Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 491 papers

Continental monophyly and molecular divergence of Peninsular Malaysia's Macaca fascicularis fascicularis.

  • Muhammad Abu Bakar Abdul-Latiff‎ et al.
  • BioMed research international‎
  • 2014‎

The phylogenetic relationships of long-tailed macaque (Macaca fascicularis fascicularis) populations distributed in Peninsular Malaysia in relation to other regions remain unknown. The aim of this study was to reveal the phylogeography and population genetics of Peninsular Malaysia's M. f. fascicularis based on the D-loop region of mitochondrial DNA. Sixty-five haplotypes were detected in all populations, with only Vietnam and Cambodia sharing four haplotypes. The minimum-spanning network projected a distant relationship between Peninsular Malaysian and insular populations. Genetic differentiation (F(ST), Nst) results suggested that the gene flow among Peninsular Malaysian and the other populations is very low. Phylogenetic tree reconstructions indicated a monophyletic clade of Malaysia's population with continental populations (NJ = 97%, MP = 76%, and Bayesian = 1.00 posterior probabilities). The results demonstrate that Peninsular Malaysia's M. f. fascicularis belonged to Indochinese populations as opposed to the previously claimed Sundaic populations. M. f. fascicularis groups are estimated to have colonized Peninsular Malaysia ~0.47 million years ago (MYA) directly from Indochina through seaways, by means of natural sea rafting, or through terrestrial radiation during continental shelf emersion. Here, the Isthmus of Kra played a central part as biogeographical barriers that then separated it from the remaining continental populations.


Mitogenomic phylogeny of the common long-tailed macaque (Macaca fascicularis fascicularis).

  • Rasmus Liedigk‎ et al.
  • BMC genomics‎
  • 2015‎

Long-tailed macaques (Macaca fascicularis) are an important model species in biomedical research and reliable knowledge about their evolutionary history is essential for biomedical inferences. Ten subspecies have been recognized, of which most are restricted to small islands of Southeast Asia. In contrast, the common long-tailed macaque (M. f. fascicularis) is distributed over large parts of the Southeast Asian mainland and the Sundaland region. To shed more light on the phylogeny of M. f. fascicularis, we sequenced complete mitochondrial (mtDNA) genomes of 40 individuals from all over the taxon's range, either by classical PCR-amplification and Sanger sequencing or by DNA-capture and high-throughput sequencing.


Dramatic transcriptomic differences in Macaca mulatta and Macaca fascicularis with Plasmodium knowlesi infections.

  • Anuj Gupta‎ et al.
  • Scientific reports‎
  • 2021‎

Plasmodium knowlesi, a model malaria parasite, is responsible for a significant portion of zoonotic malaria cases in Southeast Asia and must be controlled to avoid disease severity and fatalities. However, little is known about the host-parasite interactions and molecular mechanisms in play during the course of P. knowlesi malaria infections, which also may be relevant across Plasmodium species. Here we contrast P. knowlesi sporozoite-initiated infections in Macaca mulatta and Macaca fascicularis using whole blood RNA-sequencing and transcriptomic analysis. These macaque hosts are evolutionarily close, yet malaria-naïve M. mulatta will succumb to blood-stage infection without treatment, whereas malaria-naïve M. fascicularis controls parasitemia without treatment. This comparative analysis reveals transcriptomic differences as early as the liver phase of infection, in the form of signaling pathways that are activated in M. fascicularis, but not M. mulatta. Additionally, while most immune responses are initially similar during the acute stage of the blood infection, significant differences arise subsequently. The observed differences point to prolonged inflammation and anti-inflammatory effects of IL10 in M. mulatta, while M. fascicularis undergoes a transcriptional makeover towards cell proliferation, consistent with its recovery. Together, these findings suggest that timely detection of P. knowlesi in M. fascicularis, coupled with control of inflammation while initiating the replenishment of key cell populations, helps contain the infection. Overall, this study points to specific genes and pathways that could be investigated as a basis for new drug targets that support recovery from acute malaria.


The cerebral artery in cynomolgus monkeys (Macaca fascicularis).

  • Keiichi Tsuji‎ et al.
  • Experimental animals‎
  • 2022‎

Cerebral artery structure has not been extensively studied in primates. The aim of this study was to examine the cerebrovascular anatomy of cynomolgus monkeys (Macaca fascicularis), which are one of the most commonly used primates in medical research on human diseases, such as cerebral infarction and subarachnoid hemorrhage. In this study, we investigated the anatomy and diameter of cerebral arteries from 48 cynomolgus monkey brain specimens. We found three anatomical differences in the vascular structure of this species compared to that in humans. First, the distal anterior cerebral artery is single. Second, the pattern in which both the anterior inferior cerebellar artery and posterior inferior cerebellar artery branch from the basilar artery is the most common. Third, the basilar artery has the largest diameter among the major arteries. We expect that this anatomical information will aid in furthering research on cerebrovascular disease using cynomolgus monkeys.


Whole-genome sequence of Macaca fascicularis: liver tissue.

  • Eun-Hye Seo‎ et al.
  • BMC genomic data‎
  • 2023‎

Thrombocytopenia is a condition that causes a low amount of blood platelets. Platelets are blood cells that play an essential role in blood coagulation. Therefore, thrombocytopenia can put the patient at risk for mild to severe bleeding. Thrombocytopenia is caused by a decrease in platelet production in the bone marrow or by a drug or immune system problem when production is normal. In particular, in some ASO-induced thrombocytopenia, the mechanism is not clear. Therefore, whole genome sequencing (WGS) was performed to discover genetic differences that affect thrombocytopenia and individual susceptibility to drugs between normal and reduced platelet monkeys despite administering the same ASO.


Gene expression dataset for whole cochlea of Macaca fascicularis.

  • Hideki Mutai‎ et al.
  • Scientific reports‎
  • 2018‎

Macaca fascicularis is a highly advantageous model in which to study human cochlea with regard to both evolutionary proximity and physiological similarity of the auditory system. To better understand the properties of primate cochlear function, we analyzed the genes predominantly expressed in M. fascicularis cochlea. We compared the cochlear transcripts obtained from an adult male M. fascicularis by macaque and human GeneChip microarrays with those in multiple macaque and human tissues or cells and identified 344 genes with expression levels more than 2-fold greater than in the other tissues. These "cochlear signature genes" included 35 genes responsible for syndromic or nonsyndromic hereditary hearing loss. Gene set enrichment analysis revealed groups of genes categorized as "ear development" and "ear morphogenesis" in the top 20 gene ontology categories in the macaque and human arrays, respectively. This dataset will facilitate both the study of genes that contribute to primate cochlear function and provide insight to discover novel genes associated with hereditary hearing loss that have yet to be established using animal models.


Clinical recovery of Macaca fascicularis infected with Plasmodium knowlesi.

  • Mariko S Peterson‎ et al.
  • Malaria journal‎
  • 2021‎

Kra monkeys (Macaca fascicularis), a natural host of Plasmodium knowlesi, control parasitaemia caused by this parasite species and escape death without treatment. Knowledge of the disease progression and resilience in kra monkeys will aid the effective use of this species to study mechanisms of resilience to malaria. This longitudinal study aimed to define clinical, physiological and pathological changes in kra monkeys infected with P. knowlesi, which could explain their resilient phenotype.


Postdispersal nepotism in male long-tailed macaques (Macaca fascicularis).

  • Livia Gerber‎ et al.
  • Ecology and evolution‎
  • 2016‎

Cooperative behaviors are promoted by kin selection if the costs to the actor are smaller than the fitness benefits to the recipient, weighted by the coefficient of relatedness. In primates, cooperation occurs primarily among female dyads. Due to male dispersal before sexual maturity in many primate species, however, it is unknown whether there are sufficient opportunities for selective tolerance and occasional coalitionary support for kin selection to favor male nepotistic support. We studied the effect of the presence of male kin on correlates of male reproductive success (residence time, duration of high dominance rank) in non-natal male long-tailed macaques (Macaca fascicularis). We found that "related" (i.e., related at the half-sibling level or higher) males in a group have a significantly higher probability to remain in the non-natal group compared to males without relatives. Moreover, males stayed longer in a group when a relative was present at group entry or joined the same group within 3 months upon arrival. Males with co-residing relatives also maintained a high rank for longer than those without. To our knowledge, this is the first demonstration of a potential nepotistic effect on residence and rank maintenance among non-natal males in a social system without long-term alliances.


Novel liver fibrosis model in Macaca fascicularis induced by thioacetamide.

  • Megumi Matsuo‎ et al.
  • Scientific reports‎
  • 2020‎

Although transplantation is the only definitive treatment for liver cirrhosis, there remains a shortage of donors, necessitating that novel treatments be developed. We aimed to establish a liver fibrosis model in Macaca fascicularis that can help accelerate preclinical research. Liver fibrosis was induced by administering thioacetamide (TAA) and carbon tetrachloride (CCl4). Analysis of residual liver function and fibrosis progression was based on clinical indices, such as the Child-Pugh score or fibrotic markers, besides histology. TAA-induced marked fibrosis, whereas CCl4 did not induce fibrosis. Concerning residual liver function, both of TAA and CCl4 worsened the indices of the Child-Pugh score, but only the TAA model increased the retention ratio of indocyanine green. The TAA-induced fibrosis model in Macaca fascicularis worsens fibrosis and residual liver function, mimicking Child-Pugh grade B. Given that our model was evaluated by clinical indices, it could be applicable to preclinical research.


Long-acting reversible contraception with etonogestrel implants in female macaques (Macaca mulatta and Macaca fascicularis).

  • Annemiek Maaskant‎ et al.
  • Frontiers in veterinary science‎
  • 2023‎

Contraception is often required for management and population control purposes in group-housed and free-roaming non-human primates. Long-acting reversible contraceptives, including subdermal progestin-releasing implants, are preferred as they eliminate challenges associated with frequent administration. Etonogestrel (ENG)-releasing subdermal implants are reversible and long-acting for a minimum of 3 years, and are commercially available for human use as Implanon® or Nexplanon®.


Single nucleotide polymorphisms (SNPs) are highly conserved in rhesus (Macaca mulatta) and cynomolgus (Macaca fascicularis) macaques.

  • Summer L Street‎ et al.
  • BMC genomics‎
  • 2007‎

Macaca fascicularis (cynomolgus or longtail macaques) is the most commonly used non-human primate in biomedical research. Little is known about the genomic variation in cynomolgus macaques or how the sequence variants compare to those of the well-studied related species, Macaca mulatta (rhesus macaque). Previously we identified single nucleotide polymorphisms (SNPs) in portions of 94 rhesus macaque genes and reported that Indian and Chinese rhesus had largely different SNPs. Here we identify SNPs from some of the same genomic regions of cynomolgus macaques (from Indochina, Indonesia, Mauritius and the Philippines) and compare them to the SNPs found in rhesus.


Mapping of mitochondrial ferritin in the brainstem of Macaca fascicularis.

  • Mingchun Yang‎ et al.
  • Neuroscience‎
  • 2016‎

Mitochondrial ferritin (FtMt), a recently-studied iron storage protein, which we suspect is an important defense against oxidative stress in neurons and elsewhere. The 242-amino acid FtMt precursor protein is cleaved to mature protein (of molecular weight about 22-kDa) in the mitochondrial matrix. Compared with the ubiquitously expressed traditional ferritin (H-ferritin and L-ferritin), FtMt has been found in fewer locations including the testis, heart and brain. Previous studies have reported that the expression of FtMt in mouse and human brain is predominantly localized to neurons and partly to glial cells, and FtMt exerts protective effects on neurons by maintaining normal function and regulates apoptosis in Alzheimer's disease and Parkinson's disease. To find out the function of FtMt in neurodegenerative disease, we had a novel antibody made against human FtMt and characterized it via Western blot analysis, immunoabsorption testing, and double immunofluorescence histochemistry. Then we used this new FtMt antibody to map the distribution of FtMt in the monkey brainstem. We demonstrated widespread distribution of FtMt immunoreactivity throughout the monkey brainstem, with variable staining intensity. FtMt immunoreactivity was observed in the extrapyramidal system, sensory trigeminal nerve nuclei, some motor nuclei including ambiguous nucleus, dorsal motor nucleus of the vagus and hypoglossal nucleus, and some dorsal column nuclei such as the gracile nucleus and cuneate nucleus. In addition, double immunohistochemical stainings confirmed that FtMt immunoreactivity was co-localized with catecholaminergic neurons in the locus coeruleus (63.64%), substantia nigra pars compacta (69.18%), and ventral tegmental area (56.89%). The distribution of FtMt which we found in the brainstem implies possible involvement of FtMt in several physiological mechanisms, especially in the catecholaminergic neurons, and the possibility of significant involvement in neurodegenerative disease.


Isolation and characterization of cynomolgus macaque (Macaca fascicularis) cytomegalovirus (CyCMV).

  • Aruna P N Ambagala‎ et al.
  • Virology‎
  • 2011‎

Cynomolgus macaques have been widely used as an animal model in preclinical biomedical research and are becoming more popular among HIV/SIV vaccine researchers. Here we report the isolation and characterization of a cytomegalovirus from cynomolgus macaques (CyCMV). CyCMV was isolated from a healthy captive-bred 4-year-old cynomolgus macaque of Filipino origin. The virus was identified by its characteristic growth properties in cell culture, ultrastructural morphology and sequence of viral DNA polymerase and glycoprotein B (gB). CyCMV gB shows 77% identity and 88% homology to rhesus cytomegalovirus (RhCMV) gB and 58% identity and 76% homology to human cytomegalovirus gB at the amino acid level. Phylogenetic analysis using known CMV gB protein sequences show that CyCMV is more closely related to RhCMV than to other primate CMVs. CyCMV down-regulates MHC class I expression on infected cells and we show that the colony-bred cynomolgus macaques have detectable CyCMV-specific humoral and cell-mediated immune responses.


Large-scale analysis of Macaca fascicularis transcripts and inference of genetic divergence between M. fascicularis and M. mulatta.

  • Naoki Osada‎ et al.
  • BMC genomics‎
  • 2008‎

Cynomolgus macaques (Macaca fascicularis) are widely used as experimental animals in biomedical research and are closely related to other laboratory macaques, such as rhesus macaques (M. mulatta). We isolated 85,721 clones and determined 9407 full-insert sequences from cynomolgus monkey brain, testis, and liver. These sequences were annotated based on homology to human genes and stored in a database, QFbase http://genebank.nibio.go.jp/qfbase/.


The mutual influences between depressed Macaca fascicularis mothers and their infants.

  • Qinming Zhou‎ et al.
  • PloS one‎
  • 2014‎

To assess the influence of infant rearing on the behavior of depressed adult female Macaca fascicularis and the influence of depressed infant-rearing adult female Macaca fascicularis on their infants in a free enclosure environment.


Identification and Characterization of MicroRNAs in Macaca fascicularis by EST Analysis.

  • Hao Yang‎ et al.
  • Comparative and functional genomics‎
  • 2012‎

MicroRNAs (miRNAs) are small noncoding RNAs which repress gene expression at the posttranscriptional level. In this study, an expressed sequence tag (EST)-based combined method was applied for the detection of miRNAs in Macaca fascicularis which is used as a model animal extensively in medical experiments, particularly those involved with neuroscience and disease. Initially, previously known miRNA sequences from metazoans were used to blast with the EST databases of Macaca fascicularis, and then a range of filtering criteria was conducted to remove some pseudo ones. At last a total of 8 novel conserved miRNAs were identified; their functions were further predicted and analyzed. Together, our study provides insight into miRNAs and their functions in Macaca fascicularis, indicating that the EST analysis is an efficient and affordable alternative approach for identifying novel miRNA candidates.


Characterization, isolation, and culture of spermatogonial stem cells in Macaca fascicularis.

  • Guo-Ping Mao‎ et al.
  • Asian journal of andrology‎
  • 2021‎

Spermatogonial stem cells (SSCs) have great applications in both reproductive and regenerative medicine. Primates including monkeys are very similar to humans with regard to physiology and pathology. Nevertheless, little is known about the isolation, the characteristics, and the culture of primate SSCs. This study was designed to identify, isolate, and culture monkey SSCs. Immunocytochemistry was used to identify markers for monkey SSCs. Glial cell line-derived neurotrophic factor family receptor alpha-1 (GFRA1)-enriched spermatogonia were isolated from monkeys, namely Macaca fascicularis (M. fascicularis), by two-step enzymatic digestion and magnetic-activated cell sorting, and they were cultured on precoated plates in the conditioned medium. Reverse transcription-polymerase chain reaction (RT-PCR), immunocytochemistry, and RNA sequencing were used to compare phenotype and transcriptomes in GFRA1-enriched spermatogonia between 0 day and 14 days of culture, and xenotransplantation was performed to evaluate the function of GFRA1-enriched spermatogonia. SSCs shared some phenotypes with rodent and human SSCs. GFRA1-enriched spermatogonia with high purity and viability were isolated from M. fascicularis testes. The freshly isolated cells expressed numerous markers for rodent SSCs, and they were cultured for 14 days. The expression of numerous SSC markers was maintained during the cultivation of GFRA1-enriched spermatogonia. RNA sequencing reflected a 97.3% similarity in global gene profiles between 0 day and 14 days of culture. The xenotransplantation assay indicated that the GFRA1-enriched spermatogonia formed colonies and proliferated in vivo in the recipient c-KitW/W (W) mutant mice. Collectively, GFRA1-enriched spermatogonia are monkey SSCs phenotypically both in vitro and in vivo. This study suggests that monkey might provide an alternative to human SSCs for basic research and application in human diseases.


Experimental infection of cynomolgus macaques (Macaca fascicularis) with aerosolized monkeypox virus.

  • Aysegul Nalca‎ et al.
  • PloS one‎
  • 2010‎

Monkeypox virus (MPXV) infection in humans results in clinical symptoms very similar to ordinary smallpox. Aerosol is a route of secondary transmission for monkeypox, and a primary route of smallpox transmission in humans. Therefore, an animal model for aerosol exposure to MPXV is needed to test medical countermeasures. To characterize the pathogenesis in cynomolgus macaques (Macaca fascicularis), groups of macaques were exposed to four different doses of aerosolized MPXV. Blood was collected the day before, and every other day after exposure and assessed for complete blood count (CBC), clinical chemistry analysis, and quantitative PCR. Macaques showed mild anorexia, depression, and fever on day 6 post-exposure. Lymphadenopathy, which differentiates monkeypox from smallpox, was observed in exposed macaques around day 6 post-exposure. CBC and clinical chemistries showed abnormalities similar to human monkeypox cases. Whole blood and throat swab viral loads peaked around day 10, and in survivors, gradually decreased until day 28 post-exposure. Survival was not dose dependent. As such, doses of 4 × 10(4) PFU, 1 × 10(5) PFU, or 1 × 10(6) PFU resulted in lethality for 70% of the animals, whereas a dose of 4 × 10(5) PFU resulted in 85% lethality. Overall, cynomolgus macaques exposed to aerosolized MPXV develop a clinical disease that resembles that of human monkeypox. These findings provide a strong foundation for the use of aerosolized MPXV exposure of cynomolgus macaques as an animal model to test medical countermeasures against orthopoxviruses.


Generation of haploid embryonic stem cells from Macaca fascicularis monkey parthenotes.

  • Hui Yang‎ et al.
  • Cell research‎
  • 2013‎

Recent success in the derivation of haploid embryonic stem cells (haESCs) from mouse via parthenogenesis and androgenesis has enabled genetic screening in mammalian cells and generation of gene-modified animals. However, whether haESCs can be derived from primates remains unknown. Here, we report the derivation of haESCs from parthenogenetic blastocysts of Macaca fascicularis monkeys. These cells, termed as PG-haESCs, are pluripotent and can differentiate to cells of three embryonic germ layers in vitro or in vivo. Interestingly, the haploidy of one monkey PG-haESC line (MPH1) is more stable compared with that of the other one (MPH2), as shown by the existence of haploid cells for more than 140 days without fluorescence-activated cell sorting (FACS) enrichment of haploid cells. Importantly, transgenic monkey PG-haESC lines can be generated by lentivirus- and piggyBac transposon-mediated gene transfer. Moreover, genetic screening is feasible in monkey PG-haESCs. Our results demonstrate that PG-haESCs can be generated from monkeys, providing an ideal tool for genetic analyses in primates.


Infinium monkeys: Infinium 450K array for the Cynomolgus macaque (Macaca fascicularis).

  • Mei-Lyn Ong‎ et al.
  • G3 (Bethesda, Md.)‎
  • 2014‎

The Infinium Human Methylation450 BeadChip Array (Infinium 450K) is a robust and cost-efficient survey of genome-wide DNA methylation patterns. Macaca fascicularis (Cynomolgus macaque) is an important disease model; however, its genome sequence is only recently published, and few tools exist to interrogate the molecular state of Cynomolgus macaque tissues. Although the Infinium 450K is a hybridization array designed to the human genome, the relative conservation between the macaque and human genomes makes its use in macaques feasible. Here, we used the Infinium 450K array to assay DNA methylation in 11 macaque muscle biopsies. We showed that probe hybridization efficiency was related to the degree of sequence identity between the human probes and the macaque genome sequence. Approximately 61% of the Human Infinium 450K probes could be reliably mapped to the Cynomolgus macaque genome and contain a CpG site of interest. We also compared the Infinium 450K data to reduced representation bisulfite sequencing data generated on the same samples and found a high level of concordance between the two independent methodologies, which can be further improved by filtering for probe sequence identity and mismatch location. We conclude that the Infinium 450K array can be used to measure the DNA methylome of Cynomolgus macaque tissues using the provided filters. We also provide a pipeline for validation of the array in other species using a simple BLAST-based sequence identify filter.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: