Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 466 papers

Molecular genetics of long QT syndrome.

  • Nilesh J Bokil‎ et al.
  • Molecular genetics and metabolism‎
  • 2010‎

Long QT syndrome (LQTS) is a cardiac disorder associated with sudden death especially in young, seemingly healthy individuals. It is characterised by abnormalities of the heart beat detected as lengthening of the QT interval during cardiac repolarisation. The incidence of LQTS is given as 1 in 2000 but this may be an underestimation as many cases go undiagnosed, due to the rarity of the condition and the wide spectrum of symptoms. Presently 12 genes associated with LQTS have been identified with differing signs and symptoms, depending on the locus involved. The majority of cases have mutations in the KCNQ1 (LQT1), KCNH2 (LQT2) and SCN5A (LQT3) genes. Genetic testing is increasingly used when a clearly affected proband has been identified, to determine the nature of the mutation in that family. Unfortunately tests on probands may be uninformative, especially if the defect does not lie in the set of genes which are routinely tested. Novel mutations in these known LQTS genes and additional candidate genes are still being discovered. The functional implications of these novel mutations need to be assessed before they can be accepted as being responsible for LQTS. Known epigenetic modification affecting KCNQ1 gene expression may also be involved in phenotypic variability of LQTS. Genetic diagnosis of LQTS is thus challenging. However, where a disease associated mutation is identified, molecular diagnosis can be important in guiding therapy, in family testing and in determining the cause of sudden cardiac death. New developments in technology and understanding offer increasing hope to families with this condition.


Recurrent Pregnancy Loss and Concealed Long-QT Syndrome.

  • Laura Kasak‎ et al.
  • Journal of the American Heart Association‎
  • 2021‎

Background Recurrent pregnancy loss affects 1% to 2% of couples attempting childbirth. A large fraction of all cases remains idiopathic, which warrants research into monogenic causes of this distressing disorder. Methods and Results We investigated a nonconsanguineous Estonian family who had experienced 5 live births, intersected by 3 early pregnancy losses, and 6 fetal deaths, 3 of which occurred during the second trimester. No fetal malformations were described at the autopsies performed in 3 of 6 cases of fetal death. Parental and fetal chromosomal abnormalities (including submicroscopic) and maternal risk factors were excluded. Material for genetic testing was available from 4 miscarried cases (gestational weeks 11, 14, 17, and 18). Exome sequencing in 3 pregnancy losses and the mother identified no rare variants explicitly shared by the miscarried conceptuses. However, the mother and 2 pregnancy losses carried a heterozygous nonsynonymous variant, resulting in p.Val173Asp (rs199472695) in the ion channel gene KCNQ1. It is expressed not only in heart, where mutations cause type 1 long-QT syndrome, but also in other tissues, including uterus. The p.Val173Asp variant has been previously identified in a patient with type 1 long-QT syndrome, but not reported in the Genome Aggregation Database. With heterologous expression in CHO cells, our in vitro electrophysiologic studies indicated that the mutant slowly activating voltage-gated K+ channel (IKs) is dysfunctional. It showed reduced total activating and deactivating currents (P<0.01), with dramatically positive shift of voltage dependence of activation by ≈10 mV (P<0.05). Conclusions The current study uncovered concealed maternal type 1 long-QT syndrome as a potential novel cause behind recurrent fetal loss.


Genotype-phenotype correlation in long QT syndrome families.

  • Sameera Fatima Qureshi‎ et al.
  • Indian pacing and electrophysiology journal‎
  • 2015‎

Heterogeneity in clinical manifestations is a well-known feature in Long QT Syndrome (LQTS). The extent of this phenomenon became evident in families wherein both symptomatic and asymptomatic family members are reported. The study hence warrants genetic testing and/or screening of family members of LQTS probands for risk stratification and prediction. Of the 46 families screened, 18 probands revealed novel variations/compound heterozygosity in the gene/s screened. Families 1-4 revealed probands carrying novel variations in KCNQ1 gene along with compound heterozygosity of risk genotypes of the SCN5A, KCNE1 and NPPA gene/s polymorphisms screened. It was also observed that families- 5, 6 and 7 were typical cases of "anticipation" in which both mother and child were diagnosed with congenital LQTS (cLQTS). Families- 16 and 17 represented aLQTS probands with variations in IKs and INa encoding genes. First degree relatives (FDRs) carrying the same haplotype as the proband were also identified which may help in predictive testing and management of LQTS. Most of the probands exhibiting a family history were found to be genetic compounds which clearly points to the role of cardiac genes and their modifiers in a recessive fashion in LQTS manifestation.


Dynamic QT response to cold-water face immersion in long-QT syndrome type 3.

  • Kazuhiro Takahashi‎ et al.
  • Pediatrics international : official journal of the Japan Pediatric Society‎
  • 2020‎

Abnormal dynamics of QT intervals in response to sympathetic nervous system stimulation are used to diagnose long-QT syndrome (LQTS). We hypothesized that parasympathetic stimulation with cold-water face immersion following exercise would influence QT dynamics in patients with LQTS type 3 (LQT3).


Long QT molecular autopsy in sudden infant death syndrome.

  • Joanna Moira Glengarry‎ et al.
  • Archives of disease in childhood‎
  • 2014‎

To describe experience of long QT (LQT) molecular autopsy in sudden infant death syndrome (SIDS).


The congenital long QT syndrome Type 3: An update.

  • Andrés Ricardo Pérez-Riera‎ et al.
  • Indian pacing and electrophysiology journal‎
  • 2018‎

Congenital long QT syndrome type 3 (LQT3) is the third in frequency compared to the 15 forms known currently of congenital long QT syndrome (LQTS). Cardiac events are less frequent in LQT3 when compared with LQT1 and LQT2, but more likely to be lethal; the likelihood of dying during a cardiac event is 20% in families with an LQT3 mutation and 4% with either an LQT1 or an LQT2 mutation. LQT3 is consequence of mutation of gene SCN5A which codes for the Nav1.5 Na+ channel α-subunit and electrocardiographically characterized by a tendency to bradycardia related to age, prolonged QT/QTc interval (mean QTc value 478 ± 52 ms), accentuated QT dispersion consequence of prolonged ST segment, late onset of T wave and frequent prominent U wave because of longer repolarization of the M cell across left ventricular wall.


Genetic variant annotation scores in congenital long QT syndrome.

  • Arwa Younis‎ et al.
  • Annals of noninvasive electrocardiology : the official journal of the International Society for Holter and Noninvasive Electrocardiology, Inc‎
  • 2023‎

Congenital Long QT Syndrome (LQTS) is a hereditary arrhythmic disorder. We aimed to assess the performance of current genetic variant annotation scores among LQTS patients and their predictive impact.


Impact of Drug Induced Long QT Syndrome: A Systematic Review.

  • Karuppiah Arunachalam‎ et al.
  • Journal of clinical medicine research‎
  • 2018‎

Drug induced long QT syndrome is quite common in daily clinical practice but its impact is unknown.


Mutational analysis of SCN5A gene in long QT syndrome.

  • Sameera Fatima Qureshi‎ et al.
  • Meta gene‎
  • 2015‎

The SCN5A gene encodes for the INa channel implicated in long QT syndrome type-3 (LQTS-type-3). Clinical symptoms of this type are lethal as most patients had a sudden death during sleep. Screening of SCN5A in South Indian cohort by PCR-SSCP analyses revealed five polymorphisms - A29A (exon-2), H558R (exon-12), E1061E and S1074R (exon-17) and IVS25 + 65G > A (exon-25) respectively. In-silico and statistical analyses were performed on all the polymorphisms. Exon-2 of SCN5A gene revealed A282G polymorphism (rs6599230), resulting in alanine for alanine (A29A) silent substitution in the N-terminus of SCN5A protein. Exon-12 showed A1868G polymorphism (H558R - rs1805124) and its 'AA' genotype and 'A' allele frequency were found to be higher in LQTS patients pointing towards its role in LQTS etiology. Two polymorphisms A3378G (E1061E) and the novel C3417A (S1074R) were identified as compound heterozygotes/genetic compounds in exon-17 of SCN5A located in the DIIS6-DIIIS1 domain of the SCN5A transmembrane protein. IVS25 + 65G > A was identified in intron-25 of SCN5A. The 'G' allele was identified as the risk allele. Variations were identified in in-silico analyses which revealed that these genetic compounds may lead to downstream signaling variations causing aberrations in sodium channel functions leading to prolonged QTc. The compound heterozygotes of SCN5A gene polymorphisms revealed a significant association which may be deleterious/lethal leading to an aberrant sodium ion channel causing prolonged QTc.


TRPM4 non-selective cation channel variants in long QT syndrome.

  • Thomas Hof‎ et al.
  • BMC medical genetics‎
  • 2017‎

Long QT syndrome (LQTS) is an inherited arrhythmic disorder characterized by prolongation of the QT interval, a risk of syncope, and sudden death. There are already a number of causal genes in LQTS, but not all LQTS patients have an identified mutation, which suggests LQTS unknown genes.


Identification of a Kir3.4 mutation in congenital long QT syndrome.

  • Yanzong Yang‎ et al.
  • American journal of human genetics‎
  • 2010‎

Congenital long QT syndrome (LQTS) is a hereditary disorder that leads to sudden cardiac death secondary to fatal cardiac arrhythmias. Although many genes for LQTS have been described, the etiology remains unknown in 30%-40% of cases. In the present study, a large Chinese family (four generations, 49 individuals) with autosomal-dominant LQTS was clinically evaluated. Genome-wide linkage analysis was performed by using polymorphic microsatellite markers to map the genetic locus, and positional candidate genes were screened by sequencing for mutations. The expression pattern and functional characteristics of the mutated protein were investigated by western blotting and patch-clamp electrophysiology. The genetic locus of the LQTS-associated gene was mapped to chromosome 11q23.3-24.3. A heterozygous mutation (Kir3.4-Gly387Arg) was identified in the G protein-coupled, inwardly rectifying potassium channel subunit Kir3.4, encoded by the KCNJ5 gene. The Kir3.4-Gly387Arg mutation was present in all nine affected family members and absent in 528 ethnically matched controls. Western blotting of human cardiac tissue demonstrated significant Kir3.4 expression levels in the cardiac ventricles. Heterologous expression studies with Kir3.4-Gly387Arg revealed a loss-of-function electrophysiological phenotype resulting from reduced plasma membrane expression. Our findings suggest a role for Kir3.4 in the etiology of LQTS.


Allelic Complexity in Long QT Syndrome: A Family-Case Study.

  • Alberto Zullo‎ et al.
  • International journal of molecular sciences‎
  • 2017‎

Congenital long QT syndrome (LQTS) is associated with high genetic and allelic heterogeneity. In some cases, more than one genetic variant is identified in the same (compound heterozygosity) or different (digenic heterozygosity) genes, and subjects with multiple pathogenic mutations may have a more severe disease. Standard-of-care clinical genetic testing for this and other arrhythmia susceptibility syndromes improves the identification of complex genotypes. Therefore, it is important to distinguish between pathogenic mutations and benign rare variants. We identified four genetic variants (KCNQ1-p.R583H, KCNH2-p.C108Y, KCNH2-p.K897T, and KCNE1-p.G38S) in an LQTS family. On the basis of in silico analysis, clinical data from our family, and the evidence from previous studies, we analyzed two mutated channels, KCNQ1-p.R583H and KCNH2-p.C108Y, using the whole-cell patch clamp technique. We found that KCNQ1-p.R583H was not associated with a severe functional impairment, whereas KCNH2-p.C108Y, a novel variant, encoded a non-functional channel that exerts dominant-negative effects on the wild-type. Notably, the common variants KCNH2-p.K897T and KCNE1-p.G38S were previously reported to produce more severe phenotypes when combined with disease-causing alleles. Our results indicate that the novel KCNH2-C108Y variant can be a pathogenic LQTS mutation, whereas KCNQ1-p.R583H, KCNH2-p.K897T, and KCNE1-p.G38S could be LQTS modifiers.


BAG3-related myopathy, polyneuropathy and cardiomyopathy with long QT syndrome.

  • Anna Kostera-Pruszczyk‎ et al.
  • Journal of muscle research and cell motility‎
  • 2015‎

BAG3 belongs to BAG family of molecular chaperone regulators interacting with HSP70 and anti-apoptotic protein Bcl-2. It is ubiquitously expressed with strong expression in skeletal and cardiac muscle, and is involved in a panoply of cellular processes. Mutations in BAG3 and aberrations in its expression cause fulminant myopathies, presenting with progressive limb and axial muscle weakness, and respiratory insufficiency and neuropathy. Herein, we report a sporadic case of a 15-years old girl with symptoms of myopathy, demyelinating polyneuropathy and asymptomatic long QT syndrome. Genetic testing demonstrated heterozygous mutation Pro209Leu (c.626C > T) in exon 3 of BAG3 gene causing severe myopathy and neuropathy, often associated with restrictive cardiomyopathy. We did not find a mutation in any known LQT syndrome genes. Analysis of muscle biopsy revealed profound disintegration of Z-discs with extensive accumulation of granular debris and large inclusions within fibers. We demonstrated profound alterations in BAG3 distribution as the protein localized to long filamentous structures present across the fibers that were positively stained not only for α-actinin but also for desmin and filamin indicating that those disintegrated Z-disc regions contained also other sarcomeric proteins. The mutation caused a decrease in the content of BAG3 and HSP70, and also of α-actinin desmin, filamin and fast myosin heavy chain, confirming its severe effect on the muscle fiber morphology and thus function. We provide further evidence that BAG3 is associated with Z-disc maintenance, and the Pro209Leu mutation may occur worldwide. We also provide a summary of cases associated with this mutation reported so far.


Reclassification of genetic variants in children with long QT syndrome.

  • Dominik S Westphal‎ et al.
  • Molecular genetics & genomic medicine‎
  • 2020‎

Genes encoding cardiac ion channels or regulating proteins have been associated with the inherited form of long QT syndrome (LQTS). Complex pathophysiology and missing functional studies, however, often bedevil variant interpretation and classification. We aimed to evaluate the rate of change in variant classification based on current interpretation standards and dependent on clinical findings.


Abnormal function of platelet G proteins in long QT syndrome.

  • T Washizuka‎ et al.
  • Japanese heart journal‎
  • 1996‎

Several hypotheses have been proposed for the pathophysiology of the congenital long QT syndrome, however, the underlying mechanism has not yet been elucidated. This study evaluated G protein function in patients with congenital long QT syndrome (LQTS) and compared it with that of normal subjects. Platelet-rich plasma was collected and the cyclic AMP (cAMP) level of platelets was measured in three conditions utilizing radioimmunoassay: the basal state (Basal cAMP), after stimulation by PGE1 (PGE1-cAMP), and after stimulation by PGE1 followed by inhibition by adrenaline (Adr-cAMP), and the results were compared between 7 LQTS patients and 10 healthy volunteers (control). Gs function was defined as (PGE1-cAMP)/(Basal cAMP) and Gi function as ¿(PGE1-cAMP)-(Adr-cAMP)¿/(PGE1-cAMP). Basal cAMP was lower in patients than in the controls: 2.9 +/- 0.6 pmol/ 10(8) cells vs. 4.2 +/- 0.7 pmol/10(8) cells (p < 0.05). The increase in cAMP after PGE1 was similar in the two groups but the peak was lower in the patients: 16.8 +/- 6.2 pmol/10(8) cells vs. 24.8 +/- 7.4 pmol/10(8) cells (PGE1-cAMP). After addition of adrenaline, cAMP decreased to 14.2 +/- 5.8 pmol/10(8) cells vs. 16.2 +/- 7.6 pmol/10(8) cells and the change was significantly smaller in the patients than in the controls: 0.17 +/- 0.12 vs. 0.38 +/- 0.16 (p < 0.05). Basal cAMP was weakly correlated with sinus cycle length (r = -0.48, p > 0.3) and QTc was correlated with Gs function (r = 0.52, p > 0.3) but not with Gi function. Patients with associated Torsade de Pointes had a significantly lower Gi function compared to those without (p < 0.05). In LQTS patients, G protein function was abnormal and the abnormality was associated with clinical characteristics of long QT syndrome. The relationship between the abnormal G protein function and the regulation of the repolarization of the ventricular myocardium needs to be studied further.


The Outcome of Long QT Syndrome, a Korean Single Center Study.

  • Kyung Jin Ahn‎ et al.
  • Korean circulation journal‎
  • 2022‎

Although long QT syndrome (LQTS) is a potentially life-threatening inherited cardiac channelopathy, studies documenting the long-term clinical data of Korean patients with LQTS are scarce.


Molecular Mechanism of Autosomal Recessive Long QT-Syndrome 1 without Deafness.

  • Annemarie Oertli‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

KCNQ1 encodes the voltage-gated potassium (Kv) channel KCNQ1, also known as KvLQT1 or Kv7.1. Together with its ß-subunit KCNE1, also denoted as minK, this channel generates the slowly activating cardiac delayed rectifier current IKs, which is a key regulator of the heart rate dependent adaptation of the cardiac action potential duration (APD). Loss-of-function mutations in KCNQ1 cause congenital long QT1 (LQT1) syndrome, characterized by a delayed cardiac repolarization and a prolonged QT interval in the surface electrocardiogram. Autosomal dominant loss-of-function mutations in KCNQ1 result in long QT syndrome, called Romano-Ward Syndrome (RWS), while autosomal recessive mutations lead to Jervell and Lange-Nielsen syndrome (JLNS), associated with deafness. Here, we identified a homozygous KCNQ1 mutation, c.1892_1893insC (p.P631fs*20), in a patient with an isolated LQT syndrome (LQTS) without hearing loss. Nevertheless, the inheritance trait is autosomal recessive, with heterozygous family members being asymptomatic. The results of the electrophysiological characterization of the mutant, using voltage-clamp recordings in Xenopus laevis oocytes, are in agreement with an autosomal recessive disorder, since the IKs reduction was only observed in homomeric mutants, but not in heteromeric IKs channel complexes containing wild-type channel subunits. We found that KCNE1 rescues the KCNQ1 loss-of-function in mutant IKs channel complexes when they contain wild-type KCNQ1 subunits, as found in the heterozygous state. Action potential modellings confirmed that the recessive c.1892_1893insC LQT1 mutation only affects the APD of homozygous mutation carriers. Thus, our study provides the molecular mechanism for an atypical autosomal recessive LQT trait that lacks hearing impairment.


Atrial natriuretic peptide gene - a potential biomarker for long QT syndrome.

  • Sameera Fatima Qureshi‎ et al.
  • EXCLI journal‎
  • 2014‎

This study highlights the possible implication of NPPA (natriuretic peptide precursor A) gene in the etiology of Long QT syndrome (LQTS) by population-based as well as familial study. Three SNPs of NPPA - C-664G, C1363A and T1766C were examined by molecular analyses in LQTS, controls and first degree relatives (FDRs). This study revealed a possible association of 1364 C>A SNP 'C' allele with LQTS (p = 0.0013). All three SNPs were in tight linkage disequilibrium. The familial study highlights the association of NPPA SNP with cLQTS and implicating it as a potential biomarker in South Indian population.


Genotype and clinical characteristics of congenital long QT syndrome in Thailand.

  • Ankavipar Saprungruang‎ et al.
  • Indian pacing and electrophysiology journal‎
  • 2018‎

Congenital long QT syndrome (LQTS) is an inheritable arrhythmic disorder which is linked to at least 17 genes. The clinical characteristics and genetic mutations may be variable among different population groups and they have not yet been studied in Thai population.


A novel HECW2 variant in an infant with congenital long QT syndrome.

  • Rina Imanishi‎ et al.
  • Human genome variation‎
  • 2023‎

Pathogenic variants of HECW2 have been reported in cases of neurodevelopmental disorder with hypotonia, seizures, and absent language (NDHSAL; OMIM #617268). A novel HECW2 variant (NM_001348768.2:c.4343 T > C,p.Leu1448Ser) was identified in an NDHSAL infant with severe cardiac comorbidities. The patient presented with fetal tachyarrhythmia and hydrops and was postnatally diagnosed with long QT syndrome. This study provides evidence that HECW2 pathogenic variants can cause long QT syndrome along with neurodevelopmental disorders.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: