Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 49 papers

Separate cortical and hippocampal cell populations target the rat nucleus reuniens and mammillary bodies.

  • Mathias L Mathiasen‎ et al.
  • The European journal of neuroscience‎
  • 2019‎

Nucleus reuniens receives dense projections from both the hippocampus and the frontal cortices. Reflecting these connections, this nucleus is thought to enable executive functions, including those involving spatial learning. The mammillary bodies, which also support spatial learning, again receive dense hippocampal inputs, as well as lighter projections from medial frontal areas. The present study, therefore, compared the sources of these inputs to nucleus reuniens and the mammillary bodies. Retrograde tracer injections in rats showed how these two diencephalic sites receive projections from separate cell populations, often from adjacent layers in the same cortical areas. In the subiculum, which projects strongly to both sites, the mammillary body inputs originate from a homogenous pyramidal cell population in more superficial levels, while the cells that target nucleus reuniens most often originate from cells positioned at a deeper level. In these deeper levels, a more morphologically diverse set of subiculum cells contributes to the thalamic projection, especially at septal levels. While both diencephalic sites also receive medial frontal inputs, those to nucleus reuniens are especially dense. The densest inputs to the mammillary bodies appear to arise from the dorsal peduncular cortex, where the cells are mostly separate from deeper neurons that project to nucleus reuniens. Again, in those other cortical regions that innervate both nucleus reuniens and the mammillary bodies, there was no evidence of collateral projections. The findings support the notion that these diencephalic nuclei represent components of distinct, but complementary, systems that support different aspects of cognition.


Collateral Projections Innervate the Mammillary Bodies and Retrosplenial Cortex: A New Category of Hippocampal Cells.

  • Lisa Kinnavane‎ et al.
  • eNeuro‎
  • 2018‎

To understand the hippocampus, it is necessary to understand the subiculum. Unlike other hippocampal subfields, the subiculum projects to almost all distal hippocampal targets, highlighting its critical importance for external networks. The present studies, in male rats and mice, reveal a new category of dorsal subiculum neurons that innervate both the mammillary bodies (MBs) and the retrosplenial cortex (RSP). These bifurcating neurons comprise almost half of the hippocampal cells that project to RSP. The termination of these numerous collateral projections was visualized within the medial mammillary nucleus and the granular RSP (area 29). These collateral projections included subiculum efferents that cross to the contralateral MBs. Within the granular RSP, the collateral projections form a particularly dense plexus in deep Layer II and Layer III. This retrosplenial termination site colocalized with markers for VGluT2 and neurotensin. While efferents from the hippocampal CA fields standardly collateralize, subiculum projections often have only one target site. Consequently, the many collateral projections involving the RSP and the MBs present a relatively unusual pattern for the subiculum, which presumably relates to how both targets have complementary roles in spatial processing. Furthermore, along with the anterior thalamic nuclei, the MBs and RSP are key members of a memory circuit, which is usually described as both starting and finishing in the hippocampus. The present findings reveal how the hippocampus simultaneously engages different parts of this circuit, so forcing an important revision of this network.


Trajectory of hippocampal fibres to the contralateral anterior thalamus and mammillary bodies in rats, mice, and macaque monkeys.

  • Mathias L Mathiasen‎ et al.
  • Brain and neuroscience advances‎
  • 2019‎

The routes by which the hippocampal formation projects bilaterally to the anterior thalamic nuclei and mammillary bodies were examined in the mouse, rat, and macaque monkey. Despite using different methods and different species, the principal pattern remained the same. For both target areas, the contralateral hippocampal (subiculum) projections arose via efferents in the postcommissural fornix ipsilateral to the tracer injection, which then crossed hemispheres both in or just prior to reaching the target site within the thalamus or hypothalamus. Precommissural fornix fibres could not be followed to the target areas. There was scant evidence that the ventral hippocampal commissure or decussating fornix fibres contribute to these crossed subiculum projections. Meanwhile, a small minority of postsubiculum projections in the mouse were seen to cross in the descending fornix at the level of the caudal septum to join the contralateral postcommissural fornix before reaching the anterior thalamus and lateral mammillary nucleus on that side. Although the rodent anterior thalamic nuclei also receive nonfornical inputs from the subiculum and postsubiculum via the ipsilateral internal capsule, few, if any, of these projections cross the midline. It was also apparent that nuclei within the head direction system (anterodorsal thalamic nucleus, laterodorsal thalamic nucleus, and lateral mammillary nucleus) receive far fewer crossed hippocampal inputs than the other anterior thalamic or mammillary nuclei. The present findings increase our understanding of the fornix and its component pathways while also informing disconnection analyses involving the hippocampal formation and diencephalon.


The head direction cell system and behavior: The effects of lesions to the lateral mammillary bodies on spatial memory in a novel landmark task and in the water maze.

  • Bruce Harland‎ et al.
  • Behavioral neuroscience‎
  • 2015‎

The head direction system is composed of neurons found in a number of connected brain areas that fire in a sharply tuned, directional way. The function of this system, however, has not been fully established. To assess this, we devised a novel spatial landmark task, comparable to the paradigms in which stimulus control has been assessed for spatially tuned neurons. The task took place in a large cylinder and required rats to dig in a specific sand cup, from among 16 alternatives, to obtain a food reward. The reinforced cup was in a fixed location relative to a salient landmark, and probe sessions confirmed that the landmark exerted stimulus control over the rats' cup choices. To assess the contribution of the head direction cell system to this memory task, half of the animals received ibotenic acid infusions into the lateral mammillary nuclei (LMN), an essential node in the head direction network, while the other received sham lesions. No differences were observed in performance of this task between the 2 groups. Animals with LMN lesions were impaired, however, in reversal learning on a water maze task. These results suggest that the LMN, and potentially the head direction cell system, are not essential for the use of visual landmarks to guide spatial behavior.


Projections from Gudden's tegmental nuclei to the mammillary body region in the cynomolgus monkey (Macaca fascicularis).

  • Richard C Saunders‎ et al.
  • The Journal of comparative neurology‎
  • 2012‎

Gudden's tegmental nuclei provide major inputs to the rodent mammillary bodies, where they are thought to be important for learning and navigation. Comparable projections have yet to be described in the primate brain, where part of the problem has been in effectively delineating these nuclei. Immunohistochemical staining of tissue from a series of macaque monkeys (Macaca mulatta) showed that cells in the region of both the ventral and dorsal tegmental nuclei selectively stain for parvalbumin, thus helping to reveal these nuclei. These same tegmental nuclei were not selectively revealed when tissue was stained for SMI32, acetylcholinesterase, calbindin, or calretinin. In a parallel study, horseradish peroxidase was injected into the mammillary bodies of five cynomolgus monkeys (Macaca fascicularis). Retrogradely labeled neurons were consistently found in the three subdivisions of the ventral tegmental nucleus of Gudden, which are located immediately below, within, and above the medial longitudinal fasciculus. Further projections to the mammillary body region arose from cells in the anterior tegmental nucleus, which appears to be a rostral continuation of the infrafascicular part of the ventral tegmental nucleus. In the dorsal tegmental nucleus of Gudden, labeled cells were most evident when the tracer injection was more laterally placed in the mammillary bodies, consistent with a projection to the lateral mammillary nucleus. The present study not only demonstrates that the primate mammillary bodies receive parallel inputs from the dorsal and ventral tegmental nuclei of Gudden, but also helps to confirm the extent of these poorly distinguished nuclei in the monkey brain.


Mammillary body atrophy and other MRI correlates of school-age outcome following neonatal hypoxic-ischemic encephalopathy.

  • Kim V Annink‎ et al.
  • Scientific reports‎
  • 2021‎

The mammillary bodies (MB) and hippocampi are important for memory function and are often affected following neonatal hypoxic ischemic encephalopathy (HIE). The aim of this study was to assess neurodevelopmental outcome in 10-year-old children with HIE with and without therapeutic hypothermia. Additional aims were to assess the associations between MB atrophy, brain volumes (including the hippocampi), white matter microstructure and neurodevelopmental outcome at school-age. Ten-year-old children with HIE were included, who were treated with therapeutic hypothermia (n = 22) or would have qualified but were born before this became standard of care (n = 28). Children completed a neuropsychological and motor assessment and MRI. Mammillary bodies were scored as normal or atrophic at 10 years. Brain volumes were segmented on childhood MRI and DTI scans were analysed using tract-based spatial statistics. Children with HIE suffered from neurocognitive and memory problems at school-age, irrespective of hypothermia. Hippocampal volumes and MB atrophy were associated with total and performance IQ, processing speed and episodic memory in both groups. Normal MB and larger hippocampi were positively associated with global fractional anisotropy. In conclusion, injury to the MB and hippocampi was associated with neurocognition and memory at school-age in HIE and might be an early biomarker for neurocognitive and memory problems.


Reduced brain mammillary body volumes and memory deficits in adolescents who have undergone the Fontan procedure.

  • Cristina Cabrera-Mino‎ et al.
  • Pediatric research‎
  • 2020‎

Adolescents with single ventricle heart disease (SVHD) who have undergone the Fontan procedure show cognitive/memory deficits. Mammillary bodies are key brain sites that regulate memory; however, their integrity in SVHD is unclear. We evaluated mammillary body (MB) volumes and their associations with cognitive/memory scores in SVHD and controls.


Reduced mammillary body volume in individuals with a schizophrenia diagnosis: an analysis of the COBRE data set.

  • Michal M Milczarek‎ et al.
  • Schizophrenia (Heidelberg, Germany)‎
  • 2023‎

While the frontal cortices and medial temporal lobe are well associated with schizophrenia, the involvement of wider limbic areas is less clear. The mammillary bodies are important for both complex memory formation and anxiety and are implicated in several neurological disorders that present with memory impairments. However, little is known about their role in schizophrenia. Post-mortem studies have reported a loss of neurons in the mammillary bodies but there are also reports of increased mammillary body volume. The findings from in vivo MRI studies have also been mixed, but studies have typically only involved small sample sizes. To address this, we acquired mammillary body volumes from the open-source COBRE dataset, where we were able to manually measure the mammillary bodies in 72 individuals with a schizophrenia diagnosis and 74 controls. Participant age ranged from 18 to 65. We found the mammillary bodies to be smaller in the patient group, across both hemispheres, after accounting for the effects of total brain volume and gender. Hippocampal volumes, but not subiculum or total grey matter volumes, were also significantly lower in patients. Given the importance of the mammillary bodies for both memory and anxiety, this atrophy could contribute to the symptomology in schizophrenia.


Laminar Localization and Projection-Specific Properties of Presubicular Neurons Targeting the Lateral Mammillary Nucleus, Thalamus, or Medial Entorhinal Cortex.

  • Li-Wen Huang‎ et al.
  • eNeuro‎
  • 2017‎

The presubiculum (PrS) is part of an interconnected network of distributed brain regions where individual neurons signal the animals heading direction. PrS sends axons to medial entorhinal cortex (MEC), it is reciprocally connected with anterior thalamic nuclei (ATNs), and it sends feedback projections to the lateral mammillary nucleus (LMN), involved in generating the head direction signal. The intrinsic properties of projecting neurons will influence the pathway-specific transmission of activity. Here, we used projection-specific labeling of presubicular neurons to identify MEC-, LMN-, and ATN-projecting neurons in mice. MEC-projecting neurons located in superficial layers II/III were mostly regular spiking pyramidal neurons, and we also identified a Martinotti-type GABAergic neuron. The cell bodies of LMN-projecting neurons were located in a well-delimited area in the middle portion of the PrS, which corresponds to layer IV. The physiology of LMN projecting, pyramidal neurons stood out with a tendency to fire in bursts of action potentials (APs) with rapid onset. These properties may be uniquely adapted to reliably transmit visual landmark information with short latency to upstream LMN. Neurons projecting to ATN were located in layers V/VI, and they were mostly regular spiking pyramidal neurons. Unsupervised cluster analysis of intrinsic properties suggested distinct physiological features for the different categories of projection neurons, with some similarities between MEC- and ATN-projecting neurons. Projection-specific subpopulations may serve separate functions in the PrS and may be engaged differently in transmitting head direction related information.


Dismantling the Papez circuit for memory in rats.

  • Seralynne D Vann‎
  • eLife‎
  • 2013‎

Over the last 50 years, anatomical models of memory have repeatedly highlighted the hippocampal inputs to the mammillary bodies via the postcommissural fornix. Such models downplay other projections to the mammillary bodies, leaving them largely ignored. The present study challenged this dominant view by removing, in rats, the two principal inputs reaching the mammillary bodies: the postcommissural fornix from the hippocampal formation and Gudden's ventral tegmental nucleus. The principal mammillary body output pathway, the mammillothalamic tract, was disconnected in a third group. Only mammillothalamic tract and Gudden's ventral tegmental nucleus lesions impaired behavioral tests of spatial working memory and, in particular, disrupted the use of extramaze spatial landmarks. The same lesions also produced widespread reductions in immediate-early gene (c-fos) expression in a network of memory-related regions, not seen after postcommissural fornix lesions. These findings are inconsistent with previous models of mammillary body function (those dominated by hippocampal inputs) and herald a new understanding of why specific diencephalic structures are vital for memory. DOI:http://dx.doi.org/10.7554/eLife.00736.001.


Longitudinal hippocampal and extra-hippocampal microstructural and macrostructural changes following temporal lobe epilepsy surgery.

  • Cameron A Elliott‎ et al.
  • Epilepsy research‎
  • 2018‎

1) Characterize the evolution of microstructural changes in the contralateral, non-operated hippocampus-using longitudinal diffusion tensor imaging (DTI)-following surgery for temporal lobe epilepsy (TLE). 2) Characterize the downstream extra-hippocampal volumetric changes of the fornix and mammillary bodies after TLE surgery. 3) Examine the relationship between these measures and seizure/cognitive outcome.


Glutamate/aspartate and leu-enkephalin immunoreactivity in mammillothalamic projection neurons of the rat.

  • A Gonzalo-Ruiz‎ et al.
  • Brain research bulletin‎
  • 1998‎

We have used retrograde transport and immunohistochemistry to study glutamate, aspartate, and enkephalin-like immunoreactive pathways from the mammillary nuclei to the anterior nuclei of the thalamus. Injections of wheat germ agglutinin conjugated to horseradish peroxidase into the anterodorsal thalamic nucleus resulted in retrogradely labelled cell bodies in the lateral mammillary nucleus, bilaterally, whereas injections into the anteroventral thalamic nucleus resulted in retrogradely labelled neurons in the ipsilateral medial mammillary nucleus. In three parallel series of sections immunoreacted for glutamate, aspartate, and enkephalin, respectively, 50-60% of the retrogradely labelled cell bodies were also immunolabelled for glutamate, 50-60% for aspartate, and 40-50% for enkephalin. The enkephalin-immunoreactive neurons may coincide with or constitute a separate population from the glutamate/aspartate-containing neurons. These results are compatible with the possibility that mammillothalamic projection neurons may use glutamate and/or aspartate and enkephalin as neurotransmitters.


A deep learning toolbox for automatic segmentation of subcortical limbic structures from MRI images.

  • Douglas N Greve‎ et al.
  • NeuroImage‎
  • 2021‎

A tool was developed to automatically segment several subcortical limbic structures (nucleus accumbens, basal forebrain, septal nuclei, hypothalamus without mammillary bodies, the mammillary bodies, and fornix) using only a T1-weighted MRI as input. This tool fills an unmet need as there are few, if any, publicly available tools to segment these clinically relevant structures. A U-Net with spatial, intensity, contrast, and noise augmentation was trained using 39 manually labeled MRI data sets. In general, the Dice scores, true positive rates, false discovery rates, and manual-automatic volume correlation were very good relative to comparable tools for other structures. A diverse data set of 698 subjects were segmented using the tool; evaluation of the resulting labelings showed that the tool failed in less than 1% of cases. Test-retest reliability of the tool was excellent. The automatically segmented volume of all structures except mammillary bodies showed effectiveness at detecting either clinical AD effects, age effects, or both. This tool will be publicly released with FreeSurfer (surfer.nmr.mgh.harvard.edu/fswiki/ScLimbic). Together with the other cortical and subcortical limbic segmentations, this tool will allow FreeSurfer to provide a comprehensive view of the limbic system in an automated way.


Hippocampal and diencephalic pathology in developmental amnesia.

  • Anna M Dzieciol‎ et al.
  • Cortex; a journal devoted to the study of the nervous system and behavior‎
  • 2017‎

Developmental amnesia (DA) is a selective episodic memory disorder associated with hypoxia-induced bilateral hippocampal atrophy of early onset. Despite the systemic impact of hypoxia-ischaemia, the resulting brain damage was previously reported to be largely limited to the hippocampus. However, the thalamus and the mammillary bodies are parts of the hippocampal-diencephalic network and are therefore also at risk of injury following hypoxic-ischaemic events. Here, we report a neuroimaging investigation of diencephalic damage in a group of 18 patients with DA (age range 11-35 years), and an equal number of controls. Importantly, we uncovered a marked degree of atrophy in the mammillary bodies in two thirds of our patients. In addition, as a group, patients had mildly reduced thalamic volumes. The size of the anterior-mid thalamic (AMT) segment was correlated with patients' visual memory performance. Thus, in addition to the hippocampus, the diencephalic structures also appear to play a role in the patients' memory deficit.


Mammillothalamic Disconnection Alters Hippocampocortical Oscillatory Activity and Microstructure: Implications for Diencephalic Amnesia.

  • Christopher M Dillingham‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2019‎

Diencephalic amnesia can be as debilitating as the more commonly known temporal lobe amnesia, yet the precise contribution of diencephalic structures to memory processes remains elusive. Across four cohorts of male rats, we used discrete lesions of the mammillothalamic tract to model aspects of diencephalic amnesia and assessed the impact of these lesions on multiple measures of activity and plasticity within the hippocampus and retrosplenial cortex. Lesions of the mammillothalamic tract had widespread indirect effects on hippocampocortical oscillatory activity within both theta and gamma bands. Both within-region oscillatory activity and cross-regional synchrony were altered. The network changes were state-dependent, displaying different profiles during locomotion and paradoxical sleep. Consistent with the associations between oscillatory activity and plasticity, complementary analyses using several convergent approaches revealed microstructural changes, which appeared to reflect a suppression of learning-induced plasticity in lesioned animals. Together, these combined findings suggest a mechanism by which damage to the medial diencephalon can impact upon learning and memory processes, highlighting an important role for the mammillary bodies in the coordination of hippocampocortical activity.SIGNIFICANCE STATEMENT Information flow within the Papez circuit is critical to memory. Damage to ascending mammillothalamic projections has consistently been linked to amnesia in humans and spatial memory deficits in animal models. Here we report on the changes in hippocampocortical oscillatory dynamics that result from chronic lesions of the mammillothalamic tract and demonstrate, for the first time, that the mammillary bodies, independently of the supramammillary region, contribute to frequency modulation of hippocampocortical theta oscillations. Consistent with the associations between oscillatory activity and plasticity, the lesions also result in a suppression of learning-induced plasticity. Together, these data support new functional models whereby mammillary bodies are important for coordinating hippocampocortical activity rather than simply being a relay of hippocampal information as previously assumed.


Diffusion tensor tractography of the mammillothalamic tract in the human brain using a high spatial resolution DTI technique.

  • Arash Kamali‎ et al.
  • Scientific reports‎
  • 2018‎

The mammillary bodies as part of the hypothalamic nuclei are in the central limbic circuitry of the human brain. The mammillary bodies are shown to be directly or indirectly connected to the amygdala, hippocampus, and thalami as the major gray matter structures of the human limbic system. Although it is not primarily considered as part of the human limbic system, the thalamus is shown to be involved in many limbic functions of the human brain. The major direct connection of the thalami with the hypothalamic nuclei is known to be through the mammillothalamic tract. Given the crucial role of the mammillothalamic tracts in memory functions, diffusion tensor imaging may be helpful in better visualizing the surgical anatomy of this pathway noninvasively. This study aimed to investigate the utility of high spatial resolution diffusion tensor tractography for mapping the trajectory of the mammillothalamic tract in the human brain. Fifteen healthy adults were studied after obtaining written informed consent. We used high spatial resolution diffusion tensor imaging data at 3.0 T. We delineated, for the first time, the detailed trajectory of the mammillothalamic tract of the human brain using deterministic diffusion tensor tractography.


Altered functional resting-state hypothalamic connectivity and abnormal pituitary morphology in children with Prader-Willi syndrome.

  • Akvile Lukoshe‎ et al.
  • Journal of neurodevelopmental disorders‎
  • 2017‎

Prader-Willi syndrome (PWS) is a complex neurodevelopmental disorder, characterized by endocrine problems and hyperphagia, indicating hypothalamic-pituitary dysfunction. However, few studies have explored the underlying neurobiology of the hypothalamus and its functional connectivity with other brain regions. Thus, the aim of this study was to examine the anatomical differences of the hypothalamus, mammillary bodies, and pituitary gland as well as resting state functional connectivity of the hypothalamus in children with PWS.


Mapping metabolic brain activity in three models of hepatic encephalopathy.

  • Natalia Arias‎ et al.
  • International journal of hypertension‎
  • 2013‎

Cirrhosis is a common disease in Western countries. Liver failure, hyperammonemia, and portal hypertension are the main factors that contribute to human cirrhosis that frequently leads to a neuropsychiatric disorder known as hepatic encephalopathy (HE). In this study, we examined the differential contribution of these leading factors to the oxidative metabolism of diverse brain limbic system regions frequently involved in memory process by histochemical labelling of cytochrome oxidase (COx). We have analyzed cortical structures such as the infralimbic and prelimbic cotices, subcortical structures such as hippocampus and ventral striatum, at thalamic level like the anterodorsal, anteroventral, and mediodorsal thalamus, and, finally, the hypothalamus, where the mammillary nuclei (medial and lateral) were measured. The severest alteration is found in the model that mimics intoxication by ammonia, followed by the thioacetamide-treated group and the portal hypertension group. No changes were found at the mammillary bodies for any of the experimental groups.


Transcriptional vulnerability of brain regions in Alzheimer's disease and dementia.

  • Vahram Haroutunian‎ et al.
  • Neurobiology of aging‎
  • 2009‎

This study determined (a) the association between stages of Alzheimer's disease (AD) and overall gene expression change, and (b) brain regions of greatest vulnerability to transcriptional change as the disease progressed. Fifteen cerebrocortical sites and the hippocampus were examined in persons with either no cognitive impairment or neuropathology, or with only AD-associated lesions. Cases were stratified into groups of 7-19 based on the degree of cognitive impairment (clinical dementia rating scale, CDR); neurofibrillary tangle distribution and severity (Braak staging) or density of cerebrocortical neuritic plaque (NP; grouping by NP density). Transcriptional change was assessed by Affymetrix U133 mRNA microarray analysis. The results suggested that (a) gene expression changes in the temporal and prefrontal cortices are more closely related to disease severity than other regions examined; (b) more genes are down-regulated at any given disease severity stage than up-regulated; (c) the degree of gene expression change in a given regions depends on the disease severity classification scheme used; and (d) the classification of cases by CDR provides a more orderly gradient of gene expression change in most brain regions than Braak staging or NP grouping.


Environmental Enrichment Elicits a Transient Rise of Bioactive C-Type Natriuretic Peptide in Young but Not Aged Rats.

  • Susan A Rapley‎ et al.
  • Frontiers in behavioral neuroscience‎
  • 2018‎

Beneficial molecular and neuroplastic changes have been demonstrated in response to environmental enrichment (EE) in laboratory animals across the lifespan. Here, we investigated whether these effects extend to C-type Natriuretic Peptide (CNP), a widely expressed neuropeptide with putative involvement in neuroprotection, neuroplasticity, anxiety, and learning and memory. We determined the CNP response in 36 young (8-9 months) and 36 aged (22-23 months) male PVGc hooded rats that were rehoused with new cage mates in either standard laboratory cages or EE for periods of 14 or 28 days. Tissues were rapidly excised from four brain regions associated with memory formation (dorsal hippocampus, retrosplenial cortex, medial prefrontal cortex, and mammillary bodies) plus the occipital cortex and hypothalamus, and immediately frozen. Radioimmunoassay was used to measure bioactive CNP and the amino-terminal fragment of proCNP, NTproCNP. Because CNP but not NTproCNP is rapidly degraded at source, NTproCNP reflects CNP production whereas the ratio NTproCNP:CNP is a biomarker of CNP's local degradation rate. EE increased CNP at 14 days in all brain regions in young, but not old rats; this effect in young rats was lost at 28 days in all regions of interest. NTproCNP:CNP ratio, but not NTproCNP, was reduced in all regions by EE at 14 days in young rats, but not in old rats, which suggests a period of reduced degradation or receptor mediated clearance, rather than increased production of CNP in these young EE rats. Aged rats tended to show reduced NTproCNP:CNP ratios but this did not occur in dorsal hippocampus or mammillary bodies. This is the first study demonstrating modulation of CNP protein concentrations, and the effect of age, in response to environmental stimulation. Furthermore, it is the first to show that changes in degradation rate in vivo may be an important component in determining CNP bioactivity in neural tissues.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: