Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 262 papers

Insulin-responsive autonomic neurons in rat medulla oblongata.

  • M Senthilkumaran‎ et al.
  • The Journal of comparative neurology‎
  • 2018‎

Low blood glucose activates brainstem adrenergic and cholinergic neurons, driving adrenaline secretion from the adrenal medulla and glucagon release from the pancreas. Despite their roles in maintaining glucose homeostasis, the distributions of insulin-responsive adrenergic and cholinergic neurons in the medulla are unknown. We fasted rats overnight and gave them insulin (10 U/kg i.p.) or saline after 2 weeks of handling. Blood samples were collected before injection and before perfusion at 90 min. We immunoperoxidase-stained transverse sections of perfused medulla to show Fos plus either phenylethanolamine N-methyltransferase (PNMT) or choline acetyltransferase (ChAT). Insulin injection lowered blood glucose from 4.9 ± 0.3 mmol/L to 1.7 ± 0.2 mmol/L (mean ± SEM; n = 6); saline injection had no effect. In insulin-treated rats, many PNMT-immunoreactive C1 neurons had Fos-immunoreactive nuclei, with the proportion of activated neurons being highest in the caudal part of the C1 column. In the rostral ventrolateral medulla, 33.3% ± 1.4% (n = 8) of C1 neurons were Fos-positive. Insulin also induced Fos in 47.2% ± 2.0% (n = 5) of dorsal medullary C3 neurons and in some C2 neurons. In the dorsal motor nucleus of the vagus (DMV), insulin evoked Fos in many ChAT-positive neurons. Activated neurons were concentrated in the medial and middle regions of the DMV beneath and just rostral to the area postrema. In control rats, very few C1, C2, or C3 neurons and no DMV neurons were Fos-positive. The high numbers of PNMT-immunoreactive and ChAT-immunoreactive neurons that express Fos after insulin treatment reinforce the importance of these neurons in the central response to a decrease in glucose bioavailability.


Vagal afferents modulate cytokine-mediated respiratory control at the neonatal medulla oblongata.

  • Kannan V Balan‎ et al.
  • Respiratory physiology & neurobiology‎
  • 2011‎

Perinatal sepsis and inflammation trigger lung and brain injury in preterm infants, and associated apnea of prematurity. We hypothesized that endotoxin exposure in the immature lung would upregulate proinflammatory cytokine mRNA expression in the medulla oblongata and be associated with impaired respiratory control. Lipopolysaccharide (LPS, 0.1mg/kg) or saline was administered intratracheally to rat pups and medulla oblongatas were harvested for quantifying expression of mRNA for proinflammatory cytokines. LPS-exposure significantly increased medullary mRNA for IL-1β and IL-6, and vagotomy blunted this increase in IL-1β, but not IL-6. Whole-body flow plethysmography revealed that LPS-exposed pups had an attenuated ventilatory response to hypoxia both before and after carotid sinus nerve transection. Immunochemical expression of IL-1β within the nucleus of the solitary tract and area postrema was increased after LPS-exposure. In summary, intratracheal endotoxin-exposure in rat pups is associated with upregulation of proinflammatory cytokines in the medulla oblongata that is vagally mediated for IL-1β and associated with an impaired hypoxic ventilatory response.


Autoregulation of histamine release in medulla oblongata via H3-receptors in rabbits.

  • M Kanamaru‎ et al.
  • Neuroscience research‎
  • 1998‎

The release of histamine (HA) from the rostral ventrolateral medulla (RVL), the raphe nuclei (nR), and the solitary nucleus (nTS) was investigated in anesthetized rabbits using microdialysis and high-performance liquid chromatography. HA release upon electrical stimulation of the posterior hypothalamus (PH), where histaminergic cell bodies are located, was increased to 168% of the baseline level in the RVL (n = 6), 139% of the baseline level in the nR (n = 5), and 166% of the baseline level in the nTS (n = 4). Upon perfusion of thioperamide, an H3-receptor antagonist, via a microdialysis probe, HA release from the RVL, nR and nTS increased. The increase in HA release from the RVL, nR and nTS following thioperamide perfusion was suppressed by co-perfusion of thioperamide and an H3-receptor agonist, imetit. We found that HA is released from the RVL, nR and nTS, that the HA release from all three areas is increased upon stimulation of the PH, and that the HA release is locally influenced in opposite directions by thioperamide and imetit. These results suggest that HA release in the medulla oblongata is controlled by the PH and that H3-receptors participate in the autoregulation of HA release by providing negative feedback locally. Autoregulation of HA release via H3-receptors may be important for maintaining tonic output to the sympathetic nervous system.


Distribution and relationships of neuropeptide Y and NADPH-diaphorase in human ventrolateral medulla oblongata.

  • E E Benarroch‎ et al.
  • Journal of the autonomic nervous system‎
  • 1997‎

The ventrolateral medulla, including the A1 and C1 catecholamine cell groups, corresponds to the recently defined ventrolateral intermediate reticular zone (IRt) in humans. We sought to determine whether the distribution of neuropeptide Y (NPY) corresponds to that of subpopulations of nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) reactive neurons in human ventrolateral IRt. Medullae obtained from 2 men (ages 69 and 59, no history of neurologic disease, postmortem delay 22 and 5 h, respectively) were processed for NPY, tyrosine hydroxylase (TH) and NADPH-d either alone or combining NADPH-d and NPY or NADPH-d and TH, respectively. Distribution of cells was plotted using computer-aided reconstruction. NPY-reactive neurons were found throughout the rostrocaudal extent of the ventrolateral IRt, particularly at mid-olivary levels. The distribution of NPY immunoreactivity overlapped TH but not NADPH-d reactivity. This indicates that NPY and NADPH-d reactivity may help identify different subpopulations of neurons in human ventrolateral IRt, which may be differentially susceptible to disease.


Medulla oblongata volume as a promising predictor of survival in amyotrophic lateral sclerosis.

  • Giammarco Milella‎ et al.
  • NeuroImage. Clinical‎
  • 2022‎

Unconventional magnetic resonance imaging studies of the brainstem have recently acquired a growing interest in amyotrophic lateral sclerosis (ALS) pathology since they provide a unique opportunity to evaluate motor tract degeneration and bulbar lower motor neuron involvement. The aim of this study was to investigate the role of brainstem structures as accurate biomarkers of disease severity and predictors of survival.


Control of sympathetic vasomotor tone by catecholaminergic C1 neurones of the rostral ventrolateral medulla oblongata.

  • Nephtali Marina‎ et al.
  • Cardiovascular research‎
  • 2011‎

Increased sympathetic tone in obstructive sleep apnoea results from recurrent episodes of systemic hypoxia and hypercapnia and might be an important contributor to the development of cardiovascular disease. In this study, we re-evaluated the role of a specific population of sympathoexcitatory catecholaminergic C1 neurones of the rostral ventrolateral medulla oblongata in the control of sympathetic vasomotor tone, arterial blood pressure, and hypercapnia-evoked sympathetic and cardiovascular responses.


The unique organization of filamentous actin in the medullary canal of the medulla oblongata.

  • Bai-Hong Tan‎ et al.
  • Tissue & cell‎
  • 2017‎

In the central canal, F-actin is predominantly localized in the apical region, forming a ring-like structure around the circumference of the lumen. However, an exception is found in the medulla oblongata, where the apical F-actin becomes interrupted in the ventral aspect of the canal. To clarify the precise localization of F-actin, the fluorescence signals for F-actin were converted to the peroxidase/DAB reaction products in this study by a phalloidin-based ultrastructural technique, which demonstrated that F-actin is located mainly in the microvilli and terminal webs in the ependymocytes. It is because the ventrally oriented ependymocytes do not possess well-developed microvilli or terminal web that led to a discontinuous labeling of F-actin in the medullary canal. Since spinal motions can change the shape and size of the central canal, we next examined the cytoskeletons in the medullary canal in both rats and monkeys, because these two kinds of animals show different kinematics at the atlanto-occipital articulation. Our results first demonstrated that the apical F-actin in the medullary canal is differently organized in the animals with different head-neck kinemics, which suggests that the mechanic stretching of spinal motions is capable of inducing F-actin reorganization and the subsequent cell-shape changes in the central canal.


Connexin26 mediates CO2-dependent regulation of breathing via glial cells of the medulla oblongata.

  • Joseph van de Wiel‎ et al.
  • Communications biology‎
  • 2020‎

Breathing is highly sensitive to the PCO2 of arterial blood. Although CO2 is detected via the proxy of pH, CO2 acting directly via Cx26 may also contribute to the regulation of breathing. Here we exploit our knowledge of the structural motif of CO2-binding to Cx26 to devise a dominant negative subunit (Cx26DN) that removes the CO2-sensitivity from endogenously expressed wild type Cx26. Expression of Cx26DN in glial cells of a circumscribed region of the mouse medulla - the caudal parapyramidal area - reduced the adaptive change in tidal volume and minute ventilation by approximately 30% at 6% inspired CO2. As central chemosensors mediate about 70% of the total response to hypercapnia, CO2-sensing via Cx26 in the caudal parapyramidal area contributed about 45% of the centrally-mediated ventilatory response to CO2. Our data unequivocally link the direct sensing of CO2 to the chemosensory control of breathing and demonstrates that CO2-binding to Cx26 is a key transduction step in this fundamental process.


Expression of the ghrelin receptor gene in neurons of the medulla oblongata of the rat.

  • Romke Bron‎ et al.
  • The Journal of comparative neurology‎
  • 2013‎

There is ambiguity concerning the distribution of neurons that express the ghrelin receptor (GHSR) in the medulla oblongata. In the current study we used a sensitive nonradioactive method to investigate GHSR mRNA distribution by in situ hybridization. Strong expression of the GHSR gene was confirmed in neurons of the facial nucleus (FacN, 7), the dorsal vagal complex (DVC), and the semicompact (but not compact) nucleus ambiguus (AmbSC and AmbC). In addition, expression of GHSR was found in other regions, where it had not been described before. GHSR-positive neurons were observed in the gustatory rostral nucleus tractus solitarius and in areas involved in vestibulo-ocular processing (such as the medial vestibular nucleus and the nucleus abducens). GHSR expression was also noted in ventral areas associated with cardiorespiratory control, including the gigantocellular reticular nucleus, the lateral paragigantocellular nucleus, the rostral and caudal ventrolateral medulla, the (pre)-Bötzinger complex, and the rostral and caudal ventrolateral respiratory group. However, GHSR-positive neurons in ventrolateral areas did not express markers for cardiovascular presympathetic vasomotor neurons, respiratory propriobulbar rhythmogenic neurons, or sensory interneurons. GHSR-positive cells were intermingled with catecholamine neurons in the dorsal vagal complex but these populations did not overlap. Thus, the ghrelin receptor occurs in the medulla oblongata in 1) second-order sensory neurons processing gustatory, vestibulo-ocular, and visceral sensation; 2) cholinergic somatomotor neurons of the FacN and autonomic preganglionic neurons of the DMNX and AmbSC; 3) cardiovascular neurons in the DVC, Gi, and LPGi; 4) neurons of as yet unknown function in the ventrolateral medulla.


CO2-Induced ATP-Dependent Release of Acetylcholine on the Ventral Surface of the Medulla Oblongata.

  • Robert T R Huckstepp‎ et al.
  • PloS one‎
  • 2016‎

Complex mechanisms that detect changes in brainstem parenchymal PCO2/[H+] and trigger adaptive changes in lung ventilation are responsible for central respiratory CO2 chemosensitivity. Previous studies of chemosensory signalling pathways suggest that at the level of the ventral surface of the medulla oblongata (VMS), CO2-induced changes in ventilation are (at least in part) mediated by the release and actions of ATP and/or acetylcholine (ACh). Here we performed simultaneous real-time biosensor recordings of CO2-induced ATP and ACh release from the VMS in vivo and in vitro, to test the hypothesis that central respiratory CO2 chemosensory transduction involves simultaneous recruitment of purinergic and cholinergic signalling pathways. In anaesthetised and artificially ventilated rats, an increase in inspired CO2 triggered ACh release on the VMS with a peak amplitude of ~5 μM. Release of ACh was only detected after the onset of CO2-induced activation of the respiratory activity and was markedly reduced (by ~70%) by ATP receptor blockade. In horizontal slices of the VMS, CO2-induced release of ATP was reliably detected, whereas CO2 or bath application of ATP (100 μM) failed to trigger release of ACh. These results suggest that during hypercapnia locally produced ATP induces or potentiates the release of ACh (likely from the medullary projections of distal groups of cholinergic neurones), which may also contribute to the development and/or maintenance of the ventilatory response to CO2.


Medulla oblongata transcriptome changes during presymptomatic natural scrapie and their association with prion-related lesions.

  • Hicham Filali‎ et al.
  • BMC genomics‎
  • 2012‎

The pathogenesis of natural scrapie and other prion diseases is still poorly understood. Determining the variations in the transcriptome in the early phases of the disease might clarify some of the molecular mechanisms of the prion-induced pathology and allow for the development of new biomarkers for diagnosis and therapy. This study is the first to focus on the identification of genes regulated during the preclinical phases of natural scrapie in the ovine medulla oblongata (MO) and the association of these genes with prion deposition, astrocytosis and spongiosis.


Localization of angiotensin II AT1 receptor-like immunoreactivity in catecholaminergic neurons of the rat medulla oblongata.

  • S N Yang‎ et al.
  • Neuroscience‎
  • 1997‎

There exist at least two distinct subtypes of angiotensin II receptors in the brain, namely the AT1 and AT2 subtypes. The high density of angiotensin II AT1 receptors is present in the medulla oblongata. The AT1 subtype of angiotensin II receptors mainly mediates central cardiovascular events. In the present study a polyclonal antibody against the angiotensin II AT1 receptor and a monoclonal antibody against tyrosine hydroxylase were employed to evaluate the possible presence of angiotensin II AT1 receptor-like immunoreactivity in the catecholaminergic neurons of the rat medulla oblongata by means of the double colour immunofluorescence technique. A weak, diffuse cytoplasmic angiotensin II AT1 receptor-like immunoreactivity was observed in almost all the catecholaminergic cell bodies of the A2, C1, C2 and C3 cell groups, except those of the A1 cell group containing moderately intense, diffuse cytoplasmic angiotensin II AT1 receptor-like immunoreactivity, occasionally found in the noradrenergic dendrites of the A1 cell group. There was a higher density of the angiotensin II AT1 receptor-like immunoreactive profiles in the A2 cell group area than in other catecholaminergic cell group areas. In addition, the angiotensin II AT1 receptor-like immunoreactivity was seen in non-catecholaminergic neurons. The present results provide evidence for the existence of the specific angiotensin II AT1 receptor-like immunoreactivity in the noradrenergic and adrenergic neurons of the rat medulla oblongata known to have a cardiovascular role. Thus, the findings support the view that angiotensin II AT1 receptors in the medulla oblongata participate in cardiovascular control and indicate a cellular substrate for the documented interaction between the angiotensin II and adrenergic transmission lines in cardiovascular function at the level of the nucleus tractus solitarii.


Effect of thermal preconditioning on Hsp70 expression in the medulla oblongata and on hemodynamics during passive hyperthermia.

  • Elham Ghadhanfar‎ et al.
  • Brain research‎
  • 2019‎

A short-term episode of elevated core body temperature that induces Hsp70 expression (thermal preconditioning) may protect against heatstroke during subsequent hyperthermia. The protective effects of thermal preconditioning may involve several cellular and immunological mechanisms and improvements in baroreflex sensitivity. To substantiate the hypothesis that the protective effect of thermal preconditioning also occurs in conditions with intact thermoregulation, we examined the evolution of spontaneous cardiovagal baroreflex sensitivity and the protective effect of Hsp70 expression after thermal preconditioning in nonanesthetized Wistar-Kyoto rats with implanted telemetric transmitters. In the baroreflex centers of the medulla oblongata, thermal preconditioning induced Hsp70 in perineuronal and perivascular oligodendrocytes, microglia, and endothelial cells but not in neurons. The maximal Hsp70 expression was detected 4 h after preconditioning, but a significant number of Hsp70-positive cells was still present 72 h after preconditioning. Increased c-Fos expression in the neurons of baroreflex centers was detectable only 4 h after preconditioning. The mean values of cardiovagal baroreflex sensitivity did not show significant differences during the 72-hour follow-up period after thermal preconditioning. Similarly, cardiovascular variability measures of the autonomic nervous system activity were also not significantly affected by thermal preconditioning. During passive hyperthermia, thermal preconditioning had no statistically significant effect on thermoregulation and the onset of arterial pressure decline. Our data suggest that thermal preconditioning induces a glial type of Hsp70 expression in the baroreflex centers of the medulla oblongata. However, this response was not associated with cardiovagal baroreflex sensitization and protection against hemodynamic instability during passive hyperthermia.


Mutated PET117 causes complex IV deficiency and is associated with neurodevelopmental regression and medulla oblongata lesions.

  • G H Renkema‎ et al.
  • Human genetics‎
  • 2017‎

The genetic basis of the many progressive, multi systemic, mitochondrial diseases that cause a lack of cellular ATP production is heterogeneous, with defects found both in the mitochondrial genome as well as in the nuclear genome. Many different mutations have been found in the genes encoding subunits of the enzyme complexes of the oxidative phosphorylation system. In addition, mutations in genes encoding proteins involved in the assembly of these complexes are known to cause mitochondrial disorders. Here we describe two sisters with a mitochondrial disease characterized by lesions in the medulla oblongata, as demonstrated by brain magnetic resonance imaging, and an isolated complex IV deficiency and reduced levels of individual complex IV subunits. Whole exome sequencing revealed a homozygous nonsense mutation resulting in a premature stop codon in the gene encoding Pet117, a small protein that has previously been predicted to be a complex IV assembly factor. PET117 has not been identified as a mitochondrial disease gene before. Lentiviral complementation of patient fibroblasts with wild-type PET117 restored the complex IV deficiency, proving that the gene defect is responsible for the complex IV deficiency in the patients, and indicating a pivotal role of this protein in the proper functioning of complex IV. Although previous studies had suggested a possible role of this protein in the insertion of copper into complex IV, studies in patient fibroblasts could not confirm this. This case presentation thus implicates mutations in PET117 as a novel cause of mitochondrial disease.


Distribution of TRPM8-expressing trigeminal nerve fibers in the pons and medulla oblongata of the mouse brain.

  • Erkin Kurganov‎ et al.
  • Journal of chemical neuroanatomy‎
  • 2022‎

Transient receptor potential melastatin 8 (TRPM8), a cold-mediated ion channel, is well known to be expressed in primary sensory neurons; however, limited information is currently available on the distribution of TRPM8-expressing trigeminal nerve fibers in the brainstem. The present study showed the distribution of TRPM8-expressing fibers in the pons and medulla oblongata of the TRPM8 KO mice engineered by knocking in EGFP at the frame of the start codon of TRPM8. In addition, TRPM8-expressing fibers were also observed in the brachium pontis, middle cerebellar peduncle, the sensory root of the trigeminal nerve, and spinal trigeminal tract (sp5). Furthermore, TRPM8-expressing nerve fibers surrounded the somata of HuC/D-positive neurons in the sp5. Moreover, the distribution of TRPM8-expressing fibers from rostral to caudal was visualized in sagittal sections of the mouse brain. The present results also revealed that a high number of TRPM8-expressing fibers colocalized with CTB-labeled fibers in the sp5 following an injection of CTB into the whisker compared to mice's eye and ear. These results show the distribution pathway of TRPM8-expressing fibers in the pons and medulla oblongata and possible involvement in peripheral signaling from the trigeminal nerve.


Expression of c-fos protein in the medulla oblongata of conscious rabbits in response to baroreceptor activation.

  • Y W Li‎ et al.
  • Neuroscience letters‎
  • 1992‎

Neuronal expression of c-fos protein (Fos) in the medulla in response to baroreceptor activation was studied in conscious rabbits. Raising arterial pressure resulted in a marked increase, compared to control animals, in Fos immunoreactivity in the nucleus tractus solitarius, area postrema and ventrolateral medulla (VLM). Fos-immunoreactive neurons in the VLM extended from the level just rostral to the obex to 3 mm more caudal. Only a small proportion of these neurons showed tyrosine hydroxylase immunoreactivity. The results indicate that baroreceptor activation induces Fos expression in circumscribed medullary regions which have previously been shown to receive excitatory baroreceptor inputs.


VEGF- and PDGF-dependent proliferation of oligodendrocyte progenitor cells in the medulla oblongata after LPC-induced focal demyelination.

  • Daishi Hiratsuka‎ et al.
  • Journal of neuroimmunology‎
  • 2019‎

The myelin sheath is critical in maintaining normal functions of the adult central nervous system (CNS) and the loss of the myelin sheath results in various neurological diseases. Although remyelination is the intrinsic repair system against demyelination that new myelin sheath is formed around axons in the adult CNS, little has been reported on remyelination system in the medulla oblongata. In the present study, we showed that the proliferation of oligodendrocyte progenitor cells (OPCs) was increased in the medulla oblongata by lysophosphatidylcholine (LPC)-induced focal demyelination, but that of NSCs was not changed. The inhibition of vascular endothelial growth factor (VEGF)- and platelet-derived growth factor (PDGF)-signaling suppressed the proliferation of OPCs by LPC-induced demyelination. Thus, the present study indicates that resident OPCs contribute to focal remyelination and VEGF and PDGF signaling is required for the proliferation of OPCs in the medulla oblongata of the adult mouse.


Hydrogen sulfide protects neonatal rat medulla oblongata against prenatal cigarette smoke exposure via anti-oxidative and anti-inflammatory effects.

  • Xiang Yan‎ et al.
  • Environmental toxicology and pharmacology‎
  • 2018‎

We previously demonstrated that hydrogen sulfide (H2S) protected neonatal rat medulla oblongata from prenatal cigarette smoke exposure (CSE) via anti-apoptotic effect. The present work further investigated the involvement of anti-oxidative and anti-inflammatory effects of H2S in the protection. Pregnant Sprague-Dawley rats were randomly divided into NaCl, CSE, CSE + NaHS (a donor of H2S) and NaHS groups. All the tests were performed with corresponding neonatal rats. Nissl staining revealed that NaHS treatment ameliorated neuronal chromatolysis in the hypoglossal nucleus and nucleus ambiguus resulted from prenatal CSE. Moreover, NaHS eliminated decrease of glutathione level, increase of malondialdehyde content and inhibition of superoxide dismutase activity within neonatal rat medulla oblongata caused by prenatal CSE. NaHS also relieved the up-regulation of tumor necrosis factor-α, interleukin-1β and interleukin-6 in the medulla oblongata of the neonatal CSE rats. These results suggest that H2S can alleviate prenatal CSE-induced injuries of neonatal rat medulla oblongata through anti-oxidative and anti-inflammatory effects.


Histopathological, Demographic, and Clinical Signatures of Medulla Oblongata Germ Cell Tumors: A Case Report With the Review of Literature.

  • Daisuke Sato‎ et al.
  • Cureus‎
  • 2024‎

The medulla oblongata is one of the rarest sites of occurrence for germ cell tumors (GCTs) of the central nervous system. As there is scant data regarding epidemiology, clinical presentations, optimal intervention, and long-term prognosis, we aimed to delineate the features of this rare entity by presenting our representative case and performing a quantitative review of the literature. A 24-year-old woman presented to our department with vertigo and swallowing difficulties. Magnetic resonance imaging revealed a homogenously enhanced exophytic lesion arising from the medulla oblongata and extending to the fourth ventricle. Surgical resection was performed and a histological diagnosis of pure germinoma was made. The patient underwent chemotherapy and whole-ventricular irradiation. No recurrence has been experienced for 4 months after the surgery. According to the literature, the prognosis of GCTs at the medulla oblongata seems no worse than those at typical sites. Striking features including occurrence at an older age, female preponderance, and a predominance of germinoma were noteworthy. The pattern of local recurrence suggests extensive radiation coverage is not a prerequisite. Special attention is needed for cardiac and respiratory functions as the main factors eliciting mortality.


Effects of leptin on proliferation of astrocyte- and tanycyte-like neural stem cells in the adult mouse medulla oblongata.

  • Yuri Nambu‎ et al.
  • Neuroscience research‎
  • 2021‎

Astrocyte- and tanycyte-like neural stem cells (NSCs) were recently detected in the area postrema (AP) and central canal (CC) of the adult medulla oblongata, respectively. The present study aimed to examine dynamical behaviors of the astrocyte- and tanycyte-like NSCs of the mouse medulla oblongata to leptin. The neurosphere assay identified astrocytes in the AP and tanycytes in the CC as NSCs based on their self-renewing neurospherogenic potential. Both NSCs in neurosphere cultures were multipotent cells that generate astrocytes, oligodendrocytes, and neurons. Astrocyte-like NSCs actively proliferated and tanycyte-like NSCs were quiescent under physiologically-relevant in vivo conditions. Chronic leptin treatment promoted proliferation of astrocyte-like NSCs in the AP both in vitro and in vivo. Leptin receptors were expressed in astrocyte-like, but not tanycyte-like NSCs. Food deprivation significantly diminished proliferation of astrocyte-like NSCs. Therefore, the present study indicates that proliferation of astrocyte-like, but not tanycyte-like NSCs is regulated by nutritional conditions.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: