Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 2,687 papers

Apoptotic Cells induce Proliferation of Peritoneal Macrophages.

  • Anne-Kathrin Knuth‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

The interaction of macrophages with apoptotic cells is required for efficient resolution of inflammation. While apoptotic cell removal prevents inflammation due to secondary necrosis, it also alters the macrophage phenotype to hinder further inflammatory reactions. The interaction between apoptotic cells and macrophages is often studied by chemical or biological induction of apoptosis, which may introduce artifacts by affecting the macrophages as well and/or triggering unrelated signaling pathways. Here, we set up a pure cell death system in which NIH 3T3 cells expressing dimerizable Caspase-8 were co-cultured with peritoneal macrophages in a transwell system. Phenotype changes in macrophages induced by apoptotic cells were evaluated by RNA sequencing, which revealed an unexpectedly dominant impact on macrophage proliferation. This was confirmed in functional assays with primary peritoneal macrophages and IC-21 macrophages. Moreover, inhibition of apoptosis during Zymosan-induced peritonitis in mice decreased mRNA levels of cell cycle mediators in peritoneal macrophages. Proliferation of macrophages in response to apoptotic cells may be important to increase macrophage numbers in order to allow efficient clearance and resolution of inflammation.


The role of peritoneal alternatively activated macrophages in the process of peritoneal fibrosis related to peritoneal dialysis.

  • Jie Wang‎ et al.
  • International journal of molecular sciences‎
  • 2013‎

It has been confirmed that alternatively activated macrophages (M2) participate in tissue remodeling and fibrosis occurrence, but the effect of M2 on peritoneal fibrosis related to peritoneal dialysis (PD) hasn't been elucidated. This study was therefore conducted to assess the association between M2 and peritoneal fibrosis related to PD. In this study, peritoneal fibrosis was induced by intraperitoneal (i.p.) injection of Lactate-4.25% dialysate (100 mL/kg) to C57BL/6J mice for 28 days, and liposome-encapsulated clodronate (LC, the specific scavenger of macrophages) was used to treat the peritoneal fibrosis mice model by i.p. injection at day 18 and day 21. All animals were sacrificed at day 29. Parietal peritonea were stained with Masson's trichrome, and the expression of type I collagen (Col-I), fibronectin, mannose receptor (CD206), transforming growth factor beta (TGF-β), chemokine receptor 7 (CCR7), chitinase 3-like 3 (Ym-1) and arginase-1 (Arg-1) was determined by Western blotting, immunofluorescence and quantitative real-time PCR. Our results revealed that peritoneal thickness, Col-I, fibronectin, CD206, TGF-β, Ym-1 and Arg-1 were upregulated in the peritoneal fibrosis mice model, and all of these indexes were downregulated in those treated with LC. Additionally, there was no difference in the level of CCR7 between the model and treatment group. Our study indicated that peritoneal M2 played an important role in the process of peritoneal fibrosis related to PD and might be a potential target for intervention therapy of peritoneal fibrosis.


CD1d deficiency limits tolerogenic properties of peritoneal macrophages.

  • Fathihah Basri‎ et al.
  • BMB reports‎
  • 2021‎

Invariant natural killer T (iNKT) cells are involved in various autoimmune diseases. Although iNKT cells are arthritogenic, transforming growth factor beta (TGFβ)-treated tolerogenic peritoneal macrophages (Tol-pMφ) from wild-type (WT) mice are more tolerogenic than those from CD1d knock-out iNKT cell-deficient mice in a collagen-induced arthritis (CIA) model. The underlying mechanism by which pMφ can act as tolerogenic antigen presenting cells (APCs) is currently unclear. To determine cellular mechanisms underlying CD1d-dependent tolerogenicity of pMφ, in vitro and in vivo characteristics of pMφ were investigated. Unlike dendritic cells or splenic Mφ, pMφ from CD1d+/- mice showed lower expression levels of costimulatory molecule CD86 and produced lower amounts of inflammatory cytokines upon lipopolysaccharide (LPS) stimulation compared to pMφ from CD1d-deficient mice. In a CIA model of CD1d-deficient mice, adoptively transferred pMφ from WT mice reduced the severity of arthritis. However, pMφ from CD1d-deficient mice were unable to reduce the severity of arthritis. Hence, the tolerogenicity of pMφ is a cell-intrinsic property that is probably conferred by iNKT cells during pMφ development rather than by interactions of pMφ with iNKT cells during antigen presentation to cognate T cells. [BMB Reports 2021; 54(4): 209-214].


Canine distemper virus titration in ferret peritoneal macrophages.

  • C A Whetstone‎ et al.
  • The Cornell veterinarian‎
  • 1981‎

The sensitivity of a ferret peritoneal macrophage fluorescent antibody technique for assay of various strains of canine distemper virus was investigated. The macrophage system was compared with established methods of titration in canine kidney cell culture, Vero cell culture, and embryonated chicken eggs. It was found to be as sensitive as and in several instances more sensitive than the established methods.


Rhein antagonizes P2X7 receptor in rat peritoneal macrophages.

  • Fen Hu‎ et al.
  • Scientific reports‎
  • 2015‎

P2X7 receptor plays important roles in inflammation and immunity, and thereby it serves as a potential therapeutic target for inflammatory diseases. Rhein, an anthraquinone derivative, exhibits significant anti-inflammatory and immunosuppressive activities in therapy. However, the underlying mechanisms are largely unclear. Here, we aimed to investigate the effects of rhein on P2X7 receptor-mediated responses in vitro. In HEK293 cells expressing rat P2X7 receptor, we first found that rhein concentration-dependently blocked ATP-induced cytosolic calcium concentration ([Ca(2+)]c) elevation and pore formation of the plasma membrane, two hallmarks of the P2X7 receptor activation. These two inhibitory effects of rhein were also observed in rat peritoneal macrophages. Furthermore, rhein counteracted macrophage phagocytosis attenuation and suppressed reactive oxygen species (ROS) production triggered by ATP/BzATP. Meanwhile, rhein reduced ATP/BzATP-induced IL-1β release in lipopolysaccharide-activated macrophages. Prolonged application of ATP caused macrophage apoptosis, while the presence of rhein suppressed this cell cytotoxicity. Such ATP/BzATP-induced cellular reactions were also inhibited by a well-known rat P2X7 receptor antagonist, brilliant blue G, in a similar way to rhein. Together, our results demonstrate that rhein inhibit ATP/BzATP-induced [Ca(2+)]c increase, pore formation, ROS production, phagocytosis attenuation, IL-1β release and cell apoptosis by antagonizing the P2X7 receptor in rat peritoneal macrophages.


ISG15 regulates peritoneal macrophages functionality against viral infection.

  • Emilio Yángüez‎ et al.
  • PLoS pathogens‎
  • 2013‎

Upon viral infection, the production of type I interferon (IFN) and the subsequent upregulation of IFN stimulated genes (ISGs) generate an antiviral state with an important role in the activation of innate and adaptive host immune responses. The ubiquitin-like protein (UBL) ISG15 is a critical IFN-induced antiviral molecule that protects against several viral infections, but the mechanism by which ISG15 exerts its antiviral function is not completely understood. Here, we report that ISG15 plays an important role in the regulation of macrophage responses. ISG15-/- macrophages display reduced activation, phagocytic capacity and programmed cell death activation in response to vaccinia virus (VACV) infection. Moreover, peritoneal macrophages from mice lacking ISG15 are neither able to phagocyte infected cells nor to block viral infection in co-culture experiments with VACV-infected murine embryonic fibroblast (MEFs). This phenotype is independent of cytokine production and secretion, but clearly correlates with impaired activation of the protein kinase AKT in ISG15 knock-out (KO) macrophages. Altogether, these results indicate an essential role of ISG15 in the cellular immune antiviral response and point out that a better understanding of the antiviral responses triggered by ISG15 may lead to the development of therapies against important human pathogens.


Enhanced Ca2+ handling in thioglycolate-elicited peritoneal macrophages.

  • Feng Liu‎ et al.
  • Cell calcium‎
  • 2021‎

In macrophage biology, resident peritoneal macrophages (RPMs) and thioglycolate-elicited peritoneal macrophages (TGPMs) have been traditionally utilized as primary cultured models. RPMs and TGPMs exhibit distinct morphological, functional and metabolic characteristics, although it remains unclear how cellular Ca2+ handling differs between them. In our Fura-2 Ca2+ imaging, TGPMs displayed elevated resting Ca2+ levels, increased store Ca2+ contents and facilitated store-operated Ca2+ entry (SOCE) compared with RPMs. The intensified intracellular Ca2+ stores were enriched with major luminal Ca2+-binding proteins inducibly expressed in TGPMs. The elevated resting Ca2+ level was predominantly maintained by constitutive Ca2+ influx, probably through the transient receptor potential (TRP) family members TRPP2, TRPM7 and TRPA1. These TRP family channels seemed to be largely activated in a manner dependent on phospholipase C activity, and together with Orai channels, contributed to SOCE. Moreover, Ca2+-dependent K+ channels efficiently facilitated SOCE by enhancing the Ca2+ driving force in TGPMs. The consolidated cellular Ca2+ handling described may underlie the specialized cell-physiological features of TGPMs, such as vital proliferation, active migration and avid phagocytosis.


Anti-Inflammatory Effects of (3S)-Vestitol on Peritoneal Macrophages.

  • Bruno Bueno-Silva‎ et al.
  • Pharmaceuticals (Basel, Switzerland)‎
  • 2022‎

The isoflavone (3S)-vestitol, obtained from red propolis, has exhibited anti-inflammatory, antimicrobial, and anti-caries activity; however, few manuscripts deal with its anti-inflammatory mechanisms in macrophages. The objective is to elucidate the anti-inflammatory mechanisms of (3S)-vestitol on those cells. Peritoneal macrophages of C57BL6 mice, stimulated with lipopolysaccharide, were treated with 0.37 to 0.59 µM of (3S)-vestitol for 48 h. Then, nitric oxide (NO) quantities, macrophages viability, the release of 20 cytokines and the transcription of several genes related to cytokine production and inflammatory response were evaluated. The Tukey-Kramer variance analysis test statistically analyzed the data. (3S)-vestitol 0.55 µM (V55) lowered NO release by 60% without altering cell viability and diminished IL-1β, IL-1α, G-CSF, IL-10 and GM-CSF levels. V55 reduced expression of Icam-1, Wnt5a and Mmp7 (associated to inflammation and tissue destruction in periodontitis) and Scd1, Scd2, Egf1 (correlated to atherosclerosis). V55 increased expression of Socs3 and Dab2 genes (inhibitors of cytokine signaling and NF-κB pathway), Apoe (associated to atherosclerosis control), Igf1 (encoder a protein with analogous effects to insulin) and Fgf10 (fibroblasts growth factor). (3S)-vestitol anti-inflammatory mechanisms involve cytokines and NF-κB pathway inhibition. Moreover, (3S)-vestitol may be a candidate for future in vivo investigations about the treatment/prevention of persistent inflammatory diseases such as atherosclerosis and periodontitis.


Peritoneal macrophages express both P-selectin and PSGL-1.

  • Boris Tchernychev‎ et al.
  • The Journal of cell biology‎
  • 2003‎

Macrophages, phagocytic cells involved in an early phase of host defense, are known to express the P-selectin ligand, PSGL-1. Heretofore, P-selectin has only been found on platelets and endothelial cells. Here, we demonstrate that peritoneal macrophages isolated by peritoneal lavage of unchallenged mice express P-selectin on the plasma membrane. The peritoneal macrophages synthesize P-selectin, as indicated by metabolic labeling experiments. P-Selectin is constitutively expressed on the extracellular surface of macrophages but is only partially colocalized with PSGL-1. P-Selectin is rapidly translocated from the macrophage plasma membrane to intracellular vesicles and to lysosomes. Peritoneal macrophages assemble into cell strings under flow conditions based upon macrophage-macrophage interactions mediated by P-selectin and PSGL-1. This is the first description of a leukocyte shown to express both P-selectin and PSGL-1.


Proteome Profiling of PMJ2-R and Primary Peritoneal Macrophages.

  • Alexander L Rusanov‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

In vitro models are often used for studying macrophage functions, including the process of phagocytosis. The application of primary macrophages has limitations associated with the individual characteristics of animals, which can lead to insufficient standardization and higher variability of the obtained results. Immortalized cell lines do not have these disadvantages, but their responses to various signals can differ from those of the living organism. In the present study, a comparative proteomic analysis of immortalized PMJ2-R cell line and primary peritoneal macrophages isolated from C57BL/6 mice was performed. A total of 4005 proteins were identified, of which 797 were quantified. Obtained results indicate significant differences in the abundances of many proteins, including essential proteins associated with the process of phagocytosis, such as Elmo1, Gsn, Hspa8, Itgb1, Ncf2, Rac2, Rack1, Sirpa, Sod1, C3, and Msr1. These findings indicate that outcomes of studies utilizing PMJ2-R cells as a model of peritoneal macrophages should be carefully validated. All MS data are deposited in ProteomeXchange with the identifier PXD022133.


Antigen presenting capacity of peritoneal macrophages and dendritic cells.

  • E van Vugt‎ et al.
  • Advances in experimental medicine and biology‎
  • 1993‎

No abstract available


Quercetin uptake and metabolism by murine peritoneal macrophages in vitro.

  • Chieh-Jung Liu‎ et al.
  • Journal of food and drug analysis‎
  • 2015‎

Quercetin (Q), a bioflavonoid ubiquitously distributed in vegetables, fruits, leaves, and grains, can be absorbed, transported, and excreted after oral intake. However, little is known about Q uptake and metabolism by macrophages. To clarify the puzzle, Q at its noncytotoxic concentration (44μM) was incubated without or with mouse peritoneal macrophages for different time periods. Medium alone, extracellular, and intracellular fluids of macrophages were collected to detect changes in Q and its possible metabolites using high-performance liquid chromatography. The results showed that Q was unstable and easily oxidized in either the absence or the presence of macrophages. The remaining Q and its metabolites, including isorhamnetin and an unknown Q metabolite [possibly Q- (O-semiquinone)], might be absorbed by macrophages. The percentage of maximal Q uptake by macrophages was found to be 2.28% immediately after incubation; however, Q uptake might persist for about 24 hours. Q uptake by macrophages was greater than the uptake of its methylated derivative isorhamnetin. As Q or its metabolites entered macrophages, those compounds were metabolized primarily into isorhamnetin, kaempferol, or unknown endogenous Q metabolites. The present study, which aimed to clarify cellular uptake and metabolism of Q by macrophages, may have great potential for future practical applications for human health and immunopharmacology.


Peritoneal macrophages suppress T-cell activation by amino acid catabolism.

  • R Matlack‎ et al.
  • Immunology‎
  • 2006‎

T-lymphocyte activation triggered by anti-CD3, endogenous or exogenous superantigen, and mitogens was suppressed in a cell-dose-dependent fashion by peritoneal cavity (PerC) leucocytes. Study of lymphocyte-deficient mice and the use of multiparameter fluorescence-activated cell sorter analyses revealed that macrophages were responsible for this form of immune regulation. Interferon-gamma was essential to trigger suppression, which, by enzyme inhibition studies, was shown to be the result of tryptophan and arginine catabolism. These results illustrate that macrophages, which are classically defined by their innate effector function as antigen-presenting cells, have the potential to temper adaptive immunity.


Gata6+ resident peritoneal macrophages promote the growth of liver metastasis.

  • Mokarram Hossain‎ et al.
  • Nature communications‎
  • 2022‎

Emerging evidence suggests that resident macrophages within tissues are enablers of tumor growth. However, a second population of resident macrophages surrounds all visceral organs within the cavities and nothing is known about these GATA6+ large peritoneal macrophages (GLPMs) despite their ability to invade injured visceral organs by sensing danger signals. Here, we show that GLPMs invade growing metastases that breach the visceral mesothelium of the liver via the "find me signal", ATP. Depleting GLPMs either by pharmacological or genetic tools, reduces metastases growth. Apoptotic bodies from tumor cells induces programmed cell death ligand 1 (PD-L1) upregulation on GLPMs which block CD8+ T cell function. Direct targeting of GLPMs by intraperitoneal but not intravenous administration of anti-PD-L1 reduces tumor growth. Thermal ablation of liver metastases recruits huge numbers of GLPMs and enables rapid regrowth of tumors. GLPMs contribute to metastatic growth and tumor recurrence.


Phospholipid Arachidonic Acid Remodeling During Phagocytosis in Mouse Peritoneal Macrophages.

  • Luis Gil-de-Gómez‎ et al.
  • Biomedicines‎
  • 2020‎

Macrophages contain large amounts of arachidonic acid (AA), which distributes differentially across membrane phospholipids. This is largely due to the action of coenzyme A-independent transacylase (CoA-IT), which transfers the AA primarily from diacyl choline-containing phospholipids to ethanolamine-containing phospholipids. In this work we have comparatively analyzed glycerophospholipid changes leading to AA mobilization in mouse peritoneal macrophages responding to either zymosan or serum-opsonized zymosan (OpZ). These two phagocytic stimuli promote the cytosolic phospholipase A2-dependent mobilization of AA by activating distinct surface receptors. Application of mass spectrometry-based lipid profiling to identify changes in AA-containing phospholipids during macrophage exposure to both stimuli revealed significant decreases in the levels of all major choline phospholipid molecular species and a major phosphatidylinositol species. Importantly, while no changes in ethanolamine phospholipid species were detected on stimulation with zymosan, significant decreases in these species were observed when OpZ was used. Analyses of CoA-IT-mediated AA remodeling revealed that the process occurred faster in the zymosan-stimulated cells compared with OpZ-stimulated cells. Pharmacological inhibition of CoA-IT strongly blunted AA release in response to zymosan but had only a moderate effect on the OpZ-mediated response. These results suggest a hitherto undescribed receptor-dependent role for CoA-independent AA remodeling reactions in modulating the eicosanoid biosynthetic response of macrophages. Our data help define novel targets within the AA remodeling pathway with potential use to control lipid mediator formation.


Dynasore, a dynamin inhibitor, inhibits Trypanosoma cruzi entry into peritoneal macrophages.

  • Emile S Barrias‎ et al.
  • PloS one‎
  • 2010‎

Trypanosoma cruzi is an intracellular parasite that, like some other intracellular pathogens, targets specific proteins of the host cell vesicular transport machinery, leading to a modulation of host cell processes that results in the generation of unique phagosomes. In mammalian cells, several molecules have been identified that selectively regulate the formation of endocytic transport vesicles and the fusion of such vesicles with appropriate acceptor membranes. Among these, the GTPase dynamin plays an important role in clathrin-mediated endocytosis, and it was recently found that dynamin can participate in a phagocytic process.


Macrophages on the Peritoneum are involved in Gastric Cancer Peritoneal Metastasis.

  • Hongjiang Song‎ et al.
  • Journal of Cancer‎
  • 2019‎

Tumor-associated macrophages (TAM) have been shown to support tumor growth and progression by various mechanisms. However, the roles of TAM in gastric cancer (GC) peritoneal metastasis remain elusive. To explore the roles of macrophages in the process of GC peritoneal metastasis, we performed the present study. Samples from the primary GC tumor beds, surgical margins, peritoneal metastatic lesions and surrounding tissue, and the Pouch of Douglas, were collected, fixed by formalin, and embedded with paraffin. Immunohistochemistry staining for macrophages markers was performed. The peritoneal lavage was obtained from a fraction of patients to analyze the ratios of epidermal growth factor (EGF)- and vascular endothelial growth factor (VEGF)-secreting macrophages in the peritoneal cavity. GC patients with peritoneal metastasis had increased levels of macrophages and alternatively activated macrophages in the peritoneum compared to those without dissemination. Patients bearing more macrophages in the peritoneum had a poorer prognosis. GC patients bearing peritoneal metastasis harbored an increased level of angiogenesis. Macrophages in the peritoneal cavity were a source of EGF and VEGF. Macrophages in the peritoneum of GC patients play a supportive role for peritoneal metastasis by producing EGF and VEGF. Macrophages in the peritoneum might be a therapeutic target in the future.


Cross talk between peritoneal macrophages and B-1 cells in vitro.

  • Felipe Garutti Thies‎ et al.
  • PloS one‎
  • 2013‎

B-1 cells constitute a distinct B cell population with unique phenotypic and functional characteristics. They represent the main B cell population found in mouse peritoneal and pleural cavities. The communication between B-1 cells and peritoneal macrophages has been previously studied, and the effect this interaction has on macrophages has been previously described. Using an in vitro co-culture model, herein we demonstrated that peritoneal macrophages were able to increase survival rates and to stimulate proliferation of B-1 cells. IL-6 was also found to be important in B-1 cell survival; recombinant IL-6 increases the percentage of viable B-1 cells in culture. Furthermore, molecules involved in the IL-6 signaling pathway, such as STAT-3 and Bcl-2, were highly expressed in B-1 cells after co-culture with peritoneal macrophages. IL-6-deficient peritoneal macrophages were not able to increase B-1 cell survival, confirming the importance of this cytokine. Altogether, our results indicate a novel mechanism in which peritoneal macrophages are able to regulate the B-1 population via IL-6 secretion.


A pathogenetic role for M1 macrophages in peritoneal dialysis-associated fibrosis.

  • Qing Li‎ et al.
  • Molecular immunology‎
  • 2018‎

Peritoneal fibrosis (PF) is a frequent complication of peritoneal dialysis (PD) accompanied by the infiltration of inflammatory cells. Recently, the function of macrophages in an inflammatory microenvironment during PD remains unknown. This study aimed to elucidate the role of distinct macrophage phenotypes in the progression of PF through macrophage depletion in a peritoneal dialysis-induced mouse model. After injection of 200 μl liposomal clodronate (LC) at the start of instillation PD fluids (PDFs), mice were injected with 100 μL LC every 4 days after the first time injection for longer macrophage depletion, while control mice were co-treated with PBS liposomes. For macrophages transfusion,primary macrophages (M0) were stimulated into M1 and M2 macrophages and transfuritoneal fibrosis (PF) is a frequent complication of peritoneal dialysis (PD) accompanied by the infiltration of inflammatory cells. Recently, the function of macrophages in an inflammatory microenvironment during PD remains unknown. This study aimed to elucidate the role of distinct macrophage phenotypes in the progression of PF through macrophage depletion in a peritoneal dialysis-induced mouse model. After injection of 200 μl liposomal clodronate (LC) at the start of instillation PD fluids (PDFs), mice were injected with 100 μL LC every 4 days after the first time injection for longer macrophage depletion, while control mice were co-treated with PBS liposomes. For macrophages transfusion,primary macrophages (M0) were stimulated into M1 and M2 macrophages and transfused into the mice the next day after each LC injection. Mice were sacrificed after 6 weeks of PDFs treatment for the assessment of histological changes, ECM deposition and peritoneal ultrafiltration function. Systemic monocyte/macrophage depletion resulted in less severe structural alterations, including thickening and cubic transformation of mesothelial cells, fibrin deposition, fibrous capsule formation, and interstitial fibrosis. A strong reduction of alpha-smooth muscle actin (α-SMA) and fibronectin expression, as well as an increased E-cadherin expression was also observed, indicating an overall inhibition of peritoneal fibrosis in macrophages depletion mice.M1 macrophage reperfusion showed a significant increase in histological damages, ECM deposition and peritoneal ultrafiltration functional decline compared with those of the M2 and control groups. TLR4 expression was enhanced in M1 macrophage-treated group. These results suggest that M1 macrophages are an important mediator of peritoneal fibrosis.


Phenotypic and functional alterations of peritoneal macrophages in lupus-prone mice.

  • Gabriela Tejon‎ et al.
  • Molecular biology reports‎
  • 2022‎

Several studies have demonstrated the contribution of innate immune cells, including macrophages, in promoting systemic lupus erythematosus (SLE). Macrophages, one of the most abundant cell populations in the peritoneal cavity, are considered multifunctional cells with phenotypic plasticity. However, the functional properties of peritoneal macrophages in steady-state and during the progression of SLE remain poorly defined.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: