Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 4,905 papers

Breast Tissue Metabolism by Magnetic Resonance Spectroscopy.

  • Naranamangalam R Jagannathan‎ et al.
  • Metabolites‎
  • 2017‎

Metabolic alterations are known to occur with oncogenesis and tumor progression. During malignant transformation, the metabolism of cells and tissues is altered. Cancer metabolism can be studied using advanced technologies that detect both metabolites and metabolic activities. Identification, characterization, and quantification of metabolites (metabolomics) are important for metabolic analysis and are usually done by nuclear magnetic resonance (NMR) or by mass spectrometry. In contrast to the magnetic resonance imaging that is used to monitor the tumor morphology during progression of the disease and during therapy, in vivo NMR spectroscopy is used to study and monitor tumor metabolism of cells/tissues by detection of various biochemicals or metabolites involved in various metabolic pathways. Several in vivo, in vitro and ex vivo NMR studies using ¹H and 31P magnetic resonance spectroscopy (MRS) nuclei have documented increased levels of total choline containing compounds, phosphomonoesters and phosphodiesters in human breast cancer tissues, which is indicative of altered choline and phospholipid metabolism. These levels get reversed with successful treatment. Another method that increases the sensitivity of substrate detection by using nuclear spin hyperpolarization of 13C-lableled substrates by dynamic nuclear polarization has revived a great interest in the study of cancer metabolism. This review discusses breast tissue metabolism studied by various NMR/MRS methods.


Proton magnetic resonance spectroscopy in 22q11 deletion syndrome.

  • Fabiana da Silva Alves‎ et al.
  • PloS one‎
  • 2011‎

People with velo-cardio-facial syndrome or 22q11 deletion syndrome (22q11DS) have behavioral, cognitive and psychiatric problems. Approximately 30% of affected individuals develop schizophrenia-like psychosis. Glutamate dysfunction is thought to play a crucial role in schizophrenia. However, it is unknown if and how the glutamate system is altered in 22q11DS. People with 22q11DS are vulnerable for haploinsufficiency of PRODH, a gene that codes for an enzyme converting proline into glutamate. Therefore, it can be hypothesized that glutamatergic abnormalities may be present in 22q11DS.


1H Magnetic Resonance Spectroscopy of live human sperm.

  • S Reynolds‎ et al.
  • Molecular human reproduction‎
  • 2017‎

Can 1H Magnetic Resonance Spectroscopy (MRS) be used to obtain information about the molecules and metabolites in live human spermatozoa?


Proton magnetic resonance spectroscopy of patients with parkinsonism.

  • K Abe‎ et al.
  • Brain research bulletin‎
  • 2000‎

We studied cerebral metabolism in 82 patients with nonfamilial parkinsonism, including Parkinson's disease (PD; n = 23), progressive supranuclear palsy (PSP; n = 12), corticobasal degeneration (CBD; n = 19), multiple systemic atrophy (MSA; n = 18) and vascular parkinsonism (VP; n = 10) by using proton magnetic resonance spectroscopy ((1)H-MRS), which allowed noninvasive measurement of signal intensities from N-acetylasparate (NAA), choline-containing compounds (CHO) and creatine plus phosphocreatine (CRE). As compared to normal controls, patients with PSP, CBD, MSA and VP, but not PD, had significant reduction of the NAA/CRE ratio in the frontal cortex, whereas patients with PSP, CBD, MSA and PD, but not VP, had significant reduction of the NAA/CRE ratio in the putamen. Patients with CBD had significant reduction of the NAA/CRE ratio in the frontal cortex and putamen as compared to patients with PD, MSA and VP. Patients with PSP showed a significant reduction of the NAA/CRE ratio in the putamen as compared with patients with PD and MSA. Patients with CBD showed clear asymmetry in the putamen as compared to controls and other patients. The reduction of the NAA/CRE ratio in the putamen correlated well with the severity of parkinsonism. (1)H-MRS may be useful in monitoring patients with various types of parkinsonism.


In vivo mouse cardiac hyperpolarized magnetic resonance spectroscopy.

  • Michael S Dodd‎ et al.
  • Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance‎
  • 2013‎

Alterations in cardiac metabolism accompany many diseases of the heart. The advent of cardiac hyperpolarized magnetic resonance spectroscopy (MRS), via dynamic nuclear polarization (DNP), has enabled a greater understanding of the in vivo metabolic changes that occur as a consequence of myocardial infarction, hypertrophy and diabetes. However, all cardiac studies performed to date have focused on rats and larger animals, whereas more information could be gained through the study of transgenic mouse models of heart disease. Translation from the rat to the mouse is challenging, due in part to the reduced heart size (1/10(th)) and the increased heart rate (50%) in the mouse compared to the rat.


Imaging in Breast Cancer: Use of Magnetic Resonance Spectroscopy.

  • Muhammad Ahmad Bilal Ahmadani‎ et al.
  • Cureus‎
  • 2020‎

Magnetic resonance spectroscopy (MRS) is used nowadays with increased specificity to distinguish between malignant and benign breast lesions.  Objective: To determine the diagnostic accuracy of MRS in malignant breast lesions.  Methodology: Newly diagnosed patients (n=158) having breast lesions diagnosed on ultrasound and mammography were enrolled to conduct the present study at Bahawal Victoria Hospital, Bahawalpur, Pakistan for six months. Enrolled patients were informed and consent was taken. Every patient underwent proton MRS using a 1.5 Tesla MR system. Fast scans in various planes were obtained. Mean ± standard deviation (SD) was given for age, size of the lump, and duration of the disease whereas frequency and percentage were given for benign and malignant breast lesions by SPSS version 26. A significant p-value was ≤0.05.  Results: The mean age of patients was 41.27 ± 5.48 years. The diagnosis of malignant breast lesions in 80 (50.63%) patients was shown by MRS whereas histopathology showed malignancy in 83 (52.53%) cases.  Conclusion: MRS is an accurate diagnostic modality for malignant breast lesions.


In vivo assessment of cold adaptation in insect larvae by magnetic resonance imaging and magnetic resonance spectroscopy.

  • Daniel Mietchen‎ et al.
  • PloS one‎
  • 2008‎

Temperatures below the freezing point of water and the ensuing ice crystal formation pose serious challenges to cell structure and function. Consequently, species living in seasonally cold environments have evolved a multitude of strategies to reorganize their cellular architecture and metabolism, and the underlying mechanisms are crucial to our understanding of life. In multicellular organisms, and poikilotherm animals in particular, our knowledge about these processes is almost exclusively due to invasive studies, thereby limiting the range of conclusions that can be drawn about intact living systems.


In-vivo proton magnetic resonance spectroscopy in adnexal lesions.

  • Seong Whi Cho‎ et al.
  • Korean journal of radiology‎
  • 2002‎

To explore the in-vivo 1H- MR spectral features of adnexal lesions and to characterize the spectral patterns of various pathologic entities.


Curating Scientific Workflows for Biomolecular Nuclear Magnetic Resonance Spectroscopy.

  • Douglas Heintz‎ et al.
  • International journal of digital curation‎
  • 2018‎

This paper describes our recent and ongoing efforts for enhancing the curation of scientific workflows to improve reproducibility and reusability of biomolecular nuclear magnetic resonance (bioNMR) data. Our efforts have focused on both developing a workflow management system, called CONNJUR Workflow Builder (CWB), as well as refactoring our workflow data model to make use of the PREMIS model for digital preservation. This revised workflow management system will be available through the NMRbox cloud-computing platform for bioNMR. In addition, we are implementing a new file structure which bundles the original binary data files along with PREMIS XML records describing the provenance of the data. These are packaged together using a standardized file archive utility. In this manner, the provenance and data curation information is maintained together along with the scientific data. The benefits and limitations of these approaches as well as future directions are discussed.


Multi-channel magnetic resonance spectroscopy graphical user interface (McMRSGUI).

  • Travis Carrell‎ et al.
  • PloS one‎
  • 2024‎

This work introduces an open-sourced graphical user interface (GUI) software enabling the combination of multi-channel magnetic resonance spectroscopy data with different literature-based methods for the improvement of the quality and reliability of combined spectra. The multi-channel magnetic resonance spectroscopy graphical user interface (McMRSGUI) is a MATLAB-based spectroscopy processing GUI equipped to load multi-channel MRS data, pre-process, combine, and export combined data for evaluation with open-source quantification software (jMRUI). A literature-based, decision-tree process was incorporated into the combination type selection to serve as a guide to minimize spectral distortion in selecting between weighting methods. Multi-channel, simulated spectra were combined with the different combination techniques and evaluated for spectral distortion to validate the code. The incorporation of the combination methods into a single processing software enables multi-channel magnetic resonance spectroscopy (MRS) data to be combined and compared for improved spectral quality with little user knowledge of combination techniques. Through the spectral peak distortion simulation of the combination methods, combined signal-to-noise ratio (SNR) values from the literature were verified. The spectral peak distortion simulation provides a secondary tool for researchers to estimate the spectral SNR levels when spectral distortion could occur and use this knowledge to further guide the selection of their combination technique. The McMRSGUI provides a software toolkit for evaluating multi-channel MRS data and their combination. Simulations evaluating spectral distortion at different noise levels were performed for each combination method to validate the GUI and demonstrate a method for researchers to assess the combined SNR levels at which they could be introducing spectral distortion.


Brain biochemistry and personality: a magnetic resonance spectroscopy study.

  • Sephira G Ryman‎ et al.
  • PloS one‎
  • 2011‎

To investigate the biochemical correlates of normal personality we utilized proton magnetic resonance spectroscopy ((1)H-MRS). Our sample consisted of 60 subjects ranging in age from 18 to 32 (27 females). Personality was assessed with the NEO Five-Factor Inventory (NEO-FFI). We measured brain biochemistry within the precuneus, the cingulate cortex, and underlying white matter. We hypothesized that brain biochemistry within these regions would predict individual differences across major domains of personality functioning. Biochemical models were fit for all personality domains including Neuroticism, Extraversion, Openness, Agreeableness, and Conscientiousness. Our findings involved differing concentrations of Choline (Cho), Creatine (Cre), and N-acetylaspartate (NAA) in regions both within (i.e., posterior cingulate cortex) and white matter underlying (i.e., precuneus) the Default Mode Network (DMN). These results add to an emerging literature regarding personality neuroscience, and implicate biochemical integrity within the default mode network as constraining major personality domains within normal human subjects.


Probing human sperm metabolism using 13C-magnetic resonance spectroscopy.

  • S J Calvert‎ et al.
  • Molecular human reproduction‎
  • 2019‎

Can 13C-Magnetic Resonance Spectroscopy (MRS) of selected metabolites provide useful information about human sperm metabolism and how glycolysis or oxidative phosphorylation are used by different sperm populations?


Three-year quantitative magnetic resonance imaging and phosphorus magnetic resonance spectroscopy study in lower limb muscle in dysferlinopathy.

  • Harmen Reyngoudt‎ et al.
  • Journal of cachexia, sarcopenia and muscle‎
  • 2022‎

Natural history studies in neuromuscular disorders are vital to understand the disease evolution and to find sensitive outcome measures. We performed a longitudinal assessment of quantitative magnetic resonance imaging (MRI) and phosphorus magnetic resonance spectroscopy (31 P MRS) outcome measures and evaluated their relationship with function in lower limb skeletal muscle of dysferlinopathy patients.


Magnetic resonance temporal diffusion tensor spectroscopy of disordered anisotropic tissue.

  • Jonathan Scharff Nielsen‎ et al.
  • Scientific reports‎
  • 2018‎

Molecular diffusion measured with diffusion weighted MRI (DWI) offers a probe for tissue microstructure. However, inferring microstructural properties from conventional DWI data is a complex inverse problem and has to account for heterogeneity in sizes, shapes and orientations of the tissue compartments contained within an imaging voxel. Alternative experimental means for disentangling the signal signatures of such features could provide a stronger link between the data and its interpretation. Double diffusion encoding (DDE) offers the possibility to factor out variation in compartment shapes from orientational dispersion of anisotropic domains by measuring the correlation between diffusivity in multiple directions. Time dependence of the diffusion is another effect reflecting the dimensions and distributions of barriers. In this paper we extend on DDE with a modified version of the oscillating gradient spin echo (OGSE) experiment, giving a basic contrast mechanism closely linked to both the temporal diffusion spectrum and the compartment anisotropy. We demonstrate our new method on post mortem brain tissue and show that we retrieve the correct temporal diffusion tensor spectrum in synthetic data from Monte Carlo simulations of random walks in a range of disordered geometries of different sizes and shapes.


Proton magnetic resonance spectroscopy in frontotemporal lobar degeneration-related syndromes.

  • Alexander G Murley‎ et al.
  • Neurobiology of aging‎
  • 2022‎

There is an urgent need for a better understanding of the pathophysiology of cognitive impairment in syndromes associated with frontotemporal lobar degeneration. Here, we used magnetic resonance spectroscopy to quantify metabolite deficits in sixty patients with a clinical syndrome associated with frontotemporal lobar degeneration (behavioral variant frontotemporal dementia n = 11, progressive supranuclear palsy n = 26, corticobasal syndrome n = 11, primary progressive aphasias n = 12), and 38 age- and sex-matched healthy controls. We measured nine metabolites in the right inferior frontal gyrus, superior temporal gyrus and right primary visual cortex. Metabolite concentrations were corrected for age, sex, and partial volume then compared with cognitive and behavioral measures using canonical correlation analysis. Metabolite concentrations varied significantly by brain region and diagnosis (region x metabolite x diagnosis interaction F(64) = 1.73, p < 0.001, corrected for age, sex, and atrophy within the voxel). N-acetyl aspartate and glutamate concentrations were reduced in the right prefrontal cortex in behavioral variant frontotemporal dementia and progressive supranuclear palsy, even after partial volume correction. The reduction of these metabolites was associated with executive dysfunction and behavioral impairment (canonical correlation analysis R = 0.85, p < 0.001).


Diagnostic algorithm for glioma grading using dynamic susceptibility contrast‑enhanced magnetic resonance perfusion and proton magnetic resonance spectroscopy.

  • Dinh Hieu Nguyen‎ et al.
  • Biomedical reports‎
  • 2024‎

The present retrospective study aimed to investigate the diagnostic capacity of and design a diagnostic algorithm for dynamic susceptibility contrast-enhanced MRI (DSCE-MRI) and proton magnetic resonance spectroscopy (1H-MRS) in grading low-grade glioma (LGG) and high-grade glioma (HGG). This retrospective study enrolled 57 patients, of which 14 had LGG and 43 had HGG, five had World Health Organization grade 1, nine had grade 2, 20 had grade 3 and 23 had grade 4 glioma. All subjects underwent a standard 3T MRI brain tumor protocol with conventional MRI (cMRI) and advanced techniques, including DSCE-MRI and 1H-MRS. The associations of grade categorization with parameters in tumor and peritumor regions in the DSCE-MRI were examined, including tumor relative cerebral blood volume (TrCBV) and peripheral relative (Pr)CBV, as well as Tr and Pr cerebral blood flow (CBF) and 1H-MRS, including the creatine (Cr) and N-acetyl aspartate (NAA) ratios of choline (Cho), i.e. the TCho/NAA, PCho/NAA, TCho/Cr and PCho/Cr metabolite ratios. The data were compared using the Mann-Whitney U-test, independent samples t-test, Chi-square test, Fisher's exact test and receiver operating characteristic curve analyses. Decision tree analysis established an algorithm based on cutoffs for specified significant parameters. The PrCBF had the highest performance in the preoperative prediction of histological glioma grading, followed by the TrCBV, PrCBF, TrCBV, PCho/NAA, PCho/Cr, TCho/NAA and TCho/Cr. An algorithm based on TrCBV, PrCBF and TCho/Cr had a diagnostic accuracy of 100% for LGG and 90.7% for HGG and a misclassification risk of 7%. The cutoffs (sensitivity and specificity) were 2.48 (86 and 100%) for TrCBV, 1.26 (83.7 and 100%) for PrCBF and 3.18 (69.8 and 78.6%) for TCho/Cr. In conclusion, the diagnostic algorithm using TrCBV, PrCBF and TCho/Cr values, which were obtained from DSCE-MRI and 1H-MRS, increased diagnostic accuracy to 100% for LGGs and 90.7% for HGGs compared to previous studies using conventional MRI. This non-invasive advanced MRI diagnostic algorithm is recommended for clinical application for constructing preoperative strategies and prognosis of patients with glioma.


Magnetic resonance imaging and spectroscopy in late-onset GM2-gangliosidosis.

  • Olivia E Rowe‎ et al.
  • Molecular genetics and metabolism‎
  • 2021‎

Our study aimed to quantify structural changes in relation to metabolic abnormalities in the cerebellum, thalamus, and parietal cortex of patients with late-onset GM2-gangliosidosis (LOGG), which encompasses late-onset Tay-Sachs disease (LOTS) and Sandhoff disease (LOSD).


Review: magnetic resonance spectroscopy studies of pediatric major depressive disorder.

  • Douglas G Kondo‎ et al.
  • Depression research and treatment‎
  • 2011‎

Introduction. This paper focuses on the application of Magnetic Resonance Spectroscopy (MRS) to the study of Major Depressive Disorder (MDD) in children and adolescents. Method. A literature search using the National Institutes of Health's PubMed database was conducted to identify indexed peer-reviewed MRS studies in pediatric patients with MDD. Results. The literature search yielded 18 articles reporting original MRS data in pediatric MDD. Neurochemical alterations in Choline, Glutamate, and N-Acetyl Aspartate are associated with pediatric MDD, suggesting pathophysiologic continuity with adult MDD. Conclusions. The MRS literature in pediatric MDD is modest but growing. In studies that are methodologically comparable, the results have been consistent. Because it offers a noninvasive and repeatable measurement of relevant in vivo brain chemistry, MRS has the potential to provide insights into the pathophysiology of MDD as well as the mediators and moderators of treatment response.


Neurochemistry of major depression: a study using magnetic resonance spectroscopy.

  • Beata R Godlewska‎ et al.
  • Psychopharmacology‎
  • 2015‎

Magnetic resonance spectroscopy (MRS) is an acceptable non-invasive means of studying brain neurochemistry in depression. Previous studies in depressed patients have focused on measurement of the amino acid neurotransmitters, γ-aminobutyric acid (GABA) and glutamate.


Serum metabonomics of acute leukemia using nuclear magnetic resonance spectroscopy.

  • Syed Ghulam Musharraf‎ et al.
  • Scientific reports‎
  • 2016‎

Acute leukemia is a critical neoplasm of white blood cells. In order to differentiate between the metabolic alterations associated with two subtypes of acute leukemia, acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML), we investigated the serum of ALL and AML patients and compared with two controls (healthy and aplastic anemia) using (1)H NMR (nuclear magnetic resonance) spectroscopy. Thirty-seven putative metabolites were identified using Carr-Purcell-Meiboom-Gill (CPMG) sequence. The use of PLS-DA and OPLS-DA models gave results with 84.38% and 90.63% classification rate, respectively. The metabolites responsible for classification are mainly lipids, lactate and glucose. Compared with controls, ALL and AML patients showed serum metabonomic differences involving aberrant metabolism pathways including glycolysis, TCA cycle, lipoprotein changes, choline and fatty acid metabolisms.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: