Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 2,320 papers

Serum lipoproteins attenuate macrophage activation and Toll-Like Receptor stimulation by bacterial lipoproteins.

  • Sylvette Bas‎ et al.
  • BMC immunology‎
  • 2010‎

Chlamydia trachomatis was previously shown to express a lipoprotein, the macrophage infectivity potentiator (Mip), exposed at the bacterial surface, and able to stimulate human primary monocytes/macrophages through Toll Like Receptor (TLR)2/TLR1/TLR6, and CD14. In PMA-differentiated THP-1 cells the proinflammatory activity of Mip was significantly higher in the absence than in the presence of serum. The present study aims to investigate the ability of different serum factors to attenuate Mip proinflammatory activity in PMA-differentiated THP-1 cells and in primary human differentiated macrophages. The study was also extend to another lipoprotein, the Borrelia burgdorferi outer surface protein (Osp)A. The proinflammatory activity was studied through Tumor Necrosis Factor alpha (TNF-α) and Interleukin (IL)-8 release. Finally, TLR1/2 human embryonic kidney-293 (HEK-293) transfected cells were used to test the ability of the serum factors to inhibit Mip and OspA proinflammatory activity.


Why are low-density lipoproteins atherogenic?

  • S G Young‎ et al.
  • The Western journal of medicine‎
  • 1994‎

Low-density lipoproteins (LDLs) carry most of the cholesterol in human plasma, and high levels of LDL cholesterol clearly cause heart disease. In recent years, many scientists have focused on elucidating the pathophysiologic steps that lie between elevated levels of LDL in the plasma and atherosclerotic plaques in the arterial wall. A large number of scientific studies indicate that oxidation of LDL within the arterial wall may be an important early step in atherogenesis. The uptake of oxidized LDL by macrophages is a likely explanation for the formation of macrophage foam cells in early atherosclerotic lesions. In addition, oxidized LDL has many other potentially proatherogenic properties.


Circulating Oxidized Low-Density Lipoproteins and Antibodies against Oxidized Low-Density Lipoproteins as Potential Biomarkers of Colorectal Cancer.

  • Dorota Diakowska‎ et al.
  • Gastroenterology research and practice‎
  • 2015‎

Introduction. The aim of the study was evaluation of the diagnostic utility of serum oxidized low-density lipoproteins (oxLDL), antibodies against oxLDLs (o-LAB), and CEA as risk markers of colorectal cancer (CRC). Material and Methods. The serum levels of study factors were measured in 73 patients with CRC and in 35 healthy controls who were gender- and BMI-matched to the study group. Concentrations of oxLDL, o-LAB, and CEA were detected in ELISA tests. Serum lipids, lipoproteins, and glucose levels were also coestimated. Results. Age and o-LAB were significant factors of CRC presence, but results of logistic regression analysis showed that both were weak predictors of CRC risk. Concentration of o-LAB was significantly higher in colon cancer than in rectal cancer, especially when the cancer was located in the right section of colon. Serum CEA levels were significantly elevated in the advanced stage of disease, primary tumor progression, angiolymphatic invasion, and presence of distant metastasis. Conclusions. Obtained results have demonstrated that oxLDL and o-LAB were not satisfactory risk markers of CRC. Although significant relation between o-LAB level and CRC is observed, it may be rather the result of individual differences in the host immune responses against cancer.


Antioxidant protection of lipoproteins containing estrogens: in vitro evidence for low- and high-density lipoproteins as estrogen carriers.

  • Q H Meng‎ et al.
  • Biochimica et biophysica acta‎
  • 1999‎

Some recent studies have reported that low-density lipoprotein (LDL) isolated from estrogen-treated postmenopausal women exhibited increased oxidation resistance ex vivo. However, the underlying mechanisms responsible for this effect are not clear. We explored the possibility that lipophilic derivatives of 17beta-estradiol (E(2)) could be incorporated into LDL and high-density lipoprotein (HDL) particles inhibiting lipoprotein oxidation. Introduction of small amounts of esterified E(2) into lipoproteins by means of incubation of free E(2) and E(2) 17-stearate in plasma did not result in any antioxidant effect. Using an artificial transfer system (Celite dispersion), larger amounts of E(2) esters could be incorporated into lipoproteins. Concentrations ranging between 0.27 and 1.38 molecules/LDL particle for E(2) 17-stearate and between 0.36 and 1.93 molecules/LDL particle for E(2) 17-oleate resulted in increased Cu(2+)-induced oxidation resistance of LDL as indicated by statistically significant lag time prolongations. Significant prolongations of lag times were also observed for HDL following incorporation of E(2) esters using Celite as transfer system. Our results suggest that free E(2) can be esterified and incorporated into lipoproteins during incubation in plasma. However, incorporation of supraphysiologic concentrations of E(2) esters into lipoproteins by means of the artificial transfer system was required in order to reduce their oxidation susceptibility.


Lipoproteins as Markers for Monitoring Cancer Progression.

  • Logeswaran Maran‎ et al.
  • Journal of lipids‎
  • 2021‎

Lipoproteins are among the contributors of energy for the survival of cancer cells. Studies indicate there are complex functions and metabolism of lipoproteins in cancer. The current review is aimed at providing updates from studies related to the monitoring of lipoproteins in different types of cancer. This had led to numerous clinical and experimental studies. The review covers the major lipoproteins such as LDL cholesterol (LDL-C), oxidized low-density lipoprotein cholesterol (oxLDL-C), very low-density lipoprotein cholesterol (VLDL-C), and high-density lipoprotein cholesterol (HDL-C). This is mainly due to increasing evidence from clinical and experimental studies that relate association of lipoproteins with cancer. Generally, a significant association exists between LDL-C with carcinogenesis and high oxLDL with metastasis. This warrants further investigations to include Mendelian randomization design and to be conducted in a larger population to confirm the significance of LDL-C and its oxidized form as prognostic markers of cancer.


Pla2g12b drives expansion of triglyceride-rich lipoproteins.

  • James H Thierer‎ et al.
  • Nature communications‎
  • 2024‎

Vertebrates transport hydrophobic triglycerides through the circulatory system by packaging them within amphipathic particles called Triglyceride-Rich Lipoproteins. Yet, it remains largely unknown how triglycerides are loaded onto these particles. Mutations in Phospholipase A2 group 12B (PLA2G12B) are known to disrupt lipoprotein homeostasis, but its mechanistic role in this process remains unclear. Here we report that PLA2G12B channels lipids within the lumen of the endoplasmic reticulum into nascent lipoproteins. This activity promotes efficient lipid secretion while preventing excess accumulation of intracellular lipids. We characterize the functional domains, subcellular localization, and interacting partners of PLA2G12B, demonstrating that PLA2G12B is calcium-dependent and tightly associated with the membrane of the endoplasmic reticulum. We also detect profound resistance to atherosclerosis in PLA2G12B mutant mice, suggesting an evolutionary tradeoff between triglyceride transport and cardiovascular disease risk. Here we identify PLA2G12B as a key driver of triglyceride incorporation into vertebrate lipoproteins.


Egg yolk lipoproteins as substrates for lipases.

  • A Abousalham‎ et al.
  • Biochimica et biophysica acta‎
  • 2000‎

Egg yolk emulsions containing phospholipids (about 31%, w/w) are classically used as substrates for measuring phospholipase A2 activity using the pH-stat method. Here we investigated the susceptibility of egg yolk lipoproteins to lipolysis by various highly purified lipases of animal or microbial origin. Egg yolk lipoproteins, which contain up to 65% triacylglycerols, were found to be effective substrates for all the lipases tested. The specific activities measured on egg yolk lipoproteins using the pH-stat technique were found to be 8000, 1000, 1250 and 1700 U/mg in the case of human pancreatic lipase, horse pancreatic lipase, porcine pancreatic lipase and Humicola lanuginosa lipase, respectively. No activity was detected in the absence of colipase with any of the pancreatic lipases tested. Consequently, the classical egg yolk assay cannot be considered as a specific phospholipase A2 assay.


Polymer-coated pH-responsive high-density lipoproteins.

  • Hyungjin Kim‎ et al.
  • Journal of controlled release : official journal of the Controlled Release Society‎
  • 2016‎

Intracellular drug delivery by nanoparticles is often hampered by their endosomal entrapment followed by their degradation in the lysosomal compartment and/or exocytosis. Here, we show that internalization and endosomal escape of cargoes in a cationized natural nanocarrier, high-density lipoprotein (HDL), can be controlled in a pH-dependent manner through stable complexation with a membranolytic anionic block polymer. A genetically and chemically cationized form of HDL (catHDL) is prepared for the first time by both genetic fusion with YGRKKRRQRRR peptide and incorporation of 1,2-dioleoyloxy-3-(trimethylammonium)propane. Upon addition of poly(ethylene glycol)-block-poly(propyl methacrylate-co-methacrylic acid) (PA), catHDL yields inhibition of internalization at neutral pH and its subsequent recovery at mildly acidic pH. catHDL forms a stable discoidal-shape complex with PA (catHDL/PA) (ca. 50 nm in diameter), even in the presence of serum. Significant enhancement of endosomal escape of a catHDL component is observed after a 1-h treatment of human cancer cells with catHDL/PA. Doxorubicin and curcumin, fluorescent anti-cancer drugs, encapsulated into catHDL/PA are also translocated outside of endosomes, compared with that into catHDL, and their cytotoxicities are enhanced inside the cells. These data suggest that catHDL/PA may have a potential benefit to improve the cellular delivery and endosomal escape of therapeutics under mildly acidic conditions such as in tumor tissues.


α-Synuclein Interacts with Lipoproteins in Plasma.

  • Fatemeh Nouri Emamzadeh‎ et al.
  • Journal of molecular neuroscience : MN‎
  • 2017‎

Parkinson's disease (PD) is an age-related neurodegenerative disorder characterized by dopaminergic neural cell death in the substantia nigra of the brain and α-synuclein (α-syn) accumulation in Lewy bodies. α-Syn can be detected in blood and is a potential biomarker for PD. It has been shown recently that α-syn can pass through the blood-brain barrier (BBB), but the mechanism is not yet understood. We hypothesized that α-syn could interact with lipoproteins, and in association with these particles, could pass through the BBB. Here, we show that apoE, apoJ, and apoA1, but not apoB, were co-immunocaptured along with α-syn from human blood plasma, suggesting that α-syn is associated with high-density lipoproteins (HDL). This association was also supported by experiments involving western blotting of plasma fractions separated by gel filtration, which revealed that α-syn was found in fractions identified as HDL. Interestingly, we could also detect α-syn and ApoJ in the intermediate fraction between HDL and LDL, referred to as lipoprotein (a) (Lp(a)), which has an important role in cholesterol metabolism. Overall, the results provide best support for the hypothesis that α-syn interacts with HDL, and this has potential implications for transport of α-syn from the brain to peripheral blood, across the BBB.


Lipoproteins, triglycerides, cholesterol changes after prostatic carcinoma treatment.

  • M Likoyrinas‎ et al.
  • Acta urologica Belgica‎
  • 1982‎

No abstract available


Identification and localization of Myxococcus xanthus porins and lipoproteins.

  • Swapna Bhat‎ et al.
  • PloS one‎
  • 2011‎

Myxococcus xanthus DK1622 contains inner (IM) and outer membranes (OM) separated by a peptidoglycan layer. Integral membrane, β-barrel proteins are found exclusively in the OM where they form pores allowing the passage of nutrients, waste products and signals. One porin, Oar, is required for intercellular communication of the C-signal. An oar mutant produces CsgA but is unable to ripple or stimulate csgA mutants to develop suggesting that it is the channel for C-signaling. Six prediction programs were evaluated for their ability to identify β-barrel proteins. No program was reliable unless the predicted proteins were first parsed using Signal P, Lipo P and TMHMM, after which TMBETA-SVM and TMBETADISC-RBF identified β-barrel proteins most accurately. 228 β-barrel proteins were predicted from among 7331 protein coding regions, representing 3.1% of total genes. Sucrose density gradients were used to separate vegetative cell IM and OM fractions, and LC-MS/MS of OM proteins identified 54 β-barrel proteins. Another class of membrane proteins, the lipoproteins, are anchored in the membrane via a lipid moiety at the N-terminus. 44 OM proteins identified by LC-MS/MS were predicted lipoproteins. Lipoproteins are distributed between the IM, OM and ECM according to an N-terminal sorting sequence that varies among species. Sequence analysis revealed conservation of alanine at the +7 position of mature ECM lipoproteins, lysine at the +2 position of IM lipoproteins, and no noticable conservation within the OM lipoproteins. Site directed mutagenesis and immuno transmission electron microscopy showed that alanine at the +7 position is essential for sorting of the lipoprotein FibA into the ECM. FibA appears at normal levels in the ECM even when a +2 lysine is added to the signal sequence. These results suggest that ECM proteins have a unique method of secretion. It is now possible to target lipoproteins to specific IM, OM and ECM locations by manipulating the amino acid sequence near the +1 cysteine processing site.


Role of triglyceride-rich lipoproteins in renal injury.

  • Kit Fai Ng‎ et al.
  • Contributions to nephrology‎
  • 2011‎

Dyslipidemia is implicated as a risk factor for the development of atherosclerosis. Specifically triglyceride-rich lipoproteins and their lipolysis products are shown to be proinflammatory and proapoptosis in both in vivo and in vitro studies with endothelium. However, the role of triglyceride-rich lipoproteins in the progression of kidney diseases is not clear. Epidemiology studies demonstrated a correlation between renal disease and blood lipids. Recent evidence suggests that the mechanism may involve cellular uptake of lipid and de novo lipogenesis. Further studies are needed to establish the relevance of these mechanistic studies in human pathophysiology.


Role of lipids in spheroidal high density lipoproteins.

  • Timo Vuorela‎ et al.
  • PLoS computational biology‎
  • 2010‎

We study the structure and dynamics of spherical high density lipoprotein (HDL) particles through coarse-grained multi-microsecond molecular dynamics simulations. We simulate both a lipid droplet without the apolipoprotein A-I (apoA-I) and the full HDL particle including two apoA-I molecules surrounding the lipid compartment. The present models are the first ones among computational studies where the size and lipid composition of HDL are realistic, corresponding to human serum HDL. We focus on the role of lipids in HDL structure and dynamics. Particular attention is paid to the assembly of lipids and the influence of lipid-protein interactions on HDL properties. We find that the properties of lipids depend significantly on their location in the particle (core, intermediate region, surface). Unlike the hydrophobic core, the intermediate and surface regions are characterized by prominent conformational lipid order. Yet, not only the conformations but also the dynamics of lipids are found to be distinctly different in the different regions of HDL, highlighting the importance of dynamics in considering the functionalization of HDL. The structure of the lipid droplet close to the HDL-water interface is altered by the presence of apoA-Is, with most prominent changes being observed for cholesterol and polar lipids. For cholesterol, slow trafficking between the surface layer and the regimes underneath is observed. The lipid-protein interactions are strongest for cholesterol, in particular its interaction with hydrophobic residues of apoA-I. Our results reveal that not only hydrophobicity but also conformational entropy of the molecules are the driving forces in the formation of HDL structure. The results provide the first detailed structural model for HDL and its dynamics with and without apoA-I, and indicate how the interplay and competition between entropy and detailed interactions may be used in nanoparticle and drug design through self-assembly.


Construction and application of artificial lipoproteins using adiposomes.

  • Zhen Cao‎ et al.
  • Journal of lipid research‎
  • 2023‎

Lipoproteins are complex particles comprised of a neutral lipid core wrapped with a phospholipid monolayer membrane and apolipoproteins on the membrane, which is closely associated with metabolic diseases. To facilitate the elucidation of its formation and dynamics, as well as its applications, we developed an in vitro system in which adiposomes, consisting of a hydrophobic core encircled by a monolayer-phospholipid membrane, were engineered into artificial lipoproteins (ALPs) by recruiting one or more kinds of apolipoproteins, for example, apolipoprotein (Apo) A-I, ApoE, ApoA-IV, and ApoB. In vitro and in vivo studies demonstrated the stability and biological activity of ALPs derived from adiposomes, which resembles native lipoproteins. Of note, adiposomes bearing ApoE were internalized via clathrin-mediated endocytosis following LDLR binding and were delivered to lysosomes. On the other hand, adiposomes bearing ApoA-IV mimicked the existing form of endogenous ApoA-IV and exhibited significant improvement in glucose tolerance in mice. In addition, the construction process was simple, precise, reproducible, as well as easy to adjust for mass production. With this experimental system, different apolipoproteins can be recruited to build ALPs for some biological goals and potential applications in biomedicine.


Dicarbonyl-modified lipoproteins contribute to proteinuric kidney injury.

  • Jianyong Zhong‎ et al.
  • JCI insight‎
  • 2022‎

Lipoprotein modification by reactive dicarbonyls, including isolevuglandin (IsoLG), produces dysfunctional particles. Kidneys participate in lipoprotein metabolism, including tubular uptake. However, the process beyond the proximal tubule is unclear, as is the effect of kidney injury on this pathway. We found that patients and animals with proteinuric injury have increased urinary apolipoprotein AI (apoAI), IsoLG, and IsoLG adduct enrichment of the urinary apoAI fraction compared with other proteins. Proteinuric mice, induced by podocyte-specific injury, showed more tubular absorption of IsoLG-apoAI and increased expression of lipoprotein transporters in proximal tubular cells compared with uninjured animals. Renal lymph reflects composition of the interstitial compartment and showed increased apoAI and IsoLG in proteinuric animals, supporting a tubular cell-interstitium-lymph pathway for renal handling of lipoproteins. IsoLG-modified apoAI was not only a marker of renal injury but also directly damaged renal cells. IsoLG-apoAI increased inflammatory cytokines in cultured tubular epithelial cells (TECs), activated lymphatic endothelial cells (LECs), and caused greater contractility of renal lymphatic vessels than unmodified apoAI. In vivo, inhibition of IsoLG by a dicarbonyl scavenger reduced both albuminuria and urinary apoAI and decreased TEC and LEC injury, lymphangiogenesis, and interstitial fibrosis. Our results indicate that IsoLG-modified apoAI is, to our knowledge, a novel pathogenic mediator and therapeutic target in kidney disease.


Laser-triggered polymeric lipoproteins for precision tumor penetrating theranostics.

  • Ruoning Wang‎ et al.
  • Biomaterials‎
  • 2019‎

Natural particles ranging from various cell membranes to nascent proteins are highly optimized for their specific functions in vivo and possess features that are desired in drug delivery carriers. However, the current endeavor in research on bioparticles is still seeking the appropriate strategy to shield multiple agents and circumvent biological hurdles. These issues have propelled the advancement of lipid-polymer hybrid nanocarriers, which could be employed as drug reservoirs and strive to meet these expectations. We thereby proposed functionalized biopeptide-lipid hybrid particles, which were applied to encapsulating a PLGA polymeric core together with indocyanine green (ICG) and packaged by a lipoprotein-inspired structural shell. To initiate precision tumor-penetrating performance, tLyP-1-fused apolipoprotein A-I-mimicking peptides (D4F) were exploited to impart tumor-homing and tumor-penetrating biological functions. The sub-100 nm drug vehicle possessed a long circulation time with uniform mono-dispersity but was stable enough to navigate freely, penetrate deeply into tumors and deliver its cargoes to the targeted sites. Moreover, ICG-encapsulated penetrable polymeric lipoprotein particles (PPL/ICG) could realize real-time fluorescence/photoacoustic imaging for monitoring in vivo dynamic distribution. Upon near-infrared (NIR) laser irradiation, PPL/ICG demonstrated a highly efficient phototherapeutic effect to eradicate orthotopic xenografted tumors, resulting in an 88.77% decrease from the initial tumor volume and inhibited tumor metastasis with good biosafety. Therefore, the described bio-strategy opens new avenues for creating polymeric lipoproteins with varied hybrid functionalities, which may be applied to provide a basis and inspiration for improved nanoparticle-based precision theranostic nanoplatforms.


The effect of partial ileal bypass on plasma lipoproteins.

  • R B Moore‎ et al.
  • Circulation‎
  • 1980‎

Plasma lipids and lipoprotein cholesterol concentrations were determined before and at 3 months and 1 year after partial ileal surgery in 28 male survivors of first myocardial infarction (eight normolipidemic subjects and eight type II-A, two type II-B, eight type IV and two type V hyperlipoproteinemic subjects). All subjects had marked reductions in plasma total cholesterol (average 45% and 33% in the type V subjects and 37% and 31% in the other 26 subjects at 3 months and 1 year after surgeryyy). Except for the two type V subjects, all had even more marked reductions in low-density lipoprotein (LDL)-cholesterol than in the total plasma cholesterol, averaging 51% at 3 months and 49% at 1 year after surger. There were no significant changes in high-density lipoprotein (HDL)-cholesterol levels. The hypertriglyceridemic subjects had marked reductions in plasma triglycerides and very low density lipoprotein-cholesterol, whereas the normotriglyceridemic subjects (normals and II-A) had slight increases in these two measurements after surgery. Partial ileal bypass tends to normalize elevated plasma lipid and lipoprotein levels and results in a maximal lowering in LDL-cholesterol concentrations without altering the HDL-cholesterol level.


Intranasal Vaccination With Lipoproteins Confers Protection Against Pneumococcal Colonisation.

  • Franziska Voß‎ et al.
  • Frontiers in immunology‎
  • 2018‎

Streptococcus pneumoniae is endowed with a variety of surface-exposed proteins representing putative vaccine candidates. Lipoproteins are covalently anchored to the cell membrane and highly conserved among pneumococcal serotypes. Here, we evaluated these lipoproteins for their immunogenicity and protective potential against pneumococcal colonisation. A multiplex-based immunoproteomics approach revealed the immunogenicity of selected lipoproteins. High antibody titres were measured in sera from mice immunised with the lipoproteins MetQ, PnrA, PsaA, and DacB. An analysis of convalescent patient sera confirmed the immunogenicity of these lipoproteins. Examining the surface localisation and accessibility of the lipoproteins using flow cytometry indicated that PnrA and DacB were highly abundant on the surface of the bacteria. Mice were immunised intranasally with PnrA, DacB, and MetQ using cholera toxin subunit B (CTB) as an adjuvant, followed by an intranasal challenge with S. pneumoniae D39. PnrA protected the mice from pneumococcal colonisation. For the immunisation with DacB and MetQ, a trend in reducing the bacterial load could be observed, although this effect was not statistically significant. The reduction in bacterial colonisation was correlated with the increased production of antigen-specific IL-17A in the nasal cavity. Immunisation induced high systemic IgG levels with a predominance for the IgG1 isotype, except for DacB, where IgG levels were substantially lower compared to MetQ and PnrA. Our results indicate that lipoproteins are interesting targets for future vaccine strategies as they are highly conserved, abundant, and immunogenic.


A phospholipidomic analysis of all defined human plasma lipoproteins.

  • Monireh Dashti‎ et al.
  • Scientific reports‎
  • 2011‎

Since plasma lipoproteins contain both protein and phospholipid components, either may be involved in processes such as atherosclerosis. In this study the identification of plasma lipoprotein-associated phospholipids, which is essential for understanding these processes at the molecular level, are performed. LC-ESI/MS, LC-ESI-MS/MS and High Performance Thin Layer Chromatography (HPTLC) analysis of different lipoprotein fractions collected from pooled plasma revealed the presence of phosphatidylethanolamine (PE), phosphatidylinositol (PI), and sphingomyeline (SM) only on lipoproteins and phosphatidylcholine (PC), Lyso-PC on both lipoproteins and plasma lipoprotein free fraction (PLFF). Cardiolipin, phosphatidylglycerol (PG) and Phosphatidylserine (PS) were observed neither in the lipoprotein fractions nor in PLFF. All three approaches led to the same results regarding phospholipids occurrence in plasma lipoproteins and PLFF. A high abundancy of PE and SM was observed in VLDL and LDL fractions respectively. This study provides for the first time the knowledge about the phospholipid composition of all defined plasma lipoproteins.


Recognition of lipoproteins by scavenger receptor class A members.

  • Chen Cheng‎ et al.
  • The Journal of biological chemistry‎
  • 2021‎

Scavenger receptor class A (SR-A) proteins are type II transmembrane glycoproteins that form homotrimers on the cell surface. This family has five known members (SCARA1 to 5, or SR-A1 to A5) that recognize a variety of ligands and are involved in multiple biological pathways. Previous reports have shown that some SR-A family members can bind modified low-density lipoproteins (LDLs); however, the mechanisms of the interactions between the SR-A members and these lipoproteins are not fully understood. Here, we systematically characterize the recognition of SR-A receptors with lipoproteins and report that SCARA1 (SR-A1, CD204), MARCO (SCARA2), and SCARA5 recognize acetylated or oxidized LDL and very-low-density lipoprotein in a Ca2+-dependent manner through their C-terminal scavenger receptor cysteine-rich (SRCR) domains. These interactions occur specifically between the SRCR domains and the modified apolipoprotein B component of the lipoproteins, suggesting that they might share a similar mechanism for lipoprotein recognition. Meanwhile, SCARA4, a SR-A member with a carbohydrate recognition domain instead of the SRCR domain at the C terminus, shows low affinity for modified LDL and very-low-density lipoprotein but binds in a Ca2+-independent manner. SCARA3, which does not have a globular domain at the C terminus, was found to have no detectable binding with these lipoproteins. Taken together, these results provide mechanistic insights into the interactions between SR-A family members and lipoproteins that may help us understand the roles of SR-A receptors in lipid transport and related diseases such as atherosclerosis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: