Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 639 papers

Dactylosporolides: Glycosylated Macrolides from Dactylosporangium fulvum.

  • Thibault Caradec‎ et al.
  • Journal of natural products‎
  • 2022‎

A series of novel macrolides were discovered from the culture supernatant of the rare soil actinobacteria Dactylosporangium fulvum and named dactylosporolides A-C. The structure and absolute configuration of these dactylosporolides were defined using a combination of NMR structural elucidation and analysis of the dactylosporolide biosynthetic gene cluster. Together these data revealed dactylosporolides to be composed of a central 22-membered macrolactone with an internal hemiketal ring and a protruding ketide tail that were (poly)glycosylated at two distal parts. While bearing no antibiotic activity, these dactylosporolides displayed activity against Plasmodium falciparum 3D7.


Antileishmanial macrolides from ant-associated Streptomyces sp. ISID311.

  • Humberto E Ortega‎ et al.
  • Bioorganic & medicinal chemistry‎
  • 2021‎

Three antifungal macrolides cyphomycin (1), caniferolide C (2) and GT-35 (3) were isolated from Streptomyces sp. ISID311, a bacterial symbiont associated with Cyphomyrmex fungus-growing ants. The planar structures of these compounds were established by 1 and 2D NMR data and MS analysis. The relative configurations of 1-3 were established using Kishi's universal NMR database method, NOE/ROE analysis and coupling constants analysis assisted by comparisons with NMR data of related compounds. Detailed bioinformatic analysis of cyphomycin biosynthetic gene cluster confirmed the stereochemical assignments. Compounds 1-3 displayed high antagonism against different strains of Escovopsis sp., pathogen fungi specialized to the fungus-growing ant system. Compounds 1-3 also exhibited potent antiprotozoal activity against intracellular amastigotes of the human parasite Leishmania donovani with IC50 values of 2.32, 0.091 and 0.073 µM, respectively, with high selectivity indexes.


Rare Polyene-polyol Macrolides from Mangrove-derived Streptomyces sp. ZQ4BG.

  • Wenling Wang‎ et al.
  • Scientific reports‎
  • 2017‎

Bioactive natural products from mangrove-derived actinomycetes are important sources for discovery of drug lead compounds. In this study, an extract prepared from culture of an actinomycete Streptomyces sp. ZQ4BG isolated from mangrove soils was found to have activity in inhibiting proliferation of glioma cells. Large culture of this mangrove actinomycete in Gause's liquid medium resulted in isolation of seven novel polyene-polyol macrolides, named as flavofungins III-IX (3-9), together with known flavofungins I (1) and II (2) and spectinabilin (10). Structures of these isolated compounds were elucidated by extensive NMR analyses and HRESIMS data. The stereochemical assignments were achieved by a combination of NOE information, universal NMR database, and chemical reactions including preparation of acetonide derivatives and Mosher esters. Flavofungins IV-VIII (4-8) are rare 32-membered polyene-polyol macrolides with a tetrahydrofuran ring, while flavofungin IX (9) represents the first example of this type of macrolide with a unique oxepane ring. Flavofungins I (1) and II (2) and spectinabilin (10) showed anti-glioma and antifungal activities.


Marine Macrolides to Tackle Antimicrobial Resistance of Mycobacterium tuberculosis.

  • Sukamto S Mamada‎ et al.
  • Marine drugs‎
  • 2022‎

Tuberculosis has become a major health problem globally. This is worsened by the emergence of resistant strains of Mycobacterium tuberculosis showing ability to evade the effectiveness of the current antimycobacterial therapies. Therefore, the efforts carried out to explore new entities from many sources, including marine, are critical. This review summarizes several marine-derived macrolides that show promising activity against M. tuberculosis. We also provide information regarding the biosynthetic processes of marine macrolides, including the challenges that are usually experienced in this process. As most of the studies reporting the antimycobacterial activities of the listed marine macrolides are based on in vitro studies, the future direction should consider expanding the trials to in vivo and clinical trials. In addition, in silico studies should also be explored for a quick screening on marine macrolides with potent activities against mycobacterial infection. To sum up, macrolides derived from marine organisms might become therapeutical options for tackling antimycobacterial resistance of M. tuberculosis.


Hygrolansamycins A-D, O-Heterocyclic Macrolides from Streptomyces sp. KCB17JA11.

  • Jun-Pil Jang‎ et al.
  • Journal of microbiology and biotechnology‎
  • 2022‎

Six ansamycin derivatives were isolated from the culture broth of Streptomyces sp. KCB17JA11, including four new hygrolansamycins A-D (1-4) and known congeners divergolide O (5) and hygrocin C (6). Compounds 1-5 featured an unusual six-membered O-heterocyclic moiety. The isolation workflow was guided by a Molecular Networking-based dereplication strategy. The structures of 1-4 were elucidated using NMR and HRESIMS experiments, and the absolute configuration was established by the Mosher's method. Compound 2 exhibited mild cytotoxicity against five cancer cell lines with IC50 values ranging from 24.60 ± 3.37 μM to 49.93 ± 4.52 μM.


Resistance of Streptococcus Pneumoniae to Macrolides in Iran.

  • Shervin Shokouhi‎ et al.
  • Tanaffos‎
  • 2019‎

Antimicrobial resistance of Streptococcus pneumoniae (S. pneumoniae) has shown major changes in recent years. On the other hand, macrolide antibiotics are being increasingly used in clinical practice. Several studies have reported increased resistance to this group of antibiotics, while there is no comprehensive information in this area. Accordingly, the present study was designed to estimate the resistance of S. pneumoniae to macrolides in Iran.


Macrolides Decrease the Proinflammatory Activity of Macrolide-Resistant Streptococcus pneumoniae.

  • Hisanori Domon‎ et al.
  • Microbiology spectrum‎
  • 2023‎

Over the past 2 decades, the prevalence of macrolide-resistant Streptococcus pneumoniae (MRSP) has increased considerably, due to widespread macrolide use. Although macrolide usage has been proposed to be associated with treatment failure in patients with pneumococcal diseases, macrolides may be clinically effective for treating these diseases, regardless of the susceptibility of the causative pneumococci to macrolides. As we previously demonstrated that macrolides downregulate the transcription of various genes in MRSP, including the gene encoding the pore-forming toxin pneumolysin, we hypothesized that macrolides affect the proinflammatory activity of MRSP. Using HEK-Blue cell lines, we found that the supernatants from macrolide-treated MRSP cultures induced decreased NF-κB activation in cells expressing Toll-like receptor 2 and nucleotide-binding oligomerization domain 2 compared to the supernatants from untreated MRSP cells, suggesting that macrolides inhibit the release of these ligands from MRSP. Real-time PCR analysis revealed that macrolides significantly downregulated the transcription of various genes encoding peptidoglycan synthesis-, lipoteichoic acid synthesis-, and lipoprotein synthesis-related molecules in MRSP cells. The silkworm larva plasma assay demonstrated that the peptidoglycan concentrations in the supernatants from macrolide-treated MRSP cultures were significantly lower than those from untreated MRSP cultures. Triton X-114 phase separation revealed that lipoprotein expression decreased in macrolide-treated MRSP cells compared to the lipoprotein expression in untreated MRSP cells. Consequently, macrolides may decrease the expression of bacterial ligands of innate immune receptors, resulting in the decreased proinflammatory activity of MRSP. IMPORTANCE To date, the clinical efficacy of macrolides in pneumococcal disease is assumed to be linked to their ability to inhibit the release of pneumolysin. However, our previous study demonstrated that oral administration of macrolides to mice intratracheally infected with macrolide-resistant Streptococcus pneumoniae resulted in decreased levels of pneumolysin and proinflammatory cytokines in bronchoalveolar lavage fluid samples compared to the levels in samples from untreated infected control mice, without affecting the bacterial load in the fluid. This finding suggests that additional mechanisms by which macrolides negatively regulate proinflammatory cytokine production may be involved in their efficacy in vivo. Furthermore, in this study, we demonstrated that macrolides downregulated the transcription of various proinflammatory-component-related genes in S. pneumoniae, which provides an additional explanation for the clinical benefits of macrolides.


Expert recommendations on the role of macrolides in chronic respiratory diseases.

  • Raja Dhar‎ et al.
  • Lung India : official organ of Indian Chest Society‎
  • 2021‎

India contributes to 32% of the total global disability-adjusted life years, due to chronic respiratory diseases. This has led to a high rate of health loss from these diseases. Antibiotics are commonly used in the management of respiratory disorders. With excellent tissue penetration, prolonged tissue persistence, and favorable side effect profile, macrolides are one of the best treatment options being recommended for respiratory, urogenital, dermal, and other bacterial infections. Still, there is a lack of clinical trial data on the use of macrolides in the management of respiratory chronic disease, and hence, there is a need for clinical guidance on their use in Indian setting.


Guanidine-Containing Polyhydroxyl Macrolides: Chemistry, Biology, and Structure-Activity Relationship.

  • Xiaoyuan Song‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2019‎

Antimicrobial resistance has been seriously threatening human health, and discovering new antimicrobial agents from the natural resource is still an important pathway among various strategies to prevent resistance. Guanidine-containing polyhydroxyl macrolides, containing a polyhydroxyl lactone ring and a guanidyl side chain, can be produced by many actinomycetes and have been proved to possess many bioactivities, especially broad-spectrum antibacterial and antifungal activities. To explore the potential of these compounds to be developed into new antimicrobial agents, a review on their structural diversities, spectroscopic characterizations, bioactivities, acute toxicities, antimicrobial mechanisms, and the structure-activity relationship was first performed based on the summaries and analyses of related publications from 1959 to 2019. A total of 63 guanidine-containing polyhydroxyl macrolides were reported, including 46 prototype compounds isolated from 33 marine and terrestrial actinomycetes and 17 structural derivatives. Combining with their antimicrobial mechanisms, structure-activity relationship analyses indicated that the terminal guanidine group and lactone ring of these compounds are vital for their antibacterial and antifungal activities. Further, based on their bioactivities and toxicity analyses, the discovery of guanidyl side-chain targeting to lipoteichoic acid of Staphylococcus aureus indicated that these compounds have a great potency to be developed into antimicrobial and anti-inflammatory drugs.


The Immunomodulatory Effects of Macrolides-A Systematic Review of the Underlying Mechanisms.

  • Petra Zimmermann‎ et al.
  • Frontiers in immunology‎
  • 2018‎

The mechanisms underlying the non-antimicrobial immunomodulatory properties of macrolides are not well understood.


Shikinefragalides A-D, new tricyclic macrolides produced by Stachybotryaceae sp. FKI-9632.

  • Rima Koike‎ et al.
  • The Journal of antibiotics‎
  • 2022‎

Four new tricyclic macrolides, named shikinefragalides A (1), B (2), C (3) and D (4), were isolated by physicochemical (PC) screening from a static culture material of Stachybotryaceae sp. FKI-9632. Their structures were elucidated as new analogs of colletofragarones by MS and NMR analyses. Compounds 1 and 2 showed weak antimalarial activity and cytotoxicity.


Macrolides rapidly inhibit red blood cell invasion by the human malaria parasite, Plasmodium falciparum.

  • Danny W Wilson‎ et al.
  • BMC biology‎
  • 2015‎

Malaria invasion of red blood cells involves multiple parasite-specific targets that are easily accessible to inhibitory compounds, making it an attractive target for antimalarial development. However, no current antimalarial agents act against host cell invasion.


Therapeutic efficacy of macrolides in management of patients with mild COVID-19.

  • Alaa Rashad‎ et al.
  • Scientific reports‎
  • 2021‎

Evidence on the efficacy of adding macrolides (azithromycin or clarithromycin) to the treatment regimen for COVID-19 is limited. We testify whether adding azithromycin or clarithromycin to a standard of care regimen was superior to standard of supportive care alone in patients with mild COVID-19.This randomized trial included three groups of patients with COVID-19. The azithromycin group included, 107 patients who received azithromycin 500 mg/24 h for 7 days, the clarithromycin group included 99 patients who received clarithromycin 500 /12 h for 7 days, and the control group included 99 patients who received standard care only. All three groups received only symptomatic treatment for control of fever and cough .Clinical and biochemical evaluations of the study participants including assessment of the symptoms duration, real-time reverse transcription-polymerase chain reaction (rRT-PCR), C-reactive protein (CRP), serum ferritin, D-dimer, complete blood count (CBC), in addition to non-contrast chest computed tomography (CT), were performed. The overall results revealed significant early improvement of symptoms (fever, dyspnea and cough) in patients treated with either azithromycin or clarithromycin compared to control group, also there was significant early conversion of SARS-CoV-2 PCR to negative in patients treated with either azithromycin or clarithromycin compared to control group (p < 0.05 for all).There was no significant difference in time to improvement of fever, cough, dyspnea, anosmia, gastrointestinal tract "GIT" symptoms and time to PCR negative conversion between patients treated with azithromycin compared to patients treated with clarithromycin (p > 0.05 for all). Follow up chest CT done after 2 weeks of start of treatment showed significant improvement in patients treated with either azithromycin or clarithromycin compared to control group (p < 0.05 for all).Adding Clarithromycin or azithromycin to the therapeutic protocols for COVID-19 could be beneficial for early control of fever and early PCR negative conversion in Mild COVID-19.Trial registration: (NCT04622891) www.ClinicalTrials.gov retrospectively registered (November 10, 2020).


Management of SARS-CoV-2 Infection: Key Focus in Macrolides Efficacy for COVID-19.

  • Gaber El-Saber Batiha‎ et al.
  • Frontiers in medicine‎
  • 2021‎

Macrolides (e.g., erythromycin, fidaxomicin, clarithromycin, and azithromycin) are a class of bacteriostatic antibiotics commonly employed in medicine against various gram-positive and atypical bacterial species mostly related to respiratory tract infections, besides they possess anti-inflammatory and immunomodulatory effects. Coronavirus Disease 2019 (COVID-19) is an infectious disease caused by the severe acute respiratory syndrome of coronavirus 2 (SARS-CoV-2). It was first detected in Wuhan, Hubei, China, in December 2019 and resulted in a continuing pandemic. Macrolides have been extensively researched as broad adjunctive therapy for COVID-19 due to its immunostimulant abilities. Among such class of drugs, azithromycin is described as azalide and is well-known for its ability to decrease the production of pro-inflammatory cytokines, including matrix metalloproteinases, tumor necrosis factor-alpha, interleukin (IL)-6, and IL-8. In fact, a report recently published highlighted the effectiveness of combining azithromycin and hydroxychloroquine for COVID-19 treatment. Indeed, it has been underlined that azithromycin quickly prevents SARS-CoV-2 infection by raising the levels of both interferons and interferon-stimulated proteins at the same time which reduces the virus replication and release. In this sense, the current review aims to evaluate the applications of macrolides for the treatment of COVID-19.


Lack of resistance to macrolides in Mycoplasma genitalium detected in South African pregnant women.

  • Meleshni Naicker‎ et al.
  • Southern African journal of infectious diseases‎
  • 2021‎

Azithromycin regimens have been considered first-line treatment for Mycoplasma genitalium (M. genitalium), a sexually transmitted infection (STI) associated with adverse pregnancy outcomes. However, recent years have seen rapid emergence of macrolide resistance in M. genitalium as a result of widespread administration of azithromycin. Currently, there are limited data on macrolide resistance in pregnant women from KwaZulu-Natal (KZN), South Africa. This study investigated the prevalence of M. genitalium and emerging patterns of macrolide resistance in pregnant women from KZN.


Prevalence of Genotypes That Determine Resistance of Staphylococci to Macrolides and Lincosamides in Serbia.

  • Milena Mišić‎ et al.
  • Frontiers in public health‎
  • 2017‎

Macrolides, lincosamides, and streptogramins (MLS) resistance genes are responsible for resistance to these antibiotics in Staphylococcus infections. The purpose of the study was to analyze the distribution of the MLS resistance genes in community- and hospital-acquired Staphylococcus isolates. The MLS resistance phenotypes [constitutive resistance to macrolide-lincosamide-streptogramin B (cMLSb), inducible resistance to macrolide-lincosamide-streptogramin B (iMLSb), resistance to macrolide/macrolide-streptogramin B (M/MSb), and resistance to lincosamide-streptogramin A/streptogramin B (LSa/b)] were determined by double-disc diffusion method. The presence of the MLS resistance genes (ermA, ermB, ermC, msrA/B, lnuA, lnuB, and lsaA) were determined by end-point polymerase chain reaction in 179 isolates of staphylococci collected during 1-year period at the Center for Microbiology of Public Health Institute in Vranje. The most frequent MLS phenotype among staphylococcal isolates, both community-acquired and hospital-acquired, was iMLSb (33.4%). The second most frequent was M/MSb (17.6%) with statistically significantly higher number of hospital-acquired staphylococcal isolates (p < 0.05). MLS resistance was mostly determined by the presence of msrA/B (35.0%) and ermC (20.8%) genes. Examined phenotypes were mostly determined by the presence of one gene, especially by msrA/B (26.3%) and ermC (14.5%), but 15.6% was determined by a combination of two or more genes. M/MSb phenotype was the most frequently encoded by msrA/B (95.6%) gene, LSa/b phenotype by lnuA (56.3%) gene, and iMLSb phenotype by ermC (29.4%) and ermA (25.5%) genes. Although cMLSb phenotype was mostly determined by the presence of ermC (28.9%), combinations of two or more genes have been present too. This pattern was particularly recorded in methicillin-resistant Staphylococcus aureus (MRSA) (58.3%) and methicillin-resistant coagulase-negative staphylococci (MRCNS) (90.9%) isolates with cMLSB phenotype. The msrA/B gene and M/MSb phenotype were statistically significantly higher in hospital-acquired than community-acquired staphylococci strains (p < 0.05). There are no statistically significant differences between staphylococci harboring the rest of MLS resistance genes acquired in community and hospital settings (p > 0.05). The prevalence of iMLSb phenotypes may change over time, so it is necessary to perform periodic survey of MLS resistance phenotypes, particularly where the D-test is not performed routinely.


A Rapid Assessment Model for Liver Toxicity of Macrolides and an Integrative Evaluation for Azithromycin Impurities.

  • Miao-Qing Zhang‎ et al.
  • Frontiers in pharmacology‎
  • 2022‎

Impurities in pharmaceuticals of potentially hazardous materials may cause drug safety problems. Macrolide antibiotic preparations include active pharmaceutical ingredients (APIs) and different types of impurities with similar structures, and the amount of these impurities is usually very low and difficult to be separated for toxicity evaluation. Our previous study indicated that hepatotoxicity induced by macrolides was correlated with c-fos overexpression. Here, we report an assessment of macrolide-related liver toxicity by ADMET prediction, molecular docking, structure-toxicity relationship, and experimental verification via detection of the c-fos gene expression in liver cells. The results showed that a rapid assessment model for the prediction of hepatotoxicity of macrolide antibiotics could be established by calculation of the -CDOCKER interaction energy score with the FosB/JunD bZIP domain and then confirmed by the detection of the c-fos gene expression in L02 cells. Telithromycin, a positive compound of liver toxicity, was used to verify the correctness of the model through comparative analysis of liver toxicity in zebrafish and cytotoxicity in L02 cells exposed to telithromycin and azithromycin. The prediction interval (48.1∼53.1) for quantitative hepatotoxicity in the model was calculated from the docking scores of seven macrolide antibiotics commonly used in clinics. We performed the prediction interval to virtual screening of azithromycin impurities with high hepatotoxicity and then experimentally confirmed by liver toxicity in zebrafish and c-fos gene expression. Simultaneously, we found the hepatotoxicity of azithromycin impurities may be related to the charge of nitrogen (N) atoms on the side chain group at the C5 position via structure-toxicity relationship of azithromycin impurities with different structures. This study provides a theoretical basis for improvement of the quality of macrolide antibiotics.


Resistance to 16-Membered Macrolides, Tiamulin and Lincomycin in a Swine Isolate of Acholeplasma laidlawii.

  • María M Tavío‎ et al.
  • Antibiotics (Basel, Switzerland)‎
  • 2021‎

Acholeplasma (A.) laidlawii is an opportunistic pathogen with the ability to disseminate resistance determinants to antibiotics; however, its resistance to macrolides has been less studied. The aim of the present study was to characterize the mechanisms responsible for the resistance to macrolides, tiamulin and lincomycin found in a strain of A. laidlawii isolated from a pig with pneumonia. MICs of erythromycin, 15- and 16-membered macrolides, tiamulin and lincomycin were determined by microdilution method with and without reserpine, an inhibitor of ABC efflux pumps and regions of the genome were sequenced. Reserpine only decreased lincomycin MIC but it did not change the MICs of macrolides and tiamulin. The analysis of the DNA sequence of 23S rRNA showed nucleotide substitutions at eight different positions, although none of them were at positions previously related to macrolide resistance. Five mutations were found in the L22 protein, one of them at the stop codon. In addition, two mutations were found in the amino acid sequence of L4. The combination of multiple mutations in the ribosomal proteins L22 and L4 together with substitutions in 23S rRNA DNA sequence was associated with the resistance to macrolides, the pleuromutilin and lincomycin in the studied A. laidlawii strain.


Borrelidins C-E: New Antibacterial Macrolides from a Saltern-Derived Halophilic Nocardiopsis sp.

  • Jungwoo Kim‎ et al.
  • Marine drugs‎
  • 2017‎

Chemical investigation of a halophilic actinomycete strain belonging to the genus Nocardiopsis inhabiting a hypersaline saltern led to the discovery of new 18-membered macrolides with nitrile functionality, borrelidins C-E (1-3), along with a previously reported borrelidin (4). The planar structures of borrelidins C-E, which are new members of the rare borrelidin class of antibiotics, were elucidated by NMR, mass, IR, and UV spectroscopic analyses. The configurations of borrelidines C-E were determined by the interpretation of ROESY NMR spectra, J-based configuration analysis, a modified Mosher's method, and CD spectroscopic analysis. Borrelidins C and D displayed inhibitory activity, particularly against the Gram-negative pathogen Salmonella enterica, and moderate cytotoxicity against the SNU638 and K562 carcinoma cell lines.


Luteolin increases susceptibility to macrolides by inhibiting MsrA efflux pump in Trueperella pyogenes.

  • Yuru Guo‎ et al.
  • Veterinary research‎
  • 2022‎

Trueperella pyogenes (T. pyogenes) is an opportunistic pathogen associated with a variety of diseases in many domestic animals. Therapeutic treatment options for T. pyogenes infections are becoming limited due to antimicrobial resistance, in which efflux pumps play an important role. This study aims to evaluate the inhibitory activity of luteolin, a natural flavonoid, on the MsrA efflux pump and investigate its mechanism. The results of antimicrobial susceptibility testing indicated that the susceptibility of msrA-positive T. pyogenes isolates to six macrolides increased after luteolin treatment, while the susceptibility of msrA-negative isolates showed no change after luteolin treatment. It is suspected that luteolin may increase the susceptibility of T. pyogenes isolates by inhibiting MsrA activity. After 1/2 MIC luteolin treatment for 36 h, the transcription level of the msrA gene and the expression level of the MsrA protein decreased by 55.0-97.7% and 36.5-71.5%, respectively. The results of an affinity test showed that the equilibrium dissociation constant (KD) of luteolin and MsrA was 6.462 × 10-5 M, and hydrogen bonding was predominant in the interaction of luteolin and MsrA. Luteolin may inhibit the ATPase activity of the MsrA protein, resulting in its lack of an energy source. The current study illustrates the effect of luteolin on MsrA in T. pyogenes isolates and provides insight into the development of luteolin as an innovative agent in combating infections caused by antimicrobial-resistant bacteria.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: