Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 55 papers

Dysregulation of TFH-B-TRM lymphocyte cooperation is associated with unfavorable anti-PD-1 responses in EGFR-mutant lung cancer.

  • Jae-Won Cho‎ et al.
  • Nature communications‎
  • 2021‎

Patients with non-small cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) mutations exhibit an unfavorable response to PD-1 inhibitor through unclear mechanisms. Hypothesizing that EGFR mutations alter tumor-immune interactions, we compare tumor-infiltrating lymphocytes between EGFR mutant (EGFR-MT) and wild type (EGFR-WT) tumors through single-cell transcriptomic analysis. We find that B cells, CXCL13-producing follicular helper CD4+ T (TFH)-like cells, and tissue-resident memory CD8+ T (TRM)-like cells decreased in EGFR-MT tumors. The NOTCH-RBPJ regulatory network, which is vital for persistence of TRM state, is perturbed, and the interactions between TFH and B cells through the CXCL13-CXCR5 axis disappear in EGFR-MT tumors. Notably, the proportion of TRM-like cells is predictive for anti-PD-1 response in NSCLC. Our findings suggest that the impairment of TFH-B-TRM cooperation in tertiary lymphoid structure formation, accompanied by the dysregulation of TRM homeostasis and the loss of TFH-B crosstalk, underlies unfavorable anti-PD-1 response in EGFR-MT lung tumors.


Cooperation between Constitutive and Inducible Chemokines Enables T Cell Engraftment and Immune Attack in Solid Tumors.

  • Denarda Dangaj‎ et al.
  • Cancer cell‎
  • 2019‎

We investigated the role of chemokines in regulating T cell accumulation in solid tumors. CCL5 and CXCL9 overexpression was associated with CD8+ T cell infiltration in solid tumors. T cell infiltration required tumor cell-derived CCL5 and was amplified by IFN-γ-inducible, myeloid cell-secreted CXCL9. CCL5 and CXCL9 coexpression revealed immunoreactive tumors with prolonged survival and response to checkpoint blockade. Loss of CCL5 expression in human tumors was associated with epigenetic silencing through DNA methylation. Reduction of CCL5 expression caused tumor-infiltrating lymphocyte (TIL) desertification, whereas forced CCL5 expression prevented Cxcl9 expression and TILs loss, and attenuated tumor growth in mice through IFN-γ. The cooperation between tumor-derived CCL5 and IFN-γ-inducible CXCR3 ligands secreted by myeloid cells is key for orchestrating T cell infiltration in immunoreactive and immunoresponsive tumors.


Bystander killing of cancer requires the cooperation of CD4(+) and CD8(+) T cells during the effector phase.

  • Andrea Schietinger‎ et al.
  • The Journal of experimental medicine‎
  • 2010‎

Cancers frequently evade cytotoxic T lymphocyte-mediated destruction through loss or down-regulation of tumor antigens and antigen-presenting major histocompatibility complex molecules. Therefore, we have concentrated our efforts on immunological strategies that destroy nonmalignant stromal cells essential for the survival and growth of cancer cells. In this study, we developed a non-T cell receptor transgenic, immunocompetent tumor model to determine whether tumor-bearing hosts' own immune systems could eliminate cancer cells through stromal targeting and what role CD4(+) T cells play alongside CD8(+) T cells in this process. We found that aggressive cancers could be eradicated by T cell targeting of tumor stroma. However, successful elimination required the cooperation of CD4(+) and CD8(+) T cells not only during the induction phase but also during the effector phase in the tumor microenvironment, implying a new role for CD4(+) T cells that has not been previously described. Our study demonstrates the potential of stromal targeting as a cancer immunotherapy and suggests that successful anticancer strategies must facilitate cooperation between CD4(+) and CD8(+) T cells at the right times and the right places.


Cooperation between chemotherapy and immune checkpoint blockade to enhance anti-tumour T cell immunity in oesophageal adenocarcinoma.

  • Maria Davern‎ et al.
  • Translational oncology‎
  • 2022‎

Response rates to immune checkpoint blockade (ICB) remain low in oesophageal adenocarcinoma (OAC). Combining ICB with immunostimulatory chemotherapies to boost response rates is an attractive approach for converting 'cold' tumours into 'hot' tumours. This study profiled immune checkpoint (IC) expression on circulating and tumour-infiltrating T cells in OAC patients and correlated these findings with clinical characteristics. The effect of first-line chemotherapy regimens (FLOT and CROSS) on anti-tumour T cell immunity was assessed to help guide design of ICB and chemotherapy combinations in the first-line setting. The ability of ICB to enhance lymphocyte-mediated cytolysis of OAC cells in the absence and presence of post-FLOT and post-CROSS chemotherapy tumour cell secretome was assessed by a CCK-8 assay. Expression of ICs on T cells positively correlated with higher grade tumours and a subsequent poor response to neoadjuvant treatment. First-line chemotherapy regimens substantially altered IC expression profiles of T cells increasing PD-1, A2aR, KLRG-1, PD-L1, PD-L2 and CD160 and decreasing TIM-3 and LAG-3. In addition, pro-inflammatory T cell cytokine profiles were enhanced by first-line chemotherapy regimens. T cell activation status was significantly altered; both chemotherapy regimens upregulated co-stimulatory markers ICOS and CD69 yet downregulated co-stimulatory marker CD27. However, ICB attenuated chemotherapy-induced downregulation of CD27 on T cells and promoted differentiation of effector memory T cells into a terminally differentiated state. Importantly, dual nivolumab-ipilimumab treatment increased lymphocyte-mediated cytolysis of OAC cells, an effect further enhanced in the presence of post-FLOT tumour cell secretome. These findings justify a rationale to administer ICBs concurrently with first-line chemotherapies.


IL10- and IL35-Secreting MutuDC Lines Act in Cooperation to Inhibit Memory T Cell Activation Through LAG-3 Expression.

  • Marianna M Koga‎ et al.
  • Frontiers in immunology‎
  • 2021‎

Dendritic cells (DCs) are professional antigen-presenting cells involved in the initiation of immune responses. We generated a tolerogenic DC (tolDC) line that constitutively secretes interleukin-10 (IL10-DCs), expressed lower levels of co-stimulatory and MHCII molecules upon stimulation, and induced antigen-specific proliferation of T cells. Vaccination with IL10-DCs combined with another tolDC line that secretes IL-35, reduced antigen-specific local inflammation in a delayed-type hypersensitivity assay independently on regulatory T cell differentiation. In an autoimmune model of rheumatoid arthritis, vaccination with the combined tolDCs after the onset of the disease impaired disease development and promoted recovery of mice. After stable memory was established, the tolDCs promoted CD4 downregulation and induced lymphocyte activation gene 3 (LAG-3) expression in reactivated memory T cells, reducing T cell activation. Taken together, our findings indicate the benefits of combining anti-inflammatory cytokines in an antigen-specific context to treat excessive inflammation when memory is already established.


Impact of Different JAK Inhibitors and Methotrexate on Lymphocyte Proliferation and DNA Damage.

  • Annika Reddig‎ et al.
  • Journal of clinical medicine‎
  • 2021‎

Janus kinase inhibitors (JAKis) represent a new strategy in rheumatoid arthritis (RA) therapy. Still, data directly comparing different JAKis are rare. In the present in vitro study, we investigated the immunomodulatory potential of four JAKis (tofacitinib, baricitinib, upadacitinib, and filgotinib) currently approved for RA treatment by the European Medicines Agency. Increasing concentrations of JAKi or methotrexate, conventionally used in RA therapy, were either added to freshly mitogen-stimulated or preactivated peripheral blood mononuclear cells (PBMC), isolated from healthy volunteers. A comparable, dose-dependent inhibition of lymphocyte proliferation was observed in samples treated with tofacitinib, baricitinib, and upadacitinib, while dosage of filgotinib had to be two orders of magnitude higher. In contrast, antiproliferative effects were strongly attenuated when JAKi were added to preactivated PBMCs. High dosage of upadacitinib and filgotinib also affected cell viability. Further, analyses of DNA double-strand break markers γH2AX and 53BP1 indicated an enhanced level of DNA damage in cells incubated with high concentrations of filgotinib and a dose-dependent reduction in clearance of radiation-induced γH2AX foci in the presence of tofacitinib or baricitinib. Thereby, our study demonstrated a broad comparability of immunomodulatory effects induced by different JAKi and provided first indications, that (pan)JAKi may impair DNA damage repair in irradiated PBMCs.


Use of TIRF to Monitor T-Lymphocyte Membrane Dynamics with Submicrometer and Subsecond Resolution.

  • Alexandre Brodovitch‎ et al.
  • Cellular and molecular bioengineering‎
  • 2015‎

A key step of adaptive immune responses is the T lymphocyte capacity to detect the presence of foreign antigens on specialized cells with high speed and specificity during contacts lasting a few minutes. Much evidence suggests that there is a deep link between the lifetime of molecular interactions between T cell receptors and ligands and T cell activation, but the precise mechanisms of bond formation and dissociation remain incompletely understood. Previous experiments done with interference reflection microscopy/reflection interference contrast microscopy disclosed transverse motions with several nanometer average amplitude of micrometer size membrane zones. More recently, total internal reflection fluorescence microscopy was used to show that the initial interaction between primary T lymphocytes and model surfaces involved the tip of microvilli (typically 0.2 µm2 area) generating apparent contacts of a few seconds that allowed cells to detect ligands of their membrane receptors. Here we show that these microvilli displayed minimal lateral displacements but quantitative fluorescence measurement suggested the occurrence of spontaneous transverse fluctuations of order of 67 nm amplitude during 1-s observation periods. This may play a major role in membrane receptor engagement and ensuing signal generation.


Cooperation of PD-1 and LAG-3 in the exhaustion of CD4+ and CD8+ T cells during bovine leukemia virus infection.

  • Tomohiro Okagawa‎ et al.
  • Veterinary research‎
  • 2018‎

Bovine leukemia virus (BLV) is a retrovirus that infects B cells in cattle and causes bovine leukosis after a long latent period. Progressive exhaustion of T cell functions is considered to facilitate disease progression of BLV infection. Programmed death-1 (PD-1) and lymphocyte activation gene-3 (LAG-3) are immunoinhibitory receptors that contribute to T-cell exhaustion caused by BLV infection in cattle. However, it is unclear whether the cooperation of PD-1 and LAG-3 accelerates disease progression of BLV infection. In this study, multi-color flow cytometric analyses of PD-1- and LAG-3-expressing T cells were performed in BLV-infected cattle at different stages of the disease. The frequencies of PD-1+LAG-3+ heavily exhausted T cells among CD4+ and CD8+ T cells was higher in the blood of cattle with B-cell lymphoma over that of BLV-uninfected and BLV-infected cattle without lymphoma. In addition, blockade assays of peripheral blood mononuclear cells were performed to examine whether inhibition of the interactions between PD-1 and LAG-3 and their ligands by blocking antibodies could restore T-cell function during BLV infection. Single or dual blockade of the PD-1 and LAG-3 pathways reactivated the production of Th1 cytokines, interferon-γ and tumor necrosis factor-α, from BLV-specific T cells of the infected cattle. Taken together, these results indicate that PD-1 and LAG-3 cooperatively mediate the functional exhaustion of CD4+ and CD8+ T cells and are associated with the development of B-cell lymphoma in BLV-infected cattle.


Targeted disruption of LIGHT causes defects in costimulatory T cell activation and reveals cooperation with lymphotoxin beta in mesenteric lymph node genesis.

  • Stefanie Scheu‎ et al.
  • The Journal of experimental medicine‎
  • 2002‎

The recently described tumor necrosis factor (TNF) family member LIGHT (herpes virus entry mediator [HVEM]-L/TNFSF14), a ligand for the lymphotoxin (LT)beta receptor, HVEM, and DcR3, was inactivated in the mouse. In contrast to mice deficient in any other member of the LT core family, LIGHT(-/-) mice develop intact lymphoid organs. Interestingly, a lower percentage of LIGHT(-/-)LTbeta(-/-) animals contain mesenteric lymph nodes as compared with LTbeta(-/-) mice, whereas the splenic microarchitecture of LIGHT(-/-)LTbeta(-/-) and LTbeta(-/-) mice shows a comparable state of disruption. This suggests the existance of an additional undiscovered ligand for the LTbeta receptor (LTbetaR) or a weak LTalpha(3)-LTbetaR interaction in vivo involved in the formation of secondary lymphoid organs. LIGHT acts synergistically with CD28 in skin allograft rejection in vivo. The underlying mechanism was identified in in vitro allogeneic MLR studies, showing a reduced cytotoxic T lymphocyte activity and cytokine production. Detailed analyses revealed that proliferative responses specifically of CD8+ T cells are impaired and interleukin 2 secretion of CD4+ T cells is defective in the absence of LIGHT. Furthermore, a reduced 3[H]-thymidine incorporation after T cell receptor stimulation was observed. This for the first time provides in vivo evidence for a cooperative role for LIGHT and LTbeta in lymphoid organogenesis and indicates important costimulatory functions for LIGHT in T cell activation.


CD8+ T-cell senescence and skewed lymphocyte subsets in young Dyskeratosis Congenita patients with PARN and DKC1 mutations.

  • Ting Zeng‎ et al.
  • Journal of clinical laboratory analysis‎
  • 2020‎

Dyskeratosis congenita (DC) is a syndrome resulting from defective telomere maintenance. Immunodeficiency associated with DC can cause significant morbidity and lead to premature mortality, but the immunological characteristics and molecular hallmark of DC patients, especially young patients, have not been described in detail.


A novel role of IGFBP7 in mouse uterus: regulating uterine receptivity through Th1/Th2 lymphocyte balance and decidualization.

  • Zhen-Kun Liu‎ et al.
  • PloS one‎
  • 2012‎

Previously we have screened out Insulin-like Growth Factor Binding Protein 7 (IGFBP7) as a differentially expressed gene in post-implantation uterus versus pre-implantation uterus by suppressive subtractive hybridation. However its function in uterus was not clearly identified. In this research, the expression and function of IGFBP7 during post-implantation were studied. We found that IGFBP7 was mainly located in the glandular epithelium and the stroma, and was upregulated after embryo implantation. The vector pCR3.1-IGFBP7-t expressing partial IGFBP7 was constructed. Inhibition of IGFBP7 by specific DNA immunization induced significant reduction of implanted embryos and pregnancy rate. The number of implanted embryos (5.68 ± 0.46) was significantly reduced after immunization with pCR3.1-IGFBP7-t, as compared with that of the mice immunized with the control vector (12.29 ± 0.36) or saline (14.58 ± 0.40) (p<0.01). After specific inhibition of IGFBP7, the T helper type 1 (Th1) cytokine IFNγ, was significantly elevated (p<0.05) and the Th2 cytokines IL-4 and IL-10, were reduced in uteri (p<0.05). The increase of Tbet and the decrease of Gata3 were found in mice peripheral lymphocytes by flow cytometry. The expression of decidualization marker IGFBP1 and angiogenesis regulator VEGF were declined in uteri (p<0.05). The expression of apoptosis-associated proteins, caspase3 and Bcl-2, were also declined (p<0.05). These results showed that inhibition of IGFBP7 induced pregnancy failure by shifting uterine cytokines to Th1 type dominance and repressing uterine decidualization.


Association Between Neutrophil-Lymphocyte Ratio and All-Cause Mortality in Critically Ill Patients with Chronic Obstructive Pulmonary Disease: A Retrospective Cohort Study.

  • Shujie Hao‎ et al.
  • Medical science monitor : international medical journal of experimental and clinical research‎
  • 2023‎

BACKGROUND Neutrophil-lymphocyte ratio (NLR) is related to increased mortality risk in many diseases. However, there is limited research on critically ill patients with chronic obstructive pulmonary disease (COPD). A retrospective cohort study was performed to investigate whether NLR can be used as a biomarker to predict the mortality of critically ill COPD patients. MATERIAL AND METHODS In the research, the data were gathered from the database of the Medical Information Mart for Intensive Care-IV. The 28-day mortality was defined as the primary outcome, while the secondary outcomes were in-hospital and 90-day mortality. Through the application of the Kaplan-Meier curves and the multivariate Cox regression analysis, the potential association between NLR and mortality for critically ill patients with COPD was evaluated. For subgroup analysis, age, sex, ethnicity, mean blood pressure, and comorbidities were considered. RESULTS We extracted data on 2650 patients, of which 53.7% were male. A higher level of NLR was correlated with higher 28-day mortality risk. Compared to the lower quartile (NLR<4.56), HR (95% CI) of the upper quartile (NLR>16.86) was 1.75 (1.21-2.52) in the multivariate Cox regression model when adjusted for confounders (P=0.003). A similar tendency was found in the 90-day mortality (HR=1.59, 95% CI=1.16-2.19, P=0.004) and the in-hospital mortality (HR=1.71, 95% CI=1.22-2.42, P=0.002). Subgroup analyses showed that the correlation between NLR and 28-day mortality was stable. CONCLUSIONS The higher level of NLR is likely to be correlated with the increase of the all-cause mortality risk in critically ill patients with COPD, but this needs to be validated in future prospective research.


In the presence of Trypanosoma cruzi antigens, activated peripheral T lymphocytes retained in the liver induce a proinflammatory phenotypic and functional shift in intrahepatic T lymphocyte.

  • Marcelo Meuser-Batista‎ et al.
  • Journal of leukocyte biology‎
  • 2020‎

In secondary lymphoid organs, pathogen-derived and endogenous danger molecules are recognized by pattern recognition receptors, leading to adaptive proinflammatory immune responses. This conceptual rule does not apply directly to the liver, as hepatic immune cells tolerate gut-derived bacterial molecules from the flora. Therefore, the recognition of danger and proinflammatory stimuli differs between the periphery and the liver. However, the tolerant nature of the liver must be overcome in the case of infections or cancer, for example. The central paradigm is the basis for danger recognition and the balance between inflammation and tolerance in the liver. Here, we observed functional integration, with activated peripheral T lymphocytes playing a role in the induction of a proinflammatory environment in the liver in the presence of Trypanosoma cruzi antigens. When only parasite extract was orally administered, it led to the up-regulation of hepatic tolerance markers, but oral treatment plus adoptively transferred activated splenic T lymphocytes led to a proinflammatory response. Moreover, treated/recipient mice showed increased levels of TNF, IFN-γ, IL-6, and CCL2 in the liver and increased numbers of effector and/or effector memory T lymphocytes and F4/80+ cells. There was a reduction in FoxP3+ Treg cells, NKT cells, and γδ T lymphocytes with increased liver damage in the presence of activated peripheral T cells. Our results show that the induction of a proinflammatory liver response against T. cruzi danger molecules is at least partially dependent on cooperation with activated peripheral T cells.


Phospholipase C-gamma2 and Vav cooperate within signaling microclusters to propagate B cell spreading in response to membrane-bound antigen.

  • Michele Weber‎ et al.
  • The Journal of experimental medicine‎
  • 2008‎

B cell receptor (BCR) recognition of membrane-bound antigen initiates a spreading and contraction response, the extent of which is controlled through the formation of signaling-active BCR-antigen microclusters and ultimately affects the outcome of B cell activation. We followed a genetic approach to define the molecular requirements of BCR-induced spreading and microcluster formation. We identify a key role for phospholipase C-gamma2 (PLCgamma2), Vav, B cell linker, and Bruton's tyrosine kinase in the formation of highly coordinated "microsignalosomes," the efficient assembly of which is absolutely dependent on Lyn and Syk. Using total internal reflection fluorescence microscopy, we examine at high resolution the recruitment of PLCgamma2 and Vav to microsignalosomes, establishing a novel synergistic relationship between the two. Thus, we demonstrate the importance of cooperation between components of the microsignalosome in the amplification of signaling and propagation of B cell spreading, which is critical for appropriate B cell activation.


The location of splenic NKT cells favours their rapid activation by blood-borne antigen.

  • Patricia Barral‎ et al.
  • The EMBO journal‎
  • 2012‎

Natural killer T (NKT) cells play an important role in mounting protective responses to blood-borne infections. However, though the spleen is the largest blood filter in the body, the distribution and dynamics of NKT cells within this organ are not well characterized. Here we show that the majority of NKT cells patrol around the marginal zone (MZ) and red pulp (RP) of the spleen. In response to lipid antigen, these NKT cells become arrested and rapidly produce cytokines, while the small proportion of NKT cells located in the white pulp (WP) exhibit limited activation. Importantly, disruption of the splenic MZ by chemical or genetic approaches results in a severe reduction in NKT cell activation indicating the need of cooperation between both MZ macrophages and dendritic cells for efficient NKT cell responses. Thus, the location of splenic NKT cells in the MZ and RP facilitates their access to blood-borne antigen and enables the rapid initiation of protective immune responses.


Protein kinase C beta controls nuclear factor kappaB activation in B cells through selective regulation of the IkappaB kinase alpha.

  • Kaoru Saijo‎ et al.
  • The Journal of experimental medicine‎
  • 2002‎

Activation of the nuclear factor (NF)-kappaB transcription complex by signals derived from the surface expressed B cell antigen receptor controls B cell development, survival, and antigenic responses. Activation of NF-kappaB is critically dependent on serine phosphorylation of the IkappaB protein by the multi-component IkappaB kinase (IKK) containing two catalytic subunits (IKKalpha and IKKbeta) and one regulatory subunit (IKKgamma). Using mice deficient for protein kinase C beta (PKCbeta) we show an essential role of PKCbeta in the phosphorylation of IKKalpha and the subsequent activation of NF-kappaB in B cells. Defective IKKalpha phosphorylation correlates with impaired B cell antigen receptor-mediated induction of the pro-survival protein Bcl-xL. Lack of IKKalpha phosphorylation and defective NF-kappaB induction in the absence of PKCbeta explains the similarity in immunodeficiencies caused by PKCbeta or IKKalpha ablation in B cells. Furthermore, the well established functional cooperation between the protein tyrosine kinase Bruton's tyrosine kinase (Btk), which regulates the activity of NF-kappaB and PKCbeta, suggests PKCbeta as a likely serine/threonine kinase component of the Btk-dependent NF-kappaB activating signal transduction chain downstream of the BCR.


Elf-1 contributes to the function of the complex interleukin (IL)-2-responsive enhancer in the mouse IL-2 receptor alpha gene.

  • I Serdobova‎ et al.
  • The Journal of experimental medicine‎
  • 1997‎

Lymphocytes regulate their responsiveness to IL-2 through the transcriptional control of the IL-2R alpha gene, which encodes a component of the high affinity IL-2 receptor. In the mouse IL-2R alpha gene this control is exerted via two regulatable elements, a promoter proximal region, and an IL-2-responsive enhancer (IL-2rE) 1.3 kb upstream. In vitro and in vivo functional analysis of the IL-2rE in the rodent thymic lymphoma-derived, CD4- CD8- cell line PC60 demonstrated that three separate elements, sites I, II, and III, were necessary for IL-2 responsiveness; these three sites demonstrate functional cooperation. Site III contains a consensus binding motif for members of the Ets family of transcription factors. Here we demonstrate that Elf-1, an Ets-like protein, binds to site III and participates in IL-2 responsiveness. In vitro site III forms a complex with a protein constitutively present in nuclear extracts from PC60 cells as well as from normal CD4- CD8- thymocytes. We have identified this molecule as Elf-1 according to a number of criteria. The complex possesses an identical electrophoretic mobility to that formed by recombinant Elf-1 protein and is super-shifted by anti-Elf-1 antibodies. Biotinylated IL-2rE probes precipitate Elf-1 from PC60 extracts provided site III is intact and both recombinant and PC60-derived proteins bind with the same relative affinities to different mutants of site III. In addition, by introducing mutations into the core of the site III Ets-like motif and comparing the corresponding effects on the in vitro binding of Elf-1 and the in vivo IL-2rE activity, we provide strong evidence that Elf-1 is directly involved in IL-2 responsiveness. The nature of the functional cooperativity observed between Elf-1 and the factors binding sites I and II remains unresolved; experiments presented here however suggest that this effect may not require direct interactions between the proteins binding these three elements.


All-Cause Mortality and Its Predictors in Haemato-Oncology Patients with Febrile Neutropenia.

  • Haim Shmuely‎ et al.
  • Journal of clinical medicine‎
  • 2023‎

Febrile neutropenia (FN) is one of the most important life-threatening complications in haemato-oncology. Our objective was to report all-cause mortality rates in patients ill with a hematological malignancy (HM) hospitalized with a first FN episode and to identify predictors for mortality. We conducted a historical retrospective cohort study of consecutive patients with an HM, >18 years of age, admitted between January 2012 and August 2018 for a first episode of FN. Data on all-cause mortality 12 months after admission for FN were obtained. The Kaplan-Meier curve was used to describe mortality during the follow-up period. Univariate and multivariable analyses identified predictors for 1,3 and 12-month mortality. One hundred and fifty-eight patients (mean age 69.5, 49.4% males) were included. Overall, 54 patients died (15.8%, 25.9%, and 34.1% died after 1, 3, and 12 months, respectively). Lower serum albumin, higher serum gamma-glutamyl transferase (GGT), lower estimated glomerular filtration rate (eGFR), older age, higher temperature, and lower absolute lymphocyte count at admission were independent predictors of all-cause mortality after 12 months. Further studies are needed to confirm our results and identify therapeutic strategies to improve survival.


The Experimental Infection of Goats with Small Ruminant Morbillivirus Originated from Barbary Sheep.

  • Milovan Milovanović‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2022‎

Peste des Petits Ruminants (PPR) is a transboundary contagious disease in domestic small ruminants. Infections with the small ruminant morbillivirus (SRMV) were regularly found in wildlife, with unknown roles in PPR epidemiology. In order to access infection dynamics and virulence, we infected German Edelziege goats intranasally with a SRMV isolate that originated from Barbary sheep from an outbreak in the United Arab Emirates. Six goats were infected with cell culture-isolated SRMV, and two goats were kept in contact. Goats were daily monitored, and clinical score was recorded. EDTA blood, nasal, conjunctival and rectal swab samples were collected for the detection of SRMV genome load and serum for serological analysis. Short incubation period in infected (4 to 5 dpi) as well as in contact goats (9 dpi) was followed by typical clinical signs related to PPR. The highest viral load was detectable in conjunctival and nasal swab samples with RT-qPCR and rapid pen-side test. Specific antibodies were detected at 7 dpi in infected and 14 dpi in contact goats. In general, high virulence and easy transmission of the virus originated from wildlife in domestic goats was observed. The virus isolate belongs to Asian lineage IV, genetically related to Chinese and Mongolian strains.


Vitamin A supplementation in early life enhances the intestinal immune response of rats with gestational vitamin A deficiency by increasing the number of immune cells.

  • Xia Liu‎ et al.
  • PloS one‎
  • 2014‎

Vitamin A is a critical micronutrient for regulating immunity in many organisms. Our previous study demonstrated that gestational or early-life vitamin A deficiency decreases the number of immune cells in offspring. The present study aims to test whether vitamin A supplementation can restore lymphocyte pools in vitamin A-deficient rats and thereby improve the function of their intestinal mucosa; furthermore, the study aimed to identify the best time frame for vitamin A supplementation. Vitamin A-deficient pregnant rats or their offspring were administered a low-dose of vitamin A daily for 7 days starting on gestational day 14 or postnatal day 1, day 14 or day 28. Serum retinol concentrations increased significantly in all four groups that received vitamin A supplementation, as determined by high-performance liquid chromatography. The intestinal levels of secretory immunoglobulin A and polymeric immunoglobulin receptor increased significantly with lipopolysaccharide challenge in the rats that received vitamin A supplementation starting on postnatal day 1. The rats in this group had higher numbers of CD8+ intestinal intraepithelial lymphocytes, CD11C+ dendritic cells in the Peyer's patches and CD4+CD25+ T cells in the spleen compared with the vitamin A-deficient rats; flow cytometric analysis also demonstrated that vitamin A supplementation decreased the number of B cells in the mesenteric lymph nodes. Additionally, vitamin A supplementation during late gestation increased the numbers of CD8+ intestinal intraepithelial lymphocytes and decreased the numbers of B lymphocytes in the mesenteric lymph nodes. However, no significant differences in lymphocyte levels were found between the rats in the other two vitamin A supplement groups and the vitamin A-deficient group. In conclusion, the best recovery of a subset of lymphocytes in the offspring of gestational vitamin A-deficient rats and the greatest improvement in the intestinal mucosal immune response are achieved when vitamin A supplementation occurs during the early postnatal period.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: