocyte Maturation.

  • Colin Valet‎ et al.
  • Cell reports‎
  • 2020‎

Megakaryocytes (MKs) come from a complex process of hematopoietic progenitor maturation within the bone marrow that gives rise to de novo circulating platelets. Bone marrow microenvironment contains a large number of adipocytes with a still ill-defined role. This study aims to analyze the influence of adipocytes and increased medullar adiposity in megakaryopoiesis. An in vivo increased medullar adiposity in mice caused by high-fat-diet-induced obesity is associated to an enhanced MK maturation and proplatelet formation. In vitro co-culture of adipocytes with bone marrow hematopoietic progenitors shows that delipidation of adipocytes directly supports MK maturation by enhancing polyploidization, amplifying the demarcation membrane system, and accelerating proplatelet formation. This direct crosstalk between adipocytes and MKs occurs through adipocyte fatty acid transfer to MKs involving CD36 to reinforce megakaryocytic maturation. Thus, these findings unveil an influence of adiposity on MK homeostasis based on a dialogue between adipocytes and MKs.


Megakaryocyte lineage development is controlled by modulation of protein acetylation.

  • Marije Bartels‎ et al.
  • PloS one‎
  • 2018‎

Treatment with lysine deacetylase inhibitors (KDACi) for haematological malignancies, is accompanied by haematological side effects including thrombocytopenia, suggesting that modulation of protein acetylation affects normal myeloid development, and specifically megakaryocyte development. In the current study, utilising ex-vivo differentiation of human CD34+ haematopoietic progenitor cells, we investigated the effects of two functionally distinct KDACi, valproic acid (VPA), and nicotinamide (NAM), on megakaryocyte differentiation, and lineage choice decisions. Treatment with VPA increased the number of megakaryocyte/erythroid progenitors (MEP), accompanied by inhibition of megakaryocyte differentiation, whereas treatment with NAM accelerated megakaryocyte development, and stimulated polyploidisation. Treatment with both KDACi resulted in no significant effects on erythrocyte differentiation, suggesting that the effects of KDACi primarily affect megakaryocyte lineage development. H3K27Ac ChIP-sequencing analysis revealed that genes involved in myeloid development, as well as megakaryocyte/erythroid (ME)-lineage differentiation are uniquely modulated by specific KDACi treatment. Taken together, our data reveal distinct effects of specific KDACi on megakaryocyte development, and ME-lineage decisions, which can be partially explained by direct effects on promoter acetylation of genes involved in myeloid differentiation.


Influenza A virus infection instructs hematopoiesis to megakaryocyte-lineage output.

  • Marcel G E Rommel‎ et al.
  • Cell reports‎
  • 2022‎

Respiratory tract infections are among the deadliest communicable diseases worldwide. Severe cases of viral lung infections are often associated with a cytokine storm and alternating platelet numbers. We report that hematopoietic stem and progenitor cells (HSPCs) sense a non-systemic influenza A virus (IAV) infection via inflammatory cytokines. Irrespective of antiviral treatment or vaccination, at a certain threshold of IAV titer in the lung, CD41-positive hematopoietic stem cells (HSCs) enter the cell cycle while endothelial protein C receptor-positive CD41-negative HSCs remain quiescent. Active CD41-positive HSCs represent the source of megakaryocytes, while their multi-lineage reconstitution potential is reduced. This emergency megakaryopoiesis is thrombopoietin independent and attenuated in IAV-infected interleukin-1 receptor-deficient mice. Newly produced platelets during IAV infection are immature and hyper-reactive. After viral clearance, HSC quiescence is re-established. Our study reveals that non-systemic viral respiratory infection has an acute impact on HSCs via inflammatory cytokines to counteract IAV-induced thrombocytopenia.


Rasa3 controls megakaryocyte Rap1 activation, integrin signaling and differentiation into proplatelet.

  • Patricia Molina-Ortiz‎ et al.
  • PLoS genetics‎
  • 2014‎

Rasa3 is a GTPase activating protein of the GAP1 family which targets Ras and Rap1. Ubiquitous Rasa3 catalytic inactivation in mouse results in early embryonic lethality. Here, we show that Rasa3 catalytic inactivation in mouse hematopoietic cells results in a lethal syndrome characterized by severe defects during megakaryopoiesis, thrombocytopenia and a predisposition to develop preleukemia. The main objective of this study was to define the cellular and the molecular mechanisms of terminal megakaryopoiesis alterations. We found that Rasa3 catalytic inactivation altered megakaryocyte development, adherence, migration, actin cytoskeleton organization and differentiation into proplatelet forming megakaryocytes. These megakaryocyte alterations were associated with an increased active Rap1 level and a constitutive integrin activation. Thus, these mice presented a severe thrombocytopenia, bleeding and anemia associated with an increased percentage of megakaryocytes in the bone marrow, bone marrow fibrosis, extramedular hematopoiesis, splenomegaly and premature death. Altogether, our results indicate that Rasa3 catalytic activity controls Rap1 activation and integrin signaling during megakaryocyte differentiation in mouse.


Compartmentalized megakaryocyte death generates functional platelets committed to caspase-independent death.

  • Murray C H Clarke‎ et al.
  • The Journal of cell biology‎
  • 2003‎

Caspase-directed apoptosis usually fragments cells, releasing nonfunctional, prothrombogenic, membrane-bound apoptotic bodies marked for rapid engulfment by macrophages. Blood platelets are functional anucleate cells generated by specialized fragmentation of their progenitors, megakaryocytes (MKs), but committed to a constitutive caspase-independent death. Constitutive formation of the proplatelet-bearing MK was recently reported to be caspase-dependent, apparently involving mitochondrial release of cytochrome c, a known pro-apoptogenic factor. We extend those studies and report that activation of caspases in MKs, either constitutively or after Fas ligation, yields platelets that are functionally responsive and evade immediate phagocytic clearance, and retain mitochondrial transmembrane potential until constitutive platelet death ensues. Furthermore, the exclusion from the platelet progeny of caspase-9 present in the progenitor accounts for failure of mitochondrial release of cytochrome c to activate caspase-3 during platelet death. Thus, progenitor cell death by apoptosis can result in birth of multiple functional anucleate daughter cells.


Megakaryocyte volume modulates bone marrow niche properties and cell migration dynamics.

  • Maximilian G Gorelashvili‎ et al.
  • Haematologica‎
  • 2020‎

All hematopoietic cells that develop in the bone marrow must cross the endothelial barrier to enter the blood circulation. Blood platelets, however, are released by bigger protrusions of huge progenitor cells, named megakaryocytes, and enter the blood stream as so-called proplatelets before fragmenting into mature platelets. Recently, a second function of megakaryocytes has been identified, as they modulate the quiescence of hematopoietic stem cells, mostly via different soluble factors. We know from light sheet fluorescence microscopy images that megakaryocytes are distributed throughout the bone marrow facing a dense vascular network. Here, we used such three-dimensional images to provide a realistic simulation template reflecting the in vivo cell-vessel distributions resulting in reliable whole-bone analysis in silico Combining this approach with an automated image analysis pipeline, we found that megakaryocytes influence migration of neutrophils and hematopoietic stem cells, and thus act as biomechanical restrainers modulating cell mobility and extravasation. Indeed, as a consequence of increased megakaryocyte volumes in platelet-depleted mice neutrophil mobility was reduced in these animals.


Platelet-derived microparticles enhance megakaryocyte differentiation and platelet generation via miR-1915-3p.

  • Mingyi Qu‎ et al.
  • Nature communications‎
  • 2020‎

Thrombosis leads to platelet activation and subsequent degradation; therefore, replenishment of platelets from hematopoietic stem/progenitor cells (HSPCs) is needed to maintain the physiological level of circulating platelets. Platelet-derived microparticles (PMPs) are protein- and RNA-containing vesicles released from activated platelets. We hypothesized that factors carried by PMPs might influence the production of platelets from HSPCs, in a positive feedback fashion. Here we show that, during mouse acute liver injury, the density of megakaryocyte in the bone marrow increases following an increase in circulating PMPs, but without thrombopoietin (TPO) upregulation. In vitro, PMPs are internalized by HSPCs and drive them toward a megakaryocytic fate. Mechanistically, miR-1915-3p, a miRNA highly enriched in PMPs, is transported to target cells and suppresses the expression levels of Rho GTPase family member B, thereby inducing megakaryopoiesis. In addition, direct injection of PMPs into irradiated mice increases the number of megakaryocytes and platelets without affecting TPO levels. In conclusion, our data reveal that PMPs have a role in promoting megakaryocytic differentiation and platelet production.


miR-125b modulates megakaryocyte maturation by targeting the cell-cycle inhibitor p19INK4D.

  • Mingyi Qu‎ et al.
  • Cell death & disease‎
  • 2016‎

A better understanding of the mechanisms involved in megakaryocyte maturation will facilitate the generation of platelets in vitro and their clinical applications. A microRNA, miR-125b, has been suggested to have important roles in the self-renewal of megakaryocyte-erythroid progenitors and in platelet generation. However, miR-125b is also critical for hematopoietic stem cell self-renewal. Thus, the function of miR-125b and the complex signaling pathways regulating megakaryopoiesis remain to be elucidated. In this study, an attentive examination of the endogenous expression of miR-125b during megakaryocyte differentiation was performed. Accordingly, the differentiation of hematopoietic stem cells requires the downregulation of miR-125b, whereas megakaryocyte determination and maturation synchronize with miR-125b accumulation. The overexpression of miR-125b improves megakaryocytic differentiation of K562 and UT-7 cells. Furthermore, stage-specific overexpression of miR-125b in primary cells demonstrates that miR-125b mediates an enhancement of megakaryocytic differentiation after megakaryocyte determination, the stage at which megakaryocytes are negative for the expression of the hematopoietic progenitor marker CD34. The identification of miR-125b targets during megakaryopoiesis was focused on negative regulators of cell cycle because the transition of the G1/S phase has been associated with megakaryocyte polyploidization. Real-time PCR, western blot and luciferase reporter assay reveal that p19INK4D is a direct target of miR-125b. P19INK4D knockdown using small interfering RNA (siRNA) in megakaryocyte-induced K562 cells, UT-7 cells and CD61+ promegakaryocytes results in S-phase progression and increased polyploidy, as well as improved megakaryocyte differentiation, similarly to the effects of miR-125b overexpression. P19INK4D overexpression reverses these effects, as indicated by reduced expression of megakaryocyte markers, G1-phase arrest and polyploidy decrease. P19INK4D knockdown in miR-125b downregulated cells or p19INK4D overexpression in miR-125b upregulated cells rescued the effect of miR-125b. Taken together, these findings suggest that miR-125b expression positively regulates megakaryocyte development since the initial phases of megakaryocyte determination, and p19INK4D is one of the key mediators of miR-125b activity during the onset of megakaryocyte polyploidization.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: