Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 495 papers

Lymphocytic Choriomeningitis Virus Infection, Australia.

  • Leon Caly‎ et al.
  • Emerging infectious diseases‎
  • 2022‎

During a mouse plague in early 2021, a farmer from New South Wales, Australia, sought treatment for aseptic meningitis and was subsequently diagnosed with locally acquired lymphocytic choriomeningitis virus infection. Whole-genome sequencing identified a divergent and geographically distinct lymphocytic choriomeningitis virus strain compared with other published sequences.


Lymphocytic Choriomeningitis Virus Infections and Seroprevalence, Southern Iraq.

  • Hussein Alburkat‎ et al.
  • Emerging infectious diseases‎
  • 2020‎

Acute febrile neurological infection cases in southern Iraq (N = 212) were screened for lymphocytic choriomeningitis virus (LCMV). Two LCMV IgM-positive serum samples and 2 cerebrospinal fluid samples with phylogenetically distinct LCMV strains were found. The overall LCMV seroprevalence was 8.8%. LCMV infections are common and associated with acute neurological disease in Iraq.


Noncytopathic clearance of lymphocytic choriomeningitis virus from the hepatocyte.

  • L G Guidotti‎ et al.
  • The Journal of experimental medicine‎
  • 1999‎

We have previously shown that interferon and tumor necrosis factor noncytopathically abolish hepatitis B virus (HBV) replication from the hepatocyte and kidney tubular epithelial cells in vivo. Here we show that a persistent lymphocytic choriomeningitis virus (LCMV) infection is cleared from the hepatocyte noncytopathically when the same cytokines are induced in the liver by antigen-nonspecific stimuli. These results indicate that, like HBV, LCMV is also susceptible to intracellular inactivation by cytokine-induced antiviral mechanisms that are operative in the hepatocyte. In contrast, LCMV is not cleared from intrahepatic nonparenchymal cells or splenocytes, indicating that, unlike the hepatocyte, these cells do not produce the factors required to inactivate LCMV. Antiviral mechanisms like these may have evolved to maintain the functional integrity of vital organs in the face of massive infection.


Solid organ transplant-associated lymphocytic choriomeningitis, United States, 2011.

  • Adam Macneil‎ et al.
  • Emerging infectious diseases‎
  • 2012‎

Three clusters of organ transplant-associated lymphocytic choriomeningitis virus (LCMV) transmissions have been identified in the United States; 9 of 10 recipients died. In February 2011, we identified a fourth cluster of organ transplant-associated LCMV infections. Diabetic ketoacidosis developed in the organ donor in December 2010; she died with generalized brain edema after a short hospitalization. Both kidneys, liver, and lung were transplanted to 4 recipients; in all 4, severe posttransplant illness developed; 2 recipients died. Through multiple diagnostic methods, we identified LCMV infection in all persons, including in at least 1 sample from the donor and 4 recipients by reverse transcription PCR, and sequences of a 396-bp fragment of the large segment of the virus from all 5 persons were identical. In this cluster, all recipients developed severe illness, but 2 survived. LCMV infection should be considered as a possible cause of severe posttransplant illness.


Reactive oxygen species delay control of lymphocytic choriomeningitis virus.

  • P A Lang‎ et al.
  • Cell death and differentiation‎
  • 2013‎

Cluster of differentiation (CD)8(+) T cells are like a double edged sword during chronic viral infections because they not only promote virus elimination but also induce virus-mediated immunopathology. Elevated levels of reactive oxygen species (ROS) have been reported during virus infections. However, the role of ROS in T-cell-mediated immunopathology remains unclear. Here we used the murine lymphocytic choriomeningitis virus to explore the role of ROS during the processes of virus elimination and induction of immunopathology. We found that virus infection led to elevated levels of ROS producing granulocytes and macrophages in virus-infected liver and spleen tissues that were triggered by the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Lack of the regulatory subunit p47phox of the NADPH oxidase diminished ROS production in these cells. While CD8(+) T cells exhibited ROS production that was independent of NADPH oxidase expression, survival and T-cell function was elevated in p47phox-deficient (Ncf1(-/-)) mice. In the absence of p47phox, enhanced T-cell immunity promoted virus elimination and blunted corresponding immunopathology. In conclusion, we find that NADPH-mediated production of ROS critically impairs the immune response, impacting elimination of virus and outcome of liver cell damage.


High diversity and ancient common ancestry of lymphocytic choriomeningitis virus.

  • Cesar G Albariño‎ et al.
  • Emerging infectious diseases‎
  • 2010‎

Lymphocytic choriomeningitis virus (LCMV) is the prototype of the family Arenaviridae. LCMV can be associated with severe disease in humans, and its global distribution reflects the broad dispersion of the primary rodent reservoir, the house mouse (Mus musculus). Recent interest in the natural history of the virus has been stimulated by increasing recognition of LCMV infections during pregnancy, and in clusters of LCMV-associated fatal illness among tissue transplant recipients. Despite its public health importance, little is known regarding the genetic diversity or distribution of virus variants. Genomic analysis of 29 LCMV strains collected from a variety of geographic and temporal sources showed these viruses to be highly diverse. Several distinct lineages exist, but there is little correlation with time or place of isolation. Bayesian analysis estimates the most recent common ancestor to be 1,000-5,000 years old, and this long history is consistent with complex phylogeographic relationships of the extant virus isolates.


Lymphocytic choriomeningitis virus infection in FVB mouse produces hemorrhagic disease.

  • Frederick J Schnell‎ et al.
  • PLoS pathogens‎
  • 2012‎

The viral family Arenaviridae includes a number of viruses that can cause hemorrhagic fever in humans. Arenavirus infection often involves multiple organs and can lead to capillary instability, impaired hemostasis, and death. Preclinical testing for development of antiviral or therapeutics is in part hampered due to a lack of an immunologically well-defined rodent model that exhibits similar acute hemorrhagic illness or sequelae compared to the human disease. We have identified the FVB mouse strain, which succumbs to a hemorrhagic fever-like illness when infected with lymphocytic choriomeningitis virus (LCMV). FVB mice infected with LCMV demonstrate high mortality associated with thrombocytopenia, hepatocellular and splenic necrosis, and cutaneous hemorrhage. Investigation of inflammatory mediators revealed increased IFN-γ, IL-6 and IL-17, along with increased chemokine production, at early times after LCMV infection, which suggests that a viral-induced host immune response is the cause of the pathology. Depletion of T cells at time of infection prevented mortality in all treated animals. Antisense-targeted reduction of IL-17 cytokine responsiveness provided significant protection from hemorrhagic pathology. F1 mice derived from FVB×C57BL/6 mating exhibit disease signs and mortality concomitant with the FVB challenged mice, extending this model to more widely available immunological tools. This report offers a novel animal model for arenavirus research and pre-clinical therapeutic testing.


CD164 is a host factor for lymphocytic choriomeningitis virus entry.

  • Mark J G Bakkers‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2022‎

Lymphocytic choriomeningitis virus (LCMV) is a rodent-borne zoonotic arenavirus that causes congenital abnormalities and can be fatal for transplant recipients. Using a genome-wide loss-of-function screen, we identify host factors required for LCMV entry into cells. We identify the lysosomal mucin CD164, glycosylation factors, the heparan sulfate biosynthesis machinery, and the known receptor alpha-dystroglycan (α-DG). Biochemical analysis revealed that the LCMV glycoprotein binds CD164 at acidic pH and requires a sialylated glycan at residue N104. We demonstrate that LCMV entry proceeds by the virus switching binding from heparan sulfate or α-DG at the plasma membrane to CD164 prior to membrane fusion, thus identifying additional potential targets for therapeutic intervention.


Visualizing lymphocytic choriomeningitis virus infection in cells and living mice.

  • Yuxi Wen‎ et al.
  • iScience‎
  • 2022‎

Mammarenavirus are a large family of enveloped negative-strand RNA viruses that include several agents responsible for severe hemorrhagic fevers. Until now, no FDA-licensed drug has been admitted for treating an arenavirus infection, and only few effective anti-arenavirus drugs have been tested in vivo. In this work, we designed a recombinant reporter arenavirus lymphocytic choriomeningitis virus that stably expressed nanoluciferase (LCMV-Nluc). The LCMV-Nluc was proved to share similar biological properties with wild-type LCMV and the Nluc intensity reliably reflected viral replication both in vitro and in vivo. Replication of the Nluc-encoding virus in living mice can be visualized by real-time bioluminescent imaging, and bioluminescence can be detected in a variety of organs of infected mice. This work provides a novel approach that enables real-time study of the arenavirus infection and is a convenient and valuable tool for screening of compounds that are active against arenaviruses in vitro and in living mice.


Lymphocytic responses and the gradual hippocampal neuron loss following infection with lymphocytic choriomeningitis virus (LCMV).

  • B D Pearce‎ et al.
  • Journal of neuroimmunology‎
  • 1999‎

Infection of rats with LCMV is known to cause a bi-phasic neurodegeneration characterized by acute T lymphocyte-mediated cerebellar damage, followed by gradual hippocampal neuron loss that occurs by an undefined mechanism. We found infiltration of CD8 + T-cells (but not CD4 + or NK cells) in the hippocampus which correlated with the acute phase, but not the chronic hippocampal degenerative phase. While immunosuppression of T lymphocytes protected the cerebellum and revealed the infection of corticohippocampal glia, the degeneration in the hippocampus was unabated. These data suggest that T lymphocytes control glial infection and mediate degeneration in the cerebellum but not the hippocampus.


Structural basis for antibody-mediated neutralization of lymphocytic choriomeningitis virus.

  • Alex Moon-Walker‎ et al.
  • Cell chemical biology‎
  • 2023‎

The mammarenavirus lymphocytic choriomeningitis virus (LCMV) is a globally distributed zoonotic pathogen that can be lethal in immunocompromised patients and can cause severe birth defects if acquired during pregnancy. The structure of the trimeric surface glycoprotein, essential for entry, vaccine design, and antibody neutralization, remains unknown. Here, we present the cryoelectron microscopy (cryo-EM) structure of the LCMV surface glycoprotein (GP) in its trimeric pre-fusion assembly both alone and in complex with a rationally engineered monoclonal neutralizing antibody termed 18.5C-M28 (M28). Additionally, we show that passive administration of M28, either as a prophylactic or therapeutic, protects mice from LCMV clone 13 (LCMVcl13) challenge. Our study illuminates not only the overall structural organization of LCMV GP and the mechanism for its inhibition by M28 but also presents a promising therapeutic candidate to prevent severe or fatal disease in individuals who are at risk of infection by a virus that poses a threat worldwide.


Lymphocytic Choriomeningitis Virus Alters the Expression of Male Mouse Scent Proteins.

  • Michael B A Oldstone‎ et al.
  • Viruses‎
  • 2021‎

Mature male mice produce a particularly high concentration of major urinary proteins (MUPs) in their scent marks that provide identity and status information to conspecifics. Darcin (MUP20) is inherently attractive to females and, by inducing rapid associative learning, leads to specific attraction to the individual male's odour and location. Other polymorphic central MUPs, produced at much higher abundance, bind volatile ligands that are slowly released from a male's scent marks, forming the male's individual odour that females learn. Here, we show that infection of C57BL/6 males with LCMV WE variants (v2.2 or v54) alters MUP expression according to a male's infection status and ability to clear the virus. MUP output is substantially reduced during acute adult infection with LCMV WE v2.2 and when males are persistently infected with LCMV WE v2.2 or v54. Infection differentially alters expression of darcin and, particularly, suppresses expression of a male's central MUP signature. However, following clearance of acute v2.2 infection through a robust virus-specific CD8 cytotoxic T cell response that leads to immunity to the virus, males regain their normal mature male MUP pattern and exhibit enhanced MUP output by 30 days post-infection relative to uninfected controls. We discuss the likely impact of these changes in male MUP signals on female attraction and mate selection. As LCMV infection during pregnancy can substantially reduce embryo survival and lead to lifelong infection in surviving offspring, we speculate that females use LCMV-induced changes in MUP expression both to avoid direct infection from a male and to select mates able to develop immunity to local variants that will be inherited by their offspring.


Semi-Functional Quantitative Flow Cytometry Assay for Lymphocytic Choriomeningitis Virus Titration.

  • Young Ho Ban‎ et al.
  • Immune network‎
  • 2017‎

Quantitative PCR and plaque assay are powerful virological techniques used to measure the load of defective or infectious virus in mouse and human. However, these methods display limitations such as cross contamination and long run-time. Here, we describe a novel technique termed as semi-functional quantitative flow cytometry (SFQF) for the accurate estimation of the quantity of infectious lymphocytic choriomeningitis virus (LCMV). LCMV titration method using flow cytometry was previously developed but has technical shortcomings, owing to the less optimized parameters such as cell overgrowth, plate scale, and detection threshold. Therefore, we first established optimized conditions for SFQF assay using LCMV nucleoprotein (NP)-specific antibody to evaluate the threshold of the virus detection range in the plaque assay. We subsequently demonstrated that the optimization of the method increased the sensitivity of virus detection. We revealed several new advantages of SFQF assay, which overcomes some of the previously contentious points, and established an upgraded version of the previously reported flow cytometric titration assay. This method extends the detection scale to the level of single cell, allowing extension of its application for in vivo detection of infected cells and their phenotypic analysis. Thus, SFQF assay may serve as an alternative analytical tool for ensuring the reliability of LCMV titration and can be used with other types of viruses using target-specific antibodies.


PDIA4 Is a Host Factor Important for Lymphocytic Choriomeningitis Virus Infection.

  • Mengwei Xu‎ et al.
  • Viruses‎
  • 2023‎

Mammalian arenaviruses are rodent-borne zoonotic viruses, some of which can cause fatal hemorrhagic diseases in humans. The first discovered arenavirus, lymphocytic choriomeningitis virus (LCMV), has a worldwide distribution and can be fatal for transplant recipients. However, no FDA-approved drugs or vaccines are currently available. In this study, using a quantitative proteomic analysis, we identified a variety of host factors that could be needed for LCMV infection, among which we found that protein disulfide isomerase A4 (PDIA4), a downstream factor of endoplasmic reticulum stress (ERS), is important for LCMV infection. Biochemical analysis revealed that LCMV glycoprotein was the main viral component accounting for PDIA4 upregulation. The inhibition of ATF6-mediated ERS could prevent the upregulation of PDIA4 that was stimulated by LCMV infection. We further found that PDIA4 can affect the LCMV viral RNA synthesis processes and release. In summary, we conclude that PDIA4 could be a new target for antiviral drugs against LCMV.


Characterization of host proteins interacting with the lymphocytic choriomeningitis virus L protein.

  • Kseniya Khamina‎ et al.
  • PLoS pathogens‎
  • 2017‎

RNA-dependent RNA polymerases (RdRps) play a key role in the life cycle of RNA viruses and impact their immunobiology. The arenavirus lymphocytic choriomeningitis virus (LCMV) strain Clone 13 provides a benchmark model for studying chronic infection. A major genetic determinant for its ability to persist maps to a single amino acid exchange in the viral L protein, which exhibits RdRp activity, yet its functional consequences remain elusive. To unravel the L protein interactions with the host proteome, we engineered infectious L protein-tagged LCMV virions by reverse genetics. A subsequent mass-spectrometric analysis of L protein pulldowns from infected human cells revealed a comprehensive network of interacting host proteins. The obtained LCMV L protein interactome was bioinformatically integrated with known host protein interactors of RdRps from other RNA viruses, emphasizing interconnected modules of human proteins. Functional characterization of selected interactors highlighted proviral (DDX3X) as well as antiviral (NKRF, TRIM21) host factors. To corroborate these findings, we infected Trim21-/- mice with LCMV and found impaired virus control in chronic infection. These results provide insights into the complex interactions of the arenavirus LCMV and other viral RdRps with the host proteome and contribute to a better molecular understanding of how chronic viruses interact with their host.


Adenovirus Vector Vaccination Impacts NK Cell Rheostat Function following Lymphocytic Choriomeningitis Virus Infection.

  • Eryn Blass‎ et al.
  • Journal of virology‎
  • 2018‎

Natural killer (NK) cells respond rapidly as a first line of defense against infectious pathogens. In addition, NK cells may provide a "rheostat" function and have been shown to reduce the magnitude of antigen-specific T cell responses following infection to avoid immunopathology. However, it remains unknown whether NK cells similarly modulate vaccine-elicited T cell responses following virus challenge. We used the lymphocytic choriomeningitis virus (LCMV) clone 13 infection model to address whether NK cells regulate T cell responses in adenovirus vector-vaccinated mice following challenge. As expected, NK cell depletion in unvaccinated mice resulted in increased virus-specific CD4+ and CD8+ T cell responses and immunopathology following LCMV challenge. In contrast, NK cell depletion had minimal to no impact on antigen-specific T cell responses in mice that were vaccinated with an adenovirus serotype 5 (Ad5)-GP vector prior to LCMV challenge. Moreover, NK cell depletion in vaccinated mice prior to challenge did not result in immunopathology and did not compromise protective efficacy. These data suggest that adenovirus vaccine-elicited T cells may be less sensitive to NK cell rheostat regulation than T cells primed by LCMV infection.IMPORTANCE Recent data have shown that NK cell depletion leads to enhanced virus-elicited T cell responses that can result in severe immunopathology following LCMV infection in mice. In this study, we observed that NK cells exerted minimal to no impact on vaccine-elicited T cells following LCMV challenge, suggesting that adenovirus vaccine-elicited T cells may be less subject to NK cell regulation. These data contribute to our understanding of NK cell regulatory functions and T cell-based vaccines.


Accelerated and improved quantification of lymphocytic choriomeningitis virus (LCMV) titers by flow cytometry.

  • Darlynn Korns Johnson‎ et al.
  • PloS one‎
  • 2012‎

Lymphocytic choriomeningitis virus (LCMV), a natural murine pathogen, is a member of the Arenavirus family, may cause atypical meningitis in humans, and has been utilized extensively as a model pathogen for the study of virus-induced disease and immune responses. Historically, viral titers have been quantified by a standard plaque assay, but for non-cytopathic viruses including LCMV this requires lengthy incubation, so results cannot be obtained rapidly. Additionally, due to specific technical constraints of the plaque assay including the visual detection format, it has an element of subjectivity along with limited sensitivity. In this study, we describe the development of a FACS-based assay that utilizes detection of LCMV nucleoprotein (NP) expression in infected cells to determine viral titers, and that exhibits several advantages over the standard plaque assay. We show that the LCMV-NP FACS assay is an objective and reproducible detection method that requires smaller sample volumes, exhibits a ∼20-fold increase in sensitivity to and produces results three times faster than the plaque assay. Importantly, when applied to models of acute and chronic LCMV infection, the LCMV-NP FACS assay revealed the presence of infectious virus in samples that were determined to be negative by plaque assay. Therefore, this technique represents an accelerated, enhanced and objective alternative method for detection of infectious LCMV that is amenable to adaptation for other viral infections as well as high throughput diagnostic platforms.


Prevalence and Risk Factors for Lymphocytic Choriomeningitis Virus Infection in Continental Croatian Regions.

  • Tatjana Vilibic-Cavlek‎ et al.
  • Tropical medicine and infectious disease‎
  • 2021‎

Lymphocytic choriomeningitis virus (LCMV) is a neglected human pathogen associated with aseptic meningitis, severe systemic infections in immunocompromised persons, and congenital anomalies. Data on the prevalence of LCMV infections are scarce. We analyzed the seroprevalence of LCMV in continental Croatian regions. A total of 338 serum samples of professionally exposed (forestry workers, hunters, agriculture workers in contact with rodents) and non-exposed populations (general population, pregnant women) were tested for the presence of LCMV antibodies using indirect immunofluorescence assay. No participants reported recent febrile disease. LCMV IgG antibodies were detected in 23/6.8% of participants: 9.8% exposed persons and 5.1% non-exposed persons (6.1% in the general population and 3.9% in pregnant women). No participants were LCMV IgM positive. Although higher seropositivity was found in males compared to females (8.9% vs. 4.7%), inhabitants of suburban/rural areas compared to inhabitants of urban areas (9.2% vs. 4.6%), and persons who used well as a source of water compared to those who used tap (11.4% vs. 5.6%), these differences did not reach statistical significance. Results of logistic regression showed that the presence of rodents in the house/yard and cleaning rodent nests were associated with an elevated risk for LCMV infection (OR = 2.962, 95% CI = 1.019-8.607).


Crystal structures of Lymphocytic choriomeningitis virus endonuclease domain complexed with diketo-acid ligands.

  • Magali Saez-Ayala‎ et al.
  • IUCrJ‎
  • 2018‎

The Arenaviridae family, together with the Bunyaviridae and Orthomyxoviridae families, is one of the three negative-stranded RNA viral families that encode an endonuclease in their genome. The endonuclease domain is at the N-terminus of the L protein, a multifunctional protein that includes the RNA-dependent RNA polymerase. The synthesis of mRNA in arenaviruses is a process that is primed by capped nucleotides that are 'stolen' from the cellular mRNA by the endonuclease domain in cooperation with other domains of the L protein. This molecular mechanism has been demonstrated previously for the endonuclease of the prototype Lymphocytic choriomeningitis virus (LCMV). However, the mode of action of this enzyme is not fully understood as the original structure did not contain catalytic metal ions. The pivotal role played by the cap-snatching process in the life cycle of the virus and the highly conserved nature of the endonuclease domain make it a target of choice for the development of novel antiviral therapies. Here, the binding affinities of two diketo-acid (DKA) compounds (DPBA and L-742,001) for the endonuclease domain of LCMV were evaluated using biophysical methods. X-ray structures of the LCMV endonuclease domain with catalytic ions in complex with these two compounds were determined, and their efficacies were assessed in an in vitro endonuclease-activity assay. Based on these data and computational simulation, two new DKAs were synthesized. The LCMV endonuclease domain exhibits a good affinity for these DKAs, making them a good starting point for the design of arenavirus endonuclease inhibitors. In addition to providing the first example of an X-ray structure of an arenavirus endonuclease incorporating a ligand, this study provides a proof of concept that the design of optimized inhibitors against the arenavirus endonuclease is possible.


New Perspective on the Geographic Distribution and Evolution of Lymphocytic Choriomeningitis Virus, Central Europe.

  • Alena Fornůsková‎ et al.
  • Emerging infectious diseases‎
  • 2021‎

Lymphocytic choriomeningitis virus (LCMV) is an Old World mammarenavirus found worldwide because of its association with the house mouse. When LCMV spills over to immunocompetent humans, the virus can cause aseptic meningitis; in immunocompromised persons, systemic infection and death can occur. Central Europe is a strategic location for the study of LCMV evolutionary history and host specificity because of the presence of a hybrid zone (genetic barrier) between 2 house mouse subspecies, Mus musculus musculus and M. musculus domesticus. We report LCMV prevalence in natural mouse populations from a Czech Republic-Germany transect and genomic characterization of 2 new LCMV variants from the Czech Republic. We demonstrate that the main division in the LCMV phylogenetic tree corresponds to mouse host subspecies and, when the virus is found in human hosts, the mouse subspecies found at the spillover location. Therefore, LCMV strains infecting humans can be predicted by the genetic structure of house mice.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: