Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 595 papers

Oxidative modifications of foetal LDL-c and HDL-c lipoproteins in preeclampsia.

  • G León-Reyes‎ et al.
  • Lipids in health and disease‎
  • 2018‎

Oxidative modifications have been observed in lipids and proteins in lipoproteins isolated from women with preeclampsia. Thus, newborns could also be susceptible to this damage directly through their mothers. In this study, we evaluated the oxidative profile of LDL-c and HDL-c lipoproteins isolated from the umbilical cord from newborns born to women with preeclampsia.


Lipoproteins LDL versus HDL as nanocarriers to target either cancer cells or macrophages.

  • Tarik Hadi‎ et al.
  • JCI insight‎
  • 2020‎

In this work, we have explored natural unmodified low- and high-density lipoproteins (LDL and HDL, respectively) as selective delivery vectors in colorectal cancer therapy. We show in vitro in cultured cells and in vivo (NanoSPECT/CT) in the CT-26 mice colorectal cancer model that LDLs are mainly taken up by cancer cells, while HDLs are preferentially taken up by macrophages. We loaded LDLs with cisplatin and HDLs with the heat shock protein-70 inhibitor AC1LINNC, turning them into a pair of "Trojan horses" delivering drugs selectively to their target cells as demonstrated in vitro in human colorectal cancer cells and macrophages, and in vivo. Coupling of the drugs to lipoproteins and stability was assessed by mass spectometry and raman spectrometry analysis. Cisplatin vectorized in LDLs led to better tumor growth suppression with strongly reduced adverse effects such as renal or liver toxicity. AC1LINNC vectorized into HDLs induced a strong oxidative burst in macrophages and innate anticancer immune response. Cumulative antitumor effect was observed for both drug-loaded lipoproteins. Altogether, our data show that lipoproteins from patient blood can be used as natural nanocarriers allowing cell-specific targeting, paving the way toward more efficient, safer, and personalized use of chemotherapeutic and immunotherapeutic drugs in cancer.


Phospholipids in lipoproteins: compositional differences across VLDL, LDL, and HDL in pregnant women.

  • Sebastian Rauschert‎ et al.
  • Lipids in health and disease‎
  • 2019‎

The aim of this study was to analyse the differences in the phospholipid composition of very low density (VLDL), low density (LDL) and high density lipoprotein (HDL) monolayers in pregnant lean and obese women.


Microencapsulated Pomegranate Modifies the Composition and Function of High-Density Lipoproteins (HDL) in New Zealand Rabbits.

  • Alan Dorantes-Morales‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

Previous studies demonstrated that pomegranate, which is a source of several bioactive molecules, induces modifications of high-density lipoproteins (HDL) lipid composition and functionality. However, it remains unclear whether the beneficial effects of pomegranate are related to improvement in the lipid components of HDL. Therefore, in this placebo-controlled study, we characterized the size and lipid composition of HDL subclasses and assessed the functionality of these lipoproteins after 30 days of supplementation with a pomegranate microencapsulated (MiPo) in New Zealand white rabbits. We observed a significant decrease in plasma cholesterol, triglycerides, and non-HDL sphingomyelin, as well as increases in HDL cholesterol and HDL phospholipids after supplementation with MiPo. Concomitantly, the triglycerides of the five HDL subclasses isolated by electrophoresis significantly decreased, whereas phospholipids, cholesterol, and sphingomyelin of HDL subclasses, as well as the HDL size distribution remained unchanged. Of particular interest, the triglycerides content of HDL, estimated by the triglycerides-to-phospholipids ratio, decreased significantly after MiPo supplementation. The modification on the lipid content after the supplementation was associated with an increased resistance of HDL to oxidation as determined by the conjugated dienes formation catalyzed by Cu2+. Accordingly, paraoxonase-1 (PON1) activity determined with phenylacetate as substrate increased after MiPo. The effect of HDL on endothelial function was analyzed by the response to increasing doses of acetylcholine of aorta rings co-incubated with the lipoproteins in an isolated organ bath. The HDL from rabbits that received placebo partially inhibited the endothelium-dependent vasodilation. In contrast, the negative effect of HDL on endothelial function was reverted by MiPo supplementation. These results show that the beneficial effects of pomegranate are mediated at least in part by improving the functionality of HDL, probably via the reduction of the content of triglycerides in these lipoproteins.


Native High-Density Lipoproteins (HDL) with Higher Paraoxonase Exerts a Potent Antiviral Effect against SARS-CoV-2 (COVID-19), While Glycated HDL Lost the Antiviral Activity.

  • Kyung-Hyun Cho‎ et al.
  • Antioxidants (Basel, Switzerland)‎
  • 2021‎

Human high-density lipoproteins (HDL) show a broad spectrum of antiviral activity in terms of anti-infection. Although many reports have pointed out a correlation between a lower serum HDL-C and a higher risk of COVID-19 infection and progression, the in vitro antiviral activity of HDL against SARS-CoV-2 has not been reported. HDL functionality, such as antioxidant and anti-infection, can be impaired by oxidation and glycation and a change to pro-inflammatory properties. This study compared the antiviral activity of native HDL with glycated HDL via fructosylation and native low-density lipoproteins (LDL). After 72 h of fructosylation, glycated HDL showed a typical multimerized protein pattern with an elevation of yellowish fluorescence. Glycated HDL showed a smaller particle size with an ambiguous shape and a loss of paraoxonase activity up to 51% compared to native HDL. The phagocytosis of acetylated LDL was accelerated 1.3-fold by glycated HDL than native HDL. Native HDL showed 1.7 times higher cell viability and 3.6 times higher cytopathic effect (CPE) inhibition activity against SARS-CoV-2 than that of glycated HDL under 60 μg/mL (approximately final 2.2 μM) in a Vero E6 cell. Native HDL showed EC50 = 52.1 ± 1.1 μg/mL (approximately final 1.8 μM) for the CPE and CC50 = 79.4 ± 1.5 μg/mL (around 2.8 μM). The selective index (SI) of native HDL was calculated to be 1.52. In conclusion, native HDL shows potent antiviral activity against SARS-CoV-2 without cytotoxicity, while the glycation of HDL impairs its antiviral activity. These results may explain why patients with diabetes mellitus or hypertension are more sensitive to a COVID-19 infection and have a higher risk of mortality.


The HDL mimetic CER-001 remodels plasma lipoproteins and reduces kidney lipid deposits in inherited lecithin:cholesterol acyltransferase deficiency.

  • Chiara Pavanello‎ et al.
  • Journal of internal medicine‎
  • 2022‎

Kidney failure is the major cause of morbidity and mortality in familial lecithin:cholesterol acyltransferase deficiency (FLD), a rare inherited lipid disorder with no cure. Lipoprotein X (LpX), an abnormal lipoprotein, is primarily accountable for nephrotoxicity.


The Impact of Lipoproteins on Wound Healing: Topical HDL Therapy Corrects Delayed Wound Healing in Apolipoprotein E Deficient Mice.

  • Stephanie C Gordts‎ et al.
  • Pharmaceuticals (Basel, Switzerland)‎
  • 2014‎

Chronic non-healing wounds lead to considerable morbidity and mortality. Pleiotropic effects of high density lipoproteins (HDL) may beneficially affect wound healing. The objectives of this murine study were: (1) to investigate the hypothesis that hypercholesterolemia induces impaired wound healing and (2) to study the effect of topical HDL administration in a model of delayed wound healing. A circular full thickness wound was created on the back of each mouse. A silicone splint was used to counteract wound contraction. Coverage of the wound by granulation tissue and by epithelium was quantified every 2 days. Re-epithelialization from day 0 till day 10 was unexpectedly increased by 21.3% (p < 0.05) in C57BL/6 low density lipoprotein (LDLr) deficient mice with severe hypercholesterolemia (489 ± 14 mg/dL) compared to C57BL/6 mice and this effect was entirely abrogated following cholesterol lowering adenoviral LDLr gene transfer. In contrast, re-epithelialization in hypercholesterolemic (434 ± 16 mg/dL) C57BL/6 apolipoprotein (apo) E-/- mice was 22.6% (p < 0.0001) lower than in C57BL/6 mice. Topical HDL gel administered every 2 days increased re-epithelialization by 25.7% (p < 0.01) in apo E-/- mice. In conclusion, topical HDL application is an innovative therapeutic strategy that corrects impaired wound healing in apo E-/- mice.


Apolipoprotein C-I reduces cholesteryl esters selective uptake from LDL and HDL by binding to HepG2 cells and lipoproteins.

  • Veneta Krasteva‎ et al.
  • Biochimica et biophysica acta‎
  • 2010‎

Plasma cholesterol from low- and high-density lipoproteins (LDL and HDL) are cleared from the circulation by specific receptors that either totally degrade lipoproteins as the LDL receptor or selectively take up their cholesteryl esters (CE) like the scavenger receptor class B type I (SR-BI). The aim of the present study was to define the effect of apoC-I on the uptake of LDL and HDL(3) by HepG2 cells. In experiments conducted with exogenously added purified apoC-I, no significant effect was observed on lipoprotein-protein association and degradation; however, LDL- and HDL(3)-CE selective uptake was significantly reduced in a dose-dependent manner. This study also shows that apoC-I has the ability to associate with HepG2 cells and with LDL and HDL(3). Moreover, pre-incubation of HepG2 cells with apoC-I reduces HDL(3)-CE selective uptake and pre-incubation of LDL and HDL(3) with apoC-I decreases their CE selective uptake by HepG2 cells. Thus, apoC-I can accomplish its inhibitory effect on SR-BI activity by either binding to SR-BI or lipoproteins. We conclude that by reducing hepatic lipoprotein-CE selective uptake, apoC-I has an atherogenic character.


Transport of Apolipoprotein B-Containing Lipoproteins through Endothelial Cells Is Associated with Apolipoprotein E-Carrying HDL-Like Particle Formation.

  • Hong Yang‎ et al.
  • International journal of molecular sciences‎
  • 2018‎

Passage of apolipoprotein B-containing lipoproteins (apoB-LPs), i.e., triglyceride-rich lipoproteins (TRLs), intermediate-density lipoproteins (IDLs), and low-density lipoproteins (LDLs), through the endothelial monolayer occurs in normal and atherosclerotic arteries. Among these lipoproteins, TRLs and IDLs are apoE-rich apoB-LPs (E/B-LPs). Recycling of TRL-associated apoE has been shown to form apoE-carrying high-density lipoprotein (HDL)-like (HDLE) particles in many types of cells. The current report studied the formation of HDLE particles by transcytosis of apoB-LPs through mouse aortic endothelial cells (MAECs). Our data indicated that passage of radiolabeled apoB-LPs, rich or poor in apoE, through the MAEC monolayer is inhibited by filipin and unlabeled competitor lipoproteins, suggesting that MAECs transport apoB-LPs via a caveolae-mediated pathway. The cholesterol and apoE in the cell-untreated E/B-LPs, TRLs, IDLs, and LDLs distributed primarily in the low-density (LD) fractions (d ≤ 1.063). A substantial portion of the cholesterol and apoE that passed through the MAEC monolayer was allotted into the high-density (HD) (d > 1.063) fractions. In contrast, apoB was detectable only in the LD fractions before or after apoB-LPs were incubated with the MAEC monolayer, suggesting that apoB-LPs pass through the MAEC monolayer in the forms of apoB-containing LD particles and apoE-containing HD particles.


Loss of sphingosine 1-phosphate (S1P) in septic shock is predominantly caused by decreased levels of high-density lipoproteins (HDL).

  • Martin Sebastian Winkler‎ et al.
  • Journal of intensive care‎
  • 2019‎

Sphingosine 1-phosphate (S1P) is a signaling lipid essential in regulating processes involved in sepsis pathophysiology, including endothelial permeability and vascular tone. Serum S1P is progressively reduced in sepsis patients with increasing severity. S1P function depends on binding to its carriers: serum albumin (SA) and high-density lipoproteins (HDL). The aim of this single-center prospective observational study was to determine the contribution of SA- and HDL-associated S1P (SA-S1P and HDL-S1P) to sepsis-induced S1P depletion in plasma with regard to identify future strategies to supplement vasoprotective S1P.


ANGPTL3 Is Involved in the Post-prandial Response in Triglyceride-Rich Lipoproteins and HDL Components in Patients With Coronary Artery Disease.

  • Xin Guo‎ et al.
  • Frontiers in cardiovascular medicine‎
  • 2022‎

It is well-established that there exists an inverse relationship between high-density lipoprotein (HDL) cholesterol and triglyceride (TG) levels in the plasma. However, information is lacking on the impact of post-prandial triglyceride-rich lipoproteins (TRLs) on the structure of HDL subclasses in patients with coronary artery disease (CAD). In this study, the data of 49 patients with CAD were analyzed to evaluate dynamic alterations in post-prandial lipid profiles using nuclear magnetic resonance-based methods. An enzyme-linked immunosorbent assay was used to quantify the serum angiopoietin-like protein 3 (ANGPTL3). After glucose supplementation, the expression of hepatic ANGPTL3 was evaluated both in vitro and in vivo. Compared to fasting levels, the post-prandial serum TG level of all participants was considerably increased. Although post-prandial total cholesterol in HDL (HDL-C) remained unchanged, free cholesterol in HDL particles (HDL-FC) was significantly reduced after a meal. Furthermore, the post-prandial decrease in the HDL-FC level corresponded to the increase in remnant cholesterol (RC), indicating the possible exchange of free cholesterol between HDL and TRLs after a meal. Moreover, CAD patients with exaggerated TG response to diet, defined as TG increase >30%, tend to have a greater post-prandial increase of RC and decrease of HDL-FC compared to those with TG increase ≤30%. Mechanistically, the fasting and post-prandial serum ANGPTL3 levels were significantly lower in those with TG increase ≤30% than those with TG increase >30%, suggesting that ANGPTL3, the key lipolysis regulator, may be responsible for the different post-prandial responses of TG, RC, and HDL-FC.


ApoCIII enrichment in HDL impairs HDL-mediated cholesterol efflux capacity.

  • Mengdie Luo‎ et al.
  • Scientific reports‎
  • 2017‎

Apolipoprotein CIII (apoCIII) has been reported to be tightly associated with triglyceride metabolism and the susceptibility to coronary artery disease (CAD). Besides, apoCIII has also been found to affect the anti-apoptotic effects of HDL. However, the effect of apoCIII on HDL-mediated cholesterol efflux, the crucial function of HDL, has not been reported. A hospital-based case-control study was conducted to compare the apoCIII distribution in lipoproteins between CAD patients and nonCAD controls and to explore the relationship between HDL-associated apoCIII (apoCIIIHDL) and HDL-mediated cholesterol efflux. One hundred forty CAD patients and nighty nine nonCAD controls were included. Plasma apoCIII, apoCIIIHDL and cholesterol efflux capacity was measured. The apoCIIIHDL ratio (apoCIIIHDL over plasma apoCIII) was significantly higher in CAD patients than that in control group (0.52 ± 0.24 vs. 0.43 ± 0.22, P = 0.004). Both apoCIIIHDL and apoCIIIHDL ratio were inversely correlated with cholesterol efflux capacity (r = -0.241, P = 0.0002; r = -0.318, P < 0.0001, respectively). Stepwise multiple regression analysis revealed that the apoCIIIHDL ratio was an independent contributor to HDL-mediated cholesterol efflux capacity (standardized β = -0.325, P < 0.001). This study indicates that the presence of apoCIII in HDL may affect HDL-mediated cholesterol efflux capacity, implying the alternative role of apoCIII in the atherogenesis.


Monocyte to HDL and Neutrophil to HDL Ratios as Potential Ischemic Stroke Prognostic Biomarkers.

  • Aimilios Gkantzios‎ et al.
  • Neurology international‎
  • 2023‎

Ischemic stroke (IS) exhibits significant heterogeneity in terms of etiology and pathophysiology. Several recent studies highlight the significance of inflammation in the onset and progression of IS. White blood cell subtypes, such as neutrophils and monocytes, participate in the inflammatory response in various ways. On the other hand, high-density lipoproteins (HDL) exhibit substantial anti-inflammatory and antioxidant actions. Consequently, novel inflammatory blood biomarkers have emerged, such as neutrophil to HDL ratio (NHR) and monocyte to HDL ratio (MHR). Literature research of two databases (MEDLINE and Scopus) was conducted to identify all relevant studies published between 1 January 2012 and 30 November 2022 dealing with NHR and MHR as biomarkers for IS prognosis. Only full-text articles published in the English language were included. Thirteen articles have been traced and are included in the present review. Our findings highlight the utility of NHR and MHR as novel stroke prognostic biomarkers, the widespread application, and the calculation of which, along with their inexpensive cost, make their clinical application extremely promising.


The Beneficial Effects of Alpha Lipoic Acid Supplementation on Lp-PLA2 Mass and Its Distribution between HDL and apoB-Containing Lipoproteins in Type 2 Diabetic Patients: A Randomized, Double-Blind, Placebo-Controlled Trial.

  • Nima Baziar‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2020‎

Lipoprotein-associated phospholipase A2 (Lp-PLA2) is a new specific vascular inflammation biomarker that is carried by the lipoproteins in the blood and plays a prominent role in the pathogenesis of atherosclerosis. Increased Lp-PLA2 levels and impaired Lp-PLA2 distribution across high-density lipoprotein (HDL) and non-HDL lipoproteins have been reported in diabetic patients, which is associated with the increase in cardiovascular disease (CVD) risk. This study is aimed at investigating the effect of alpha lipoic acid (ALA), as an antioxidant with potential cardioprotective properties, on the Lp-PLA2 mass and its distribution in diabetic patients. In a double-blind, randomized, placebo-controlled clinical trial, seventy diabetic patients were randomly allocated to ALA (1200 mg ALA as two 600 mg capsules/day) and placebo (two maltodextrin capsules/day) groups. The serum levels of total Lp-PLA2 mass, HDL-Lp-PLA2, oxidized low-density lipoproteins (ox-LDL), apolipoprotein A1 (apo A1), lipid profiles, fasting blood sugar (FBS), and insulin were measured, and apolipoprotein B- (apoB-) associated Lp-PLA2 and homeostasis model of assessment index (HOMA-IR) were calculated at the baseline and after 8 weeks of intervention. ALA significantly decreased the ox-LDL, total Lp-PLA2 mass, apoB-associated Lp-PLA2, and percent of apoB-associated Lp-PLA2 and triglyceride and increased the percent of HDL-Lp-PLA2 compared with the placebo group but had no significant effect on HDL-Lp-PLA2 mass, apo A1, lipid profiles, and glycemic indices. There was a positive correlation between the reduction in the ox-LDL level and total Lp-PLA2 mass in the ALA group. In conclusion, ALA may decrease the CVD risk by reducing the ox-LDL and Lp-PLA2 mass and improving the Lp-PLA2 distribution among lipoproteins in type 2 diabetic patients.


HDL, Atherosclerosis, and Emerging Therapies.

  • Anouar Hafiane‎ et al.
  • Cholesterol‎
  • 2013‎

This review aims to provide an overview on the properties of high-density lipoproteins (HDLs) and their cardioprotective effects. Emergent HDL therapies will be presented in the context of the current understanding of HDL function, metabolism, and protective antiatherosclerotic properties. The epidemiological association between levels of HDL-C or its major apolipoprotein (apoA-I) is strong, graded, and coherent across populations. HDL particles mediate cellular cholesterol efflux, have antioxidant properties, and modulate vascular inflammation and vasomotor function and thrombosis. A link of causality has been cast into doubt with Mendelian randomization data suggesting that genes causing HDL-C deficiency are not associated with increased cardiovascular risk, nor are genes associated with increased HDL-C, with a protective effect. Despite encouraging data from small studies, drugs that increase HDL-C levels have not shown an effect on major cardiovascular end-points in large-scale clinical trials. It is likely that the cholesterol mass within HDL particles is a poor biomarker of therapeutic efficacy. In the present review, we will focus on novel therapeutic avenues and potential biomarkers of HDL function. A better understanding of HDL antiatherogenic functions including reverse cholesterol transport, vascular protective and antioxidation effects will allow novel insight on novel, emergent therapies for cardiovascular prevention.


Antioxidant protection of lipoproteins containing estrogens: in vitro evidence for low- and high-density lipoproteins as estrogen carriers.

  • Q H Meng‎ et al.
  • Biochimica et biophysica acta‎
  • 1999‎

Some recent studies have reported that low-density lipoprotein (LDL) isolated from estrogen-treated postmenopausal women exhibited increased oxidation resistance ex vivo. However, the underlying mechanisms responsible for this effect are not clear. We explored the possibility that lipophilic derivatives of 17beta-estradiol (E(2)) could be incorporated into LDL and high-density lipoprotein (HDL) particles inhibiting lipoprotein oxidation. Introduction of small amounts of esterified E(2) into lipoproteins by means of incubation of free E(2) and E(2) 17-stearate in plasma did not result in any antioxidant effect. Using an artificial transfer system (Celite dispersion), larger amounts of E(2) esters could be incorporated into lipoproteins. Concentrations ranging between 0.27 and 1.38 molecules/LDL particle for E(2) 17-stearate and between 0.36 and 1.93 molecules/LDL particle for E(2) 17-oleate resulted in increased Cu(2+)-induced oxidation resistance of LDL as indicated by statistically significant lag time prolongations. Significant prolongations of lag times were also observed for HDL following incorporation of E(2) esters using Celite as transfer system. Our results suggest that free E(2) can be esterified and incorporated into lipoproteins during incubation in plasma. However, incorporation of supraphysiologic concentrations of E(2) esters into lipoproteins by means of the artificial transfer system was required in order to reduce their oxidation susceptibility.


Higher Free Triiodothyronine Is Associated With Higher HDL Particle Concentration and Smaller HDL Particle Size.

  • Adrian Post‎ et al.
  • The Journal of clinical endocrinology and metabolism‎
  • 2022‎

Thyroid function status has effects on the development of atherosclerotic cardiovascular disease by affecting lipid metabolism, but associations of high-density lipoprotein (HDL) particle concentrations and subfractions with thyroid hormone levels within the reference range remain elusive.


α-Synuclein Interacts with Lipoproteins in Plasma.

  • Fatemeh Nouri Emamzadeh‎ et al.
  • Journal of molecular neuroscience : MN‎
  • 2017‎

Parkinson's disease (PD) is an age-related neurodegenerative disorder characterized by dopaminergic neural cell death in the substantia nigra of the brain and α-synuclein (α-syn) accumulation in Lewy bodies. α-Syn can be detected in blood and is a potential biomarker for PD. It has been shown recently that α-syn can pass through the blood-brain barrier (BBB), but the mechanism is not yet understood. We hypothesized that α-syn could interact with lipoproteins, and in association with these particles, could pass through the BBB. Here, we show that apoE, apoJ, and apoA1, but not apoB, were co-immunocaptured along with α-syn from human blood plasma, suggesting that α-syn is associated with high-density lipoproteins (HDL). This association was also supported by experiments involving western blotting of plasma fractions separated by gel filtration, which revealed that α-syn was found in fractions identified as HDL. Interestingly, we could also detect α-syn and ApoJ in the intermediate fraction between HDL and LDL, referred to as lipoprotein (a) (Lp(a)), which has an important role in cholesterol metabolism. Overall, the results provide best support for the hypothesis that α-syn interacts with HDL, and this has potential implications for transport of α-syn from the brain to peripheral blood, across the BBB.


Association between Non-HDL-C/HDL-C Ratio and Carotid Intima-Media Thickness in Post-Menopausal Women.

  • Arcangelo Iannuzzi‎ et al.
  • Journal of clinical medicine‎
  • 2021‎

Atherogenic lipoproteins (particularly, very low-density lipoproteins, VLDL) are associated with subclinical atherosclerosis. The present study aims at evaluating whether routinely analysed lipid parameters are associated with carotid intima-media thickness, a proxy for subclinical atherosclerosis. Lipid parameters from 220 post-menopausal women undergoing ultrasound investigation of the carotid arteries were analysed. Forty-five percent of women showed subclinical atherosclerosis on carotid ultrasound. The mean carotid intima-media thickness was 1.26 ± 0.38 mm. The mean value of the non-HDL-C/HDL-C ratio was 3.1 ± 1.2. Univariate analysis showed a significant association between non-HDL-C/HDL-C ratio and intima-media thickness (r = 0.21, p = 0.001). After adjusting for cardiovascular risk factors (age, systolic blood pressure, smoking, body mass index Homeostasis model assessment: insulin resistance and high-sensitivity C-Reactive-Protein), multivariate analysis showed a significant association between non-HDL-C/HDL-C ratio and intima-media thickness (β = 0.039, p = 0.04). Logistic regression analysis showed that the highest tertile of the non-HDL-C/HDL-C ratio was associated with the presence of carotid plaques (OR = 3.47, p = 0.003). Finally, a strong correlation between non-HDL-C/HDL-C ratio and cholesterol bound to VLDL (r = 0.77, p < 0.001) has been found. Non-HDL-C/HDL-C ratio is associated with the presence of carotid atherosclerosis in post-menopausal women and is strongly correlated to VLDL-C levels.


Lipoproteins as Markers for Monitoring Cancer Progression.

  • Logeswaran Maran‎ et al.
  • Journal of lipids‎
  • 2021‎

Lipoproteins are among the contributors of energy for the survival of cancer cells. Studies indicate there are complex functions and metabolism of lipoproteins in cancer. The current review is aimed at providing updates from studies related to the monitoring of lipoproteins in different types of cancer. This had led to numerous clinical and experimental studies. The review covers the major lipoproteins such as LDL cholesterol (LDL-C), oxidized low-density lipoprotein cholesterol (oxLDL-C), very low-density lipoprotein cholesterol (VLDL-C), and high-density lipoprotein cholesterol (HDL-C). This is mainly due to increasing evidence from clinical and experimental studies that relate association of lipoproteins with cancer. Generally, a significant association exists between LDL-C with carcinogenesis and high oxLDL with metastasis. This warrants further investigations to include Mendelian randomization design and to be conducted in a larger population to confirm the significance of LDL-C and its oxidized form as prognostic markers of cancer.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: