Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,665 papers

CD137+ tumor infiltrating lymphocytes predicts ovarian cancer survival.

  • Elizabeth A Tubridy‎ et al.
  • Gynecologic oncology‎
  • 2024‎

Ovarian cancer (OC) is the leading cause of death from gynecologic malignancy in the United States, and biomarkers of patient outcomes are limited. Data using immunohistochemical (IHC) analysis are mixed regarding whether and which tumor infiltrating lymphocytes (TILs) impact survival, and IHC does not adequately quantify rare cell populations, including CD137+ (4-1BB) tumor-reactive TILs. Our study investigates if a higher percentage of CD3+ CD137+ TILs is associated with improved overall survival (OS) in OC.


Generating CAR T cells from tumor-infiltrating lymphocytes.

  • Jane K Mills‎ et al.
  • Therapeutic advances in vaccines and immunotherapy‎
  • 2021‎

Background: Tumor-infiltrating lymphocytes (TILs) and chimeric antigen receptor (CAR) T-cell therapies have demonstrated promising, though limited, efficacy against melanoma. Methods: We designed a model system to explore the efficacy of dual specific T cells derived from melanoma patient TILs by transduction with a Her2-specific CAR. Results: Metastatic melanoma cells in our biobank constitutively expressed Her2 antigen. CAR-TIL produced greater amounts of IFN compared with parental TIL, when co-cultured with Her2 expressing tumor lines, including autologous melanoma tumor lines, although no consistent increase in cytotoxicity by TIL was afforded by expression of a CAR. Results of an in vivo study in NSG mice demonstrated tumor shrinkage when CAR-TILs were used in an adoptive cell therapy protocol. Conclusion: Potential limitations of transduced TIL in our study included limited proliferative potential and a terminally differentiated phenotype, which would need addressing in further work before consideration of clinical translation.


Tumor-Associated Lymphatics Upregulate MHC-II to Suppress Tumor-Infiltrating Lymphocytes.

  • Claire Y Li‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Steady-state lymphatic endothelial cells (LECs) can induce peripheral tolerance by presenting endogenous antigens on MHC class I (MHC-I) molecules. Recent evidence suggests that lymph node LECs can cross-present tumor antigens on MHC-I to suppress tumor-specific CD8+ T cells. Whether LECs can act as immunosuppressive cells in an MHC-II dependent manner in the local tumor microenvironment (TME) is not well characterized. Using murine heterotopic and spontaneous tumor models, we show that LECs in the TME increase MHC-II expression in the context of increased co-inhibitory signals. We provide evidence that tumor lymphatics in human melanoma and breast cancer also upregulate MHC-II compared to normal tissue lymphatics. In transgenic mice that lack LEC-specific MHC-II expression, heterotopic tumor growth is attenuated, which is associated with increased numbers of tumor-specific CD8+ and effector CD4+ T cells, as well as decreased numbers of T regulatory CD4+ cells in the TME. Mechanistically, we show that murine and human dermal LECs can take up tumor antigens in vitro. Antigen-loaded LECs in vitro can induce antigen-specific proliferation of CD8+ T cells but not CD4+ T cells; however, these proliferated CD8+ T cells have reduced effector function in the presence of antigen-loaded LECs. Taken together, our study suggests LECs can act as immunosuppressive cells in the TME in an MHC-II dependent manner. Whether this is a result of direct tumor antigen presentation on MHC-II requires additional investigation.


Genetic Modification of Tumor-Infiltrating Lymphocytes via Retroviral Transduction.

  • Hadas Weinstein-Marom‎ et al.
  • Frontiers in immunology‎
  • 2020‎

Adoptive T cell therapy (ACT) holds great promise for cancer treatment. One approach, which has regained wide interest in recent years, employs antitumor T cells isolated from tumor lesions ("tumor-infiltrating lymphocytes" or TIL). It is now appreciated that a considerable proportion of anti-melanoma TIL recognize new HLA-binding peptides resulting from somatic mutations, which occurred during tumor progression. The clinical efficacy of TIL can potentially be improved via their genetic modification, designed to enhance their survival, homing capacity, resistance to suppression, tumor killing ability and additional properties of clinical relevance. Successful implementation of such gene-based strategies critically depends on efficient and reproducible protocols for gene delivery into clinical TIL preparations. Here we describe an optimized protocol for the retroviral transduction of TIL. As the experimental system we employed anti-melanoma TIL cultures prepared from four patients, recombinant retrovirus encoding an anti-CD19 chimeric antigen receptor (CAR) as a model gene of interest and CD19+ and CD19- human cell lines serving as target cells. Transduction on day 7 of the rapid expansion protocol (REP) resulted in 69 ± 8% CAR positive TIL. Transduced, but not untransduced TIL, from the four patients responded robustly to CD19+, but not CD19- cell lines, as judged by substantial secretion of IFN-γ following co-culture. In light of the rekindled interest in antitumor TIL, this protocol can be incorporated into a broad range of gene-based approaches for improving the in-vivo survival and functionality of TIL in the clinical setting.


Expansion of tumor infiltrating lymphocytes (TIL) from bladder cancer.

  • Michael Poch‎ et al.
  • Oncoimmunology‎
  • 2018‎

Advanced bladder cancer patients have limited therapeutic options resulting in a median overall survival (OS) between 12 and 15 months. Adoptive cell therapy (ACT) using tumor infiltrating lymphocytes (TIL) has been used successfully in treating patients with metastatic melanoma, resulting in a median OS of 52 months. In this study, we investigated the feasibility of expanding TIL from the tumors of bladder cancer patients. Primary bladder tumors and lymph node (LN) metastases were collected. Tumor specimens were minced into fragments, placed in individual wells of a 24-well plate, and propagated in high dose IL-2 for four weeks. Expanded TIL were phenotyped by flow cytometry and anti-tumor reactivity was assessed after co-culture with autologous tumor digest and IFN-gamma ELISA. Of the 28 transitional cell bladder or LN tumors collected, 14/20 (70%) primary tumors and all of the LN metastases demonstrated TIL expansion. Expanded TIL were predominantly CD3+ (median 63%, range 10-87%) with a median of 30% CD8 + T cells (range 5-70%). TIL secreted IFN-gamma in response to autologous tumor. Addition of agonisitic 4-1BB antibody improved TIL expansion from primary bladder tumors regardless of pre-treatment with chemotherapy. This study establishes the practical first step towards an autologous TIL therapy process for therapeutic testing in patients with bladder cancer.


Stromal and intraepithelial tumor-infiltrating lymphocytes in colorectal carcinoma.

  • Katarzyna Jakubowska‎ et al.
  • Oncology letters‎
  • 2017‎

The local mechanisms of antitumor immune defense determine the development and organization of the tumor microenvironment, and the composition and relative proportions of the inflammatory cell population affect the quality and characteristics of the immune response. The aim of the present study was to conduct a quantitative morphological evaluation of two types of tumor-infiltrating lymphocyte (TILs) populations, including those located in the stroma and intraepithelial cancer structures, in the invasive front and the center of the tumor in patients with colorectal cancer (CRC). The study included 160 patients with CRC who had undergone surgery. The tissue material was stained with hematoxylin and eosin, as used in routine histopathological diagnosis, and the two TIL populations were observed and counted with light microscopy. The relative extent of infiltration of stromal and intraepithelial TILs into the front and center of the primary tumors was similar. The extent of infiltration by stromal TILs was negatively correlated with the morphological features of tumor progression including the cancer infiltration of blood vessels (P=0.016), the invasion of lymph vessels (P=0.007), perineural invasion (P=0.036), lymph node involvement (P=0.047) and distant metastases (P=0.032). The infiltration by intraepithelial TILs was positively correlated with a desmoplastic reaction (P=0.002). Disease-free survival time was statistically shorter in patients without intraepithelial TILs in the center of the primary tumor mass (P=0.049; hazard ratio = 1.45). These results confirm that the infiltration of TILs into the invasive front and center of the tumor in patients with CRC serves an important role in the invasion and progression of the disease, and should be considered in routine histopathological examinations.


Nomogram to Predict Tumor-Infiltrating Lymphocytes in Breast Cancer Patients.

  • Jikun Feng‎ et al.
  • Frontiers in molecular biosciences‎
  • 2021‎

Background: Tumor-infiltrating lymphocytes (TILs) play important roles in the prediction of prognosis and neoadjuvant therapy (NAT) efficacy in breast cancer (BRCA) patients, in this study, we identified clinicopathological factors related to BRCA TILs, then to construct and validate nomogram to predict high density of TILs. Methods: A total of 826 patients diagnosed with BRCA in Sun Yat-Sen University cancer center were enrolled in nomogram cohort. TILs were assessed using hematoxylin-eosin (H&E) staining by two pathologists. Complete clinical data were collected for analysis. Then the enrolled patients were split into a training set and validation set at a ratio of 8:2. and the backward multivariate binary logistic regression model was used to establish nomogram for predicting BRCA TILs, which were further evaluated and validated using the C-index, receiver operating characteristic (ROC) curves and calibration curves. Then another independent NAT cohort of 106 patients was established for verifying this nomogram in NAT efficacy prediction. Results: TILs were significantly correlated with body mass index (BMI), tumor differentiation, ER, PR, HER2 expression, Ki67, blood biochemical indicators including total bilirubin (TBIL), indirect bilirubin (IBIL), total protein (TP), Globulin (GLOB), inorganic phosphorus (IP), calcium (Ca). In which ER expression level [OR = 0.987, 95%CI (0.982-0.992), p < 0.001], IP [OR = 4.462, 95%CI (1.171∼17.289), p = 0.029], IBIL [OR = 0.906, 95%CI (0.845-0.966), p = 0.004] and TP [OR = 1.053, 95%CI (1.010-1.098, p = 0.016)] were independent predictors of TILs. Then nomogram was established, for which calibration curves (C-index = 0.759) and ROC curve (AUC = 0.759, 95%CI 0.717-0.801) in training sets, calibration curves (C-index = 0.708) and ROC curve (AUC = 0.708, 95%CI 0.617-0.800) in validation sets demonstrated great evaluation efficiency. Besides, independent NAT cohort verified this nomogram can distinguish patients with greater NAT efficacy (p = 0.041). Conclusion: The finds of clinicopathological factors associated with TILs could help clinicians to understand the tumor immunity of BRCA and improve treatment system for patients, and the established nomogram with high evaluation efficiency may be used as a complement tool for distinguishing patients with better NAT efficacy.


Synthetic TILs: Engineered Tumor-Infiltrating Lymphocytes With Improved Therapeutic Potential.

  • Anaïs Jiménez-Reinoso‎ et al.
  • Frontiers in oncology‎
  • 2020‎

Immunotherapy has emerged as an effective and life-changing approach for several types of cancers, both liquid and solid tumors. In combination with traditional treatments such as radiotherapy and/or chemotherapy, immune checkpoints inhibitors have improved prognosis and overall survival of patients with advanced melanoma and many other cancers. Among adoptive cell therapies (ACT), while chimeric antigen receptor T cell therapies have demonstrated remarkable efficacy in some hematologic malignancies, such as B cell leukemias, their success in solid tumors remains scarce due to the characteristics of the tumor microenvironment. On the other hand, ACT using tumor-infiltrating lymphocytes (TILs) is arguably the most effective treatment for metastatic melanoma patients, but even if their isolation has been achieved in epithelial tumors, their success beyond melanoma remains limited. Here, we review several aspects impacting TIL- and gene-modified "synthetic" TIL-based therapies and discuss future challenges that must be addressed with these approaches.


The prognostic significance of tumor-infiltrating lymphocytes in cervical cancer.

  • Mengdi He‎ et al.
  • Journal of gynecologic oncology‎
  • 2021‎

To predict the prognosis of cervical cancer, we constructed a novel model with 5 specific cell types and identified a potential biomarker.


Expansion of tumor-infiltrating lymphocytes (TIL) from human pancreatic tumors.

  • MacLean Hall‎ et al.
  • Journal for immunotherapy of cancer‎
  • 2016‎

We evaluated whether tumor infiltrating lymphocytes (TIL) could be expanded from surgically resected tumors from pancreatic cancer patients.


Expansion and characterization of human melanoma tumor-infiltrating lymphocytes (TILs).

  • Linh T Nguyen‎ et al.
  • PloS one‎
  • 2010‎

Various immunotherapeutic strategies for cancer are aimed at augmenting the T cell response against tumor cells. Adoptive cell therapy (ACT), where T cells are manipulated ex vivo and subsequently re-infused in an autologous manner, has been performed using T cells from various sources. Some of the highest clinical response rates for metastatic melanoma have been reported in trials using tumor-infiltrating lymphocytes (TILs). These protocols still have room for improvement and furthermore are currently only performed at a limited number of institutions. The goal of this work was to develop TILs as a therapeutic product at our institution.


Prosaposin, tumor-secreted protein, promotes pancreatic cancer progression by decreasing tumor-infiltrating lymphocytes.

  • Yoji Miyahara‎ et al.
  • Cancer science‎
  • 2022‎

Glycoproteins produced by tumor cells are involved in cancer progression, metastasis, and the immune response, and serve as possible therapeutic targets. Considering the dismal outcomes of pancreatic ductal adenocarcinoma (PDAC) due to its unique tumor microenvironment, which is characterized by low antitumor T-cell infiltration, we hypothesized that tumor-derived glycoproteins may serve as regulating the tumor microenvironment. We used glycoproteomics with tandem mass tag labeling to investigate the culture media of three human PDAC cell lines, and attempted to identify the key secreted proteins from PDAC cells. Among the identified glycoproteins, prosaposin (PSAP) was investigated for its functional contribution to PDAC progression. PSAP is highly expressed in various PDAC cell lines; however, knockdown of intrinsic PSAP expression did not affect the proliferation and migration capacities. Based on the immunohistochemistry of resected human PDAC tissues, high PSAP expression was associated with poor prognosis in patients with PDAC. Notably, tumors with high PSAP expression showed significantly lower CD8+ T-cell infiltration than those with low PSAP expression. Furthermore, PSAP stimulation decreased the proportion of CD8+ T cells in peripheral blood monocytes. Finally, in an orthotopic transplantation model, the number of CD8+ T cells in the PSAP shRNA groups was significantly increased, resulting in a decreased tumor volume compared with that in the control shRNA group. PSAP suppresses CD8+ T-cell infiltration, leading to the promotion of PDAC progression. However, further studies are warranted to determine whether this study contributes to the development of a novel immunomodulating therapy for PDAC.


Reprogramming of Tumor-reactive Tumor-infiltrating Lymphocytes to Human-induced Pluripotent Stem Cells.

  • S M Rafiqul Islam‎ et al.
  • Cancer research communications‎
  • 2023‎

Tumor-infiltrating lymphocytes (TIL) that can recognize and kill tumor cells have curative potential in subsets of patients treated with adoptive cell transfer (ACT). However, lack of TIL therapeutic efficacy in many patients may be due in large part to a paucity of tumor-reactive T cells in TIL and the exhausted and terminally differentiated status of those tumor-reactive T cells. We sought to reprogram exhausted TIL that possess T-cell receptors (TCR) specific for tumor antigens into induced pluripotent stem cells (iPSC) to rejuvenate them for more potent ACT. We first attempted to reprogram tumor neoantigen-specific TIL by αCD3 Ab prestimulation which resulted in failure of establishing tumor-reactive TIL-iPSCs, instead, T cell-derived iPSCs from bystander T cells were established. To selectively activate and enrich tumor-reactive T cells from the heterogenous TIL population, CD8+ PD-1+ 4-1BB+ TIL population were isolated after coculture with autologous tumor cells, followed by direct reprogramming into iPSCs. TCR sequencing analysis of the resulting iPSC clones revealed that reprogrammed TIL-iPSCs encoded TCRs that were identical to the pre-identified tumor-reactive TCRs found in minimally cultured TIL. Moreover, reprogrammed TIL-iPSCs contained rare tumor antigen-specific TCRs, which were not detectable by TCR sequencing of the starting cell population. Thus, reprogramming of PD-1+ 4-1BB+ TIL after coculture with autologous tumor cells selectively generates tumor antigen-specific TIL-iPSCs, and is a distinctive method to enrich and identify tumor antigen-specific TCRs of low frequency from TIL.


The prognostic value of tumor-infiltrating T lymphocytes in ovarian cancer.

  • Jun Li‎ et al.
  • Oncotarget‎
  • 2017‎

The prognostic value of tumor-infiltrating lymphocytes (TILs) in ovarian cancer is still in controversial. This study is aimed to assess the impact of different TIL subsets on the progression free survival (PFS)/disease free survival (DSS) and overall survival (OS)/disease specific survival (DSS) in ovarian cancer. A comprehensive literature search in PubMed, ISI Web of Science, and Medline was performed to identify relevant studies evaluating the prognostic value of TILs in ovarian cancer. Reviews of each study were conducted and data were extracted. The main outcomes analyzed were PFS/DFS and OS/DSS. A total of 21 eligible studies enrolling 2903 ovarian cancer patients were included for the meta-analysis. The overall analysis revealed that intraepithelial CD3+ and CD8+ TILs were strongly associated with improved PFS/DFS (HR=0.53, for CD3+ TILs; and HR=0.50, for CD8+ TILs). Intraepithelial CD8+/Foxp3+ ratios appeared to be associated with improved PFS, though without reaching statistical significance (HR=0.73). Moreover, intraepithelial CD3+, CD8+, and CD103+ TILs were clearly associated with increased OS/DSS (HR=0.50, for CD3+ TILs; HR=0.62, for CD8+ TILs; HR=0.54, for CD103+ TILs). However, intraepithelial FoxP3+ TILs, CD8+/FoxP3+ ratios, CD8+/CD4+ ratios, and stromal TILs had no impact on the OS/DSS (HR=0.98, for FoxP3+ TILs; HR=0.69, for CD8+/FoxP3+ ratios; HR=0.48, for CD8+/CD4+ ratios; HR=0.82, for stromal TILs). In conclusion, the present meta-analysis supports the hypothesis that intraepithelial TILs are predictive biomarkers for the prognosis of ovarian cancer patients. Future randomized studies are needed to verify these observations.


Tumor infiltrating lymphocytes in triple negative breast cancer receiving neoadjuvant chemotherapy.

  • Carlos A Castaneda‎ et al.
  • World journal of clinical oncology‎
  • 2016‎

To determine influence of neoadjuvant-chemotherapy (NAC) over tumor-infiltrating-lymphocytes (TIL) in triple-negative-breast-cancer (TNBC).


Reliable evaluation of tumor-infiltrating lymphocytes in pancreatic cancer tissue biopsies.

  • Yoshinori Ino‎ et al.
  • Oncotarget‎
  • 2019‎

Tumor-infiltrating lymphocytes (TILs) represent cancer microenvironment. We previously reported TILs was prognosticators in pancreatic ductal adenocarcinoma (PDAC) patients by immunohistochemically measuring them in surgically-resected tissues. The aim of this study was to assess how best to evaluate TILs in PDAC tissue biopsies. First, we showed expression of CD3, CD4, or CD8 genes in PDAC tissue measured by quantitative RT-PCR (RT-qPCR) was prognostic using 241 surgically-resected specimens. We assessed whether the TILs in biopsied tissues can be effectively evaluated by comparing between immunohistochemistry and RT-qPCR. As a study model, we sampled twenty biopsies from surgically-resected PDAC specimen (n = 17). We investigated the variation levels of TILs in the different biopsies from the same specimen and evaluated using the intraclass correlation coefficient (ICC). The ICC value was 0.58 for CD3, 0.61 for CD4, and 0.46 for CD8, respectively; these ICC values meant correlations of "moderate" to "substantial" levels. To reach "near perfect", 3, 3, and 5 times biopsies were necessary for CD3, CD4, and CD8, respectively. When ICC values of immunolabeled TILs were of "low", ≥6 times biopsies were necessary to reach "moderate" levels. We found that TILs measured by RT-qPCR and repeated sampling increased reliability in TILs detected from biopsied PDAC tissues.


Autophagic flux restoration enhances the antitumor efficacy of tumor infiltrating lymphocytes.

  • Chaoting Zhang‎ et al.
  • Journal for immunotherapy of cancer‎
  • 2022‎

Although adoptive cell therapy with tumor infiltrating lymphocytes (TILs) has mediated effective antitumor responses in several cancers, dysfunction and exhaustion of TILs significantly impair the therapeutic effect of TILs. Thus, it is essential to elucidate the exhausted characteristics of TILs and improve the antitumor effect of TILs by reversing their exhaustion. Here, we focused on the influence of autophagy on TILs in terms of T-cell activation, proliferation, and differentiation in vitro and in vivo.


Reprogramming of Melanoma Tumor-Infiltrating Lymphocytes to Induced Pluripotent Stem Cells.

  • Hidehito Saito‎ et al.
  • Stem cells international‎
  • 2016‎

Induced pluripotent stem cells (iPSCs) derived from somatic cells of patients hold great promise for autologous cell therapies. One of the possible applications of iPSCs is to use them as a cell source for producing autologous lymphocytes for cell-based therapy against cancer. Tumor-infiltrating lymphocytes (TILs) that express programmed cell death protein-1 (PD-1) are tumor-reactive T cells, and adoptive cell therapy with autologous TILs has been found to achieve durable complete response in selected patients with metastatic melanoma. Here, we describe the derivation of human iPSCs from melanoma TILs expressing high level of PD-1 by Sendai virus-mediated transduction of the four transcription factors, OCT3/4, SOX2, KLF4, and c-MYC. TIL-derived iPSCs display embryonic stem cell-like morphology, have normal karyotype, express stem cell-specific surface antigens and pluripotency-associated transcription factors, and have the capacity to differentiate in vitro and in vivo. A wide variety of T cell receptor gene rearrangement patterns in TIL-derived iPSCs confirmed the heterogeneity of T cells infiltrating melanomas. The ability to reprogram TILs containing patient-specific tumor-reactive repertoire might allow the generation of patient- and tumor-specific polyclonal T cells for cancer immunotherapy.


Adoptive Cell Therapy with Tumor-Infiltrating Lymphocytes in Advanced Melanoma Patients.

  • Mélanie Saint-Jean‎ et al.
  • Journal of immunology research‎
  • 2018‎

Immunotherapy for melanoma includes adoptive cell therapy with autologous tumor-infiltrating lymphocytes (TILs). This monocenter retrospective study was undertaken to evaluate the efficacy and safety of this treatment of patients with advanced melanoma. All advanced melanoma patients treated with TILs using the same TIL expansion methodology and same treatment interleukin-2 (IL-2) regimen between 2009 and 2012 were included. After sterile intralesional excision of a cutaneous or subcutaneous metastasis, TILs were produced according to a previously described method and then infused into the patient who also received a complementary subcutaneous IL-2 regimen. Nine women and 1 man were treated for unresectable stage IIIC (n = 4) or IV (n = 6) melanoma. All but 1 patient with unresectable stage III melanoma (1st line) had received at least 2 previous treatments, including anti-CTLA-4 antibody for 4. The number of TILs infused ranged from 0.23 × 109 to 22.9 × 109. Regarding safety, no serious adverse effect was reported. Therapeutic responses included a complete remission, a partial remission, 2 stabilizations, and 6 progressions. Among these 4 patients with clinical benefit, 1 is still alive with 9 years of follow-up and 1 died from another cause after 8 years of follow-up. Notably, patients treated with high percentages of CD4 + CD25 + CD127lowFoxp3+ T cells among their TILs had significantly shorter OS. The therapeutic effect of combining TILs with new immunotherapies needs further investigation.


Resistance to cancer immunotherapy mediated by apoptosis of tumor-infiltrating lymphocytes.

  • Jingjing Zhu‎ et al.
  • Nature communications‎
  • 2017‎

Despite impressive clinical success, cancer immunotherapy based on immune checkpoint blockade remains ineffective in many patients due to tumoral resistance. Here we use the autochthonous TiRP melanoma model, which recapitulates the tumoral resistance signature observed in human melanomas. TiRP tumors resist immunotherapy based on checkpoint blockade, cancer vaccines or adoptive T-cell therapy. TiRP tumors recruit and activate tumor-specific CD8+ T cells, but these cells then undergo apoptosis. This does not occur with isogenic transplanted tumors, which are rejected after adoptive T-cell therapy. Apoptosis of tumor-infiltrating lymphocytes can be prevented by interrupting the Fas/Fas-ligand axis, and is triggered by polymorphonuclear-myeloid-derived suppressor cells, which express high levels of Fas-ligand and are enriched in TiRP tumors. Blocking Fas-ligand increases the anti-tumor efficacy of adoptive T-cell therapy in TiRP tumors, and increases the efficacy of checkpoint blockade in transplanted tumors. Therefore, tumor-infiltrating lymphocytes apoptosis is a relevant mechanism of immunotherapy resistance, which could be blocked by interfering with the Fas/Fas-ligand pathway.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: