Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 88 papers

Therapeutic potential for leukocyte elastase in chronic pain states harboring a neuropathic component.

  • Kiran Kumar Bali‎ et al.
  • Pain‎
  • 2017‎

Neuropathic pain is an integral component of several chronic pain conditions and poses a major health problem worldwide. Despite emerging understanding of mechanisms behind neuropathic pain, the available treatment options are still limited in efficacy or associated with side effects, therefore making it necessary to find viable alternatives. In a genetic screen, we recently identified SerpinA3N, a serine protease inhibitor secreted in response to nerve damage by the dorsal root ganglion neurons and we showed that SerpinA3N acts against induction of neuropathic pain by inhibiting the T-cell- and neutrophil-derived protease, leucocyte elastase (LE). In the current study, via detailed in vivo pharmacology combined with analyses of evoked- and spontaneous pain-related behaviors in mice, we report that on systemic delivery, a single dose of 3 independent LE inhibitors can block established nociceptive hypersensitivity in early and late phases in the spared nerve injury model of traumatic neuropathic pain in mice. We further report the strong efficacy of systemic LE inhibitors in reversing ongoing pain in 2 other clinically relevant mouse models-painful diabetic neuropathy and cancer pain. Detailed immunohistochemical analyses on the peripheral tissue samples revealed that both T-Lymphocytes and neutrophils are the sources of LE on peripheral nerve injury, whereas neutrophils are the primary source of LE in diabetic neuropathic conditions. In summary, our results provide compelling evidence for a strong therapeutic potential of generic LE inhibitors for the treatment of neuropathic pain and other chronic pain conditions harboring a neuropathic pain component.


Neutrophil Elastase Increases Vascular Permeability and Leukocyte Transmigration in Cultured Endothelial Cells and Obese Mice.

  • Chinchu Jagadan Ushakumari‎ et al.
  • Cells‎
  • 2022‎

Neutrophil elastase (NE) plays a pivotal role in inflammation. However, the mechanism underlying NE-mediated inflammation in obesity remains unclear. Here, we report that NE activates protease-activated receptor-2 (PAR2), stimulates actin filament (F-actin) formation, decreases intercellular junction molecule VE-cadherin expression, and increases the permeability of human arterial endothelial cells (hECs). NE also prompts degradation of VE-cadherin and its binding proteins p120- and β-catenins via MG132-sensitive proteasomes. NE stimulates phosphorylation of myosin light-chain (MLC) and its regulator myosin phosphatase target subunit-1 (MYPT1), a target of Rho kinase (ROCK). Inhibitors of PAR2 and ROCK prohibit NE-induced F-actin formation, MLC phosphorylation, and VE-cadherin reduction in hECs, and impede monocyte transmigration through hEC monolayer pretreated with either neutrophils or NE. Further, administration of an NE inhibitor GW311616A significantly attenuates vascular leakage, leukocyte infiltration, and the expression of proinflammatory cytokines in the white adipose tissue from high-fat diet (HFD)-induced obese mice. Likewise, NE-deficient mice are resistant to HFD-induced vascular leakage in the heart. Together, NE regulates actomyosin cytoskeleton activity and VE-cadherin expression by activating PAR2 signaling in the endothelial cells, leading to increased vascular permeability and leukocyte extravasation. Hence, inhibition of NE is a potential approach to mitigate vascular injury and leukocyte infiltration in obesity-related systemic inflammation.


The serine protease inhibitor SerpinA3N attenuates neuropathic pain by inhibiting T cell-derived leukocyte elastase.

  • Lucas Vicuña‎ et al.
  • Nature medicine‎
  • 2015‎

Neuropathic pain is a major, intractable clinical problem and its pathophysiology is not well understood. Although recent gene expression profiling studies have enabled the identification of novel targets for pain therapy, classical study designs provide unclear results owing to the differential expression of hundreds of genes across sham and nerve-injured groups, which can be difficult to validate, particularly with respect to the specificity of pain modulation. To circumvent this, we used two outbred lines of rats, which are genetically similar except for being genetically segregated as a result of selective breeding for differences in neuropathic pain hypersensitivity. SerpinA3N, a serine protease inhibitor, was upregulated in the dorsal root ganglia (DRG) after nerve injury, which was further validated for its mouse homolog. Mice lacking SerpinA3N developed more neuropathic mechanical allodynia than wild-type (WT) mice, and exogenous delivery of SerpinA3N attenuated mechanical allodynia in WT mice. T lymphocytes infiltrate the DRG after nerve injury and release leukocyte elastase (LE), which was inhibited by SerpinA3N derived from DRG neurons. Genetic loss of LE or exogenous application of a LE inhibitor (Sivelastat) in WT mice attenuated neuropathic mechanical allodynia. Overall, we reveal a novel and clinically relevant role for a member of the serpin superfamily and a leukocyte elastase and crosstalk between neurons and T cells in the modulation of neuropathic pain.


Decreased lung hyaluronan in a model of ARDS in the rat: effect of an inhibitor of leukocyte elastase.

  • Chul Min Ahn‎ et al.
  • Upsala journal of medical sciences‎
  • 2012‎

Hyaluronan (HA) is a component of the extracellular matrix in lung tissue and is normally present at low concentrations in blood. HA is rapidly cleared from blood by the liver. Increased concentrations of plasma HA have been found in patients with acute respiratory distress syndrome (ARDS). We investigated changes in HA levels in plasma, bronchoalveolar lavage fluid (BALF), and lung, and their relationship to pretreatment with a leukocyte elastase inhibitor in a rat model of ARDS.


Comparison of the proteoglycanolytic activities of human leukocyte elastase and human cathepsin G in vitro and in vivo.

  • J McDonnell‎ et al.
  • Connective tissue research‎
  • 1993‎

In this study, we evaluated the in vitro and in vivo potency of human leukocyte elastase (HLE) and human cathepsin G (HCG) as proteoglycanases. In vitro evaluation was done using bovine nasal septum aggrecan and aggrecan/hyaluronan aggregate as substrates. Enzyme activity was assessed by the ability of the proteinases to abrogate the ability of aggrecan to aggregate with hyaluronan. In vivo activity of the proteinases was tested by injecting purified HLE and HCG intra-articularly into rabbit stifle joints and quantifying the levels of proteoglycan released into synovial fluids. On a molar basis, HCG was at least tenfold more potent than HLE as a proteoglycanase in vitro. Moreover, HCG was twofold more potent as a proteoglycanase in vivo. In contrast, HLE hydrolyzed elastin approximately 22-fold faster than HCG, but was only slightly more rapid than HCG when [3H]-transferrin was used as substrate. These data indicate that HCG is more potent than HLE as a proteoglycanase both in vitro and in vivo. Thus, HCG could be more important in the pathogenesis of rheumatoid arthritis than previously suspected.


Elastase and tryptase govern TNFα-mediated production of active chemerin by adipocytes.

  • Sebastian D Parlee‎ et al.
  • PloS one‎
  • 2012‎

Chemerin is a leukocyte chemoattractant and adipokine with important immune and metabolic roles. Chemerin, secreted in an inactive form prochemerin, undergoes C-terminal proteolytic cleavage to generate active chemerin, a ligand for the chemokine-like receptor-1 (CMKLR1). We previously identified that adipocytes secrete and activate chemerin. Following treatment with the obesity-associated inflammatory mediator TNFα, unknown adipocyte mechanisms are altered resulting in an increased ratio of active to total chemerin production. Based on these findings we hypothesized adipocytes produce proteases capable of modifying chemerin and its ability to activate CMKRL1. 3T3-L1 adipocytes expressed mRNA of immunocyte and fibrinolytic proteases known to activate chemerin in vitro. Following treatment with a general protease inhibitor cocktail (PIC), the TNFα-stimulated increase in apparent active chemerin concentration in adipocyte media was amplified 10-fold, as measured by CMKLR1 activation. When the components of the PIC were investigated individually, aprotinin, a serine protease inhibitor, blocked 90% of the TNFα-associated increase in active chemerin. The serine proteases, elastase and tryptase were elevated in adipocyte media following treatment with TNFα and their targeted neutralization recapitulated the aprotinin-mediated effects. In contrast, bestatin, an aminopeptidase inhibitor, further elevated the TNFα-associated increase in active chemerin. Our results support that adipocytes regulate chemerin by serine protease-mediated activation pathways and aminopeptidase deactivation pathways. Following TNFα treatment, increased elastase and tryptase modify the balance between activation and deactivation, elevating active chemerin concentration in adipocyte media and subsequent CMKLR1 activation.


Changes in sperm apoptotic markers as related to seminal leukocytes and elastase.

  • B Zorn‎ et al.
  • Reproductive biomedicine online‎
  • 2010‎

To elucidate the effects of inflammation on sperm quality, this study analysed classical sperm characteristics, leukocytes and elastase in neat semen, and sperm apoptotic markers, i.e. changes in plasma membrane phospholipid asymmetry, mitochondrial membrane potential (MMP), DNA integrity and intracellular reactive oxygen species (ROS), in semen prepared by density gradient using flow cytometry from 348 men of infertile couples. Increased leukocytes (> or = 0.1 x 10(6)/ml) were associated with a decreased sperm concentration, motility and normal morphology (P < or = 0.001). Sperm necrosis and DNA denaturation were increased (31.3 versus 26.6%, P=0.020; 15.5 versus 11.5%, P = 0.011, respectively), whereas spermatozoa with normal MMP were decreased (64.1 versus 70.0%, P=0.004). High leukocyte levels ((> or = 1 x 10(6)/ml) were not associated with any of the observed sperm parameters. At low elastase concentration (100-290 microg/l), DNA denaturation was higher (16.1 versus 10.5%, P = 0.024) compared with very low elastase concentration (< 100 microg/l). A high elastase concentration (290-1000 microg/l) was associated with higher ROS index compared with low elastase concentration (1.28 versus 1.01, P=0.016). Slightly increased leukocytes and elastase are associated with slightly poorer sperm characteristics and/or increased sperm necrosis, DNA denaturation and intracellular ROS and decreased MMP.


Proteolytic cleavage of HLA class II by human neutrophil elastase in pneumococcal pneumonia.

  • Hisanori Domon‎ et al.
  • Scientific reports‎
  • 2021‎

Bacterial and viral respiratory infections can initiate acute lung injury and acute respiratory distress syndrome. Neutrophils and their granule enzymes, including neutrophil elastase, are key mediators of the pathophysiology of acute respiratory failure. Although intracellular neutrophil elastase functions as a host defensive factor against pathogens, its leakage into airway spaces induces degradation of host connective tissue components. This leakage disrupts host innate immune responses via proteolytic cleavage of Toll-like receptors and cytokines. Here, we investigated whether neutrophils possess proteases that cleave adaptive immune molecules. We found that expression of the human leukocyte antigen (HLA) class II molecule HLA-DP β1 was decreased in THP-1-derived macrophages treated with supernatants from dead neutrophils. This decreased HLA-DP β1 expression was counteracted by treatment with neutrophil elastase inhibitor, suggesting proteolytic cleavage of HLA-DP β1 by neutrophil elastase. SDS-PAGE showed that neutrophil elastase cleaved recombinant HLA-DP α1, -DP β1, -DQ α1, -DQ β1, -DR α, and -DR β1. Neutrophil elastase also cleaved HLA-DP β1 on extracellular vesicles isolated from macrophages without triggering morphological changes. Thus, leakage of neutrophil elastase may disrupt innate immune responses, antigen presentation, and T cell activation. Additionally, inhibition of neutrophil elastase is a potential therapeutic option for treating bacterial and viral pneumonia.


Elastase release by transmigrating neutrophils deactivates endothelial-bound SDF-1alpha and attenuates subsequent T lymphocyte transendothelial migration.

  • Ravi M Rao‎ et al.
  • The Journal of experimental medicine‎
  • 2004‎

Leukocyte trafficking to sites of inflammation follows a defined temporal pattern, and evidence suggests that initial neutrophil transendothelial migration modifies endothelial cell phenotype. We tested the hypothesis that preconditioning of human umbilical vein endothelial cells (HUVEC) by neutrophils would also modify the subsequent transendothelial migration of T lymphocytes across cytokine-stimulated HUVEC in an in vitro flow assay. Using fluorescence microscopy, preconditioning of HUVEC by neutrophils was observed to significantly reduce the extent of subsequent stromal cell-derived factor-1alpha (SDF-1alpha [CXCL12])-mediated T lymphocyte transendothelial migration, without reducing accumulation. In contrast, recruitment of a second wave of neutrophils was unaltered. Conditioned medium harvested after transendothelial migration of neutrophils or supernatants from stimulated neutrophils mediated a similar blocking effect, which was negated using a specific neutrophil elastase inhibitor. Furthermore, T lymphocyte transendothelial migration was inhibited by treatment of HUVEC with purified neutrophil elastase, which selectively cleaved the amino terminus of HUVEC-bound SDF-1alpha, which is required for its chemotactic activity. The reduction in T lymphocyte transendothelial migration was not observed using a different chemokine, ELC (CCL19), and was not reversed by replenishment of SDF-1alpha, indicating endothelial retention of the inactivated chemokine. In summary, transmigrating neutrophils secrete localized elastase that is protected from plasma inhibitors, and thereby modulate trafficking of other leukocyte subsets by altering the endothelial-associated chemotactic activities.


Differential inhibition of mast cell chymases by secretory leukocyte protease inhibitor.

  • A D Pemberton‎ et al.
  • Biochimica et biophysica acta‎
  • 1998‎

The major physiological role of human secretory leukocyte protease inhibitor (SLPI), a low molecular weight inhibitor present in mucus, is the rapid formation of a tight-binding inhibitory complex with neutrophil elastase. It is also the most effective known inhibitor of human mast cell chymase. The inhibitory efficacy of recombinant SLPI towards three other mast cell chymases was therefore investigated. Rat mast cell proteinases-1 and -2 (rMCP-1 and -2, respectively) and sheep mast cell proteinase-1 (sMCP-1), a chymase with additional tryptase-like properties, were treated with the inhibitor. SLPI inhibited rMCP-1 very efficiently in the absence of heparin, with a low dissociation constant, Ki = 3 x 10(-10) M and high second order association constant, kass = 8.0 x 10(6) M(-1) s(-1), and inhibition was enhanced when heparin was present. rMCP-2 was not inhibited by SLPI in the presence or absence of heparin, and did not degrade SLPI on prolonged incubation. SLPI inhibited sMCP-1 very poorly in the absence of heparin (Ki = 9 X 10(-6) M). However, in the presence of heparin, the Ki for inhibition of sMCP-1 by SLPI was reduced to the nanomolar range. sMCP-1 was observed to cleave SLPI with chymase-like specificity at Leu72-Met73 on prolonged incubation in the absence of heparin, but increasing concentrations of heparin reduced the extent of cleavage.


Tumor necrosis factor-like weak inducer of apoptosis or Fn14 deficiency reduce elastase perfusion-induced aortic abdominal aneurysm in mice.

  • Carlos Tarín‎ et al.
  • Journal of the American Heart Association‎
  • 2014‎

Abdominal aortic aneurysm (AAA) involves leukocyte recruitment, inflammatory cytokine production, vascular cell apoptosis, neovascularization, and vascular remodeling, all of which contribute to aortic dilatation. Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) is a cytokine implicated in proinflammatory responses, angiogenesis, and matrix degradation but its role in AAA formation is currently unknown.


Secretory Leukocyte Protease Inhibitor Protects Against Severe Urinary Tract Infection in Mice.

  • Anne L Rosen‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Millions suffer from urinary tract infections (UTIs) worldwide every year with women accounting for the majority of cases. Uropathogenic Escherichia coli (UPEC) causes most of these primary infections and leads to 25% becoming recurrent or chronic. To repel invading pathogens, the urinary tract mounts a vigorous innate immune response that includes the secretion of antimicrobial peptides (AMPs), rapid recruitment of phagocytes and exfoliation of superficial umbrella cells. Here, we investigate secretory leukocyte protease inhibitor (SLPI), an AMP with antiprotease, antimicrobial and immunomodulatory functions, known to play protective roles at other mucosal sites, but not well characterized in UTIs. Using a mouse model of UPEC-caused UTI, we show that urine SLPI increases in infected mice and that SLPI is localized to bladder epithelial cells. UPEC infected SLPI-deficient (Slpi-/-) mice suffer from higher urine bacterial burdens, prolonged bladder inflammation, and elevated urine neutrophil elastase (NE) levels compared to wild-type (Slpi+/+) controls. Combined with bulk bladder RNA sequencing, our data indicate that Slpi-/- mice have a dysregulated immune and tissue repair response following UTI. We also measure SLPI in urine samples from a small group of female subjects 18-49 years old and find that SLPI tends to be higher in the presence of a uropathogen, except in patients with history of recent or recurrent UTI (rUTI), suggesting a dysregulation of SLPI expression in these women. Taken together, our findings show SLPI protects against acute UTI in mice and provides preliminary evidence that SLPI is likewise regulated in response to uropathogen exposure in women.


Secretory leukocyte protease inhibitor protects against severe urinary tract infection in mice.

  • Anne L Rosen‎ et al.
  • mBio‎
  • 2024‎

Millions suffer from urinary tract infections (UTIs) worldwide every year with women accounting for the majority of cases. Uropathogenic Escherichia coli (UPEC) causes most of these primary infections and leads to 25% becoming recurrent or chronic. To repel invading pathogens, the urinary tract mounts a vigorous innate immune response that includes the secretion of antimicrobial peptides (AMPs), rapid recruitment of phagocytes, and exfoliation of superficial umbrella cells. Here, we investigate secretory leukocyte protease inhibitor (SLPI), an AMP with antiprotease, antimicrobial, and immunomodulatory functions, known to play protective roles at other mucosal sites, but not well characterized in UTIs. Using a preclinical model of UPEC-caused UTI, we show that urine SLPI increases in infected mice and that SLPI is localized to bladder epithelial cells. UPEC-infected SLPI-deficient (Slpi-/-) mice suffer from higher urine bacterial burdens, prolonged bladder inflammation, and elevated urine neutrophil elastase (NE) levels compared to wild-type (Slpi+/+) controls. Combined with bulk bladder RNA sequencing, our data indicate that Slpi-/- mice have a dysregulated immune and tissue repair response following UTI. We also measure SLPI in urine samples from a small group of female subjects 18-49 years old and find that SLPI tends to be higher in the presence of a uropathogen, except in patients with a history of recent or recurrent UTI, suggesting a dysregulation of SLPI expression in these women. Taken together, our findings show SLPI promotes clearance of UPEC in mice and provides preliminary evidence that SLPI is likewise regulated in response to uropathogen exposure in women.IMPORTANCEAnnually, millions of people suffer from urinary tract infections (UTIs) and more than $3 billion are spent on work absences and treatment of these patients. While the early response to UTI is known to be important in combating urinary pathogens, knowledge of host factors that help curb infection is still limited. Here, we use a preclinical model of UTI to study secretory leukocyte protease inhibitor (SLPI), an antimicrobial protein, to determine how it protects the bladder against infection. We find that SLPI is increased during UTI, accelerates the clearance of bacteriuria, and upregulates genes and pathways needed to fight an infection while preventing prolonged bladder inflammation. In a small clinical study, we show SLPI is readily detectable in human urine and is associated with the presence of a uropathogen in patients without a previous history of UTI, suggesting SLPI may play an important role in protecting from bacterial cystitis.


Effect of trans-resveratrol, a natural polyphenolic compound, on human polymorphonuclear leukocyte function.

  • S Rotondo‎ et al.
  • British journal of pharmacology‎
  • 1998‎

1. Polymorphonuclear leukocytes (PMN) may contribute to the pathogenesis of acute coronary heart disease (CHD). 2. Epidemiological and laboratory evidence suggests that red wine, by virtue of its polyphenolic constituents, may be more effective than other alcoholic beverages in reducing the risk of CHD mortality. 3 The aim of the present study was to investigate the effects of trans-resveratrol (3,4',5-trihydroxy-trans-stilbene), a polyphenol present in most red wines, on functional and biochemical responses of PMN, upon in vitro activation. 4. trans-Resveratrol exerted a strong inhibitory effect on reactive oxygen species produced by PMN stimulated with 1 microM formyl methionyl leucyl phenylalamine (fMLP) (IC50 1.3+/-0.13 microM, mean+/-s.e.mean), as evaluated by luminol-amplified chemiluminescence. 5. trans-Resveratrol prevented the release of elastase and beta-glucuronidase by PMN stimulated with the receptor agonists fMLP (1 microM, IC50 18.4+/-1.8 and 31+/-1.8 microM), and C5a (0.1 microM, IC50 41.6+/-3.5 and 42+/-8.3 microM), and also inhibited elastase and beta-glucuronidase secretion (IC50 37.7+/-7 and 25.4+/-2.2 microM) and production of 5-lipoxygenase metabolites leukotriene B4 (LTB4), 6-trans-LTB4 and 12-trans-epi-LTB4 (IC50 48+/-7 microM) by PMN stimulated with the calcium ionophore A23187 (5 microM). 6. trans-Resveratrol significantly reduced the expression and activation of the beta2 integrin MAC-1 on PMN surface following stimulation, as revealed by FACS analysis of the binding of an anti-MAC-1 monoclonal antibody (MoAb) and of the CBRM1/5 MoAb, recognizing an activation-dependent epitope on MAC-1. Consistently, PMN homotypic aggregation and formation of mixed cell-conjugates between PMN and thrombin-stimulated fixed platelets in a dynamic system were also prevented by transresveratrol. 7. These results, indicating that trans-resveratrol interferes with the release of inflammatory mediators by activated PMN and down-regulates adhesion-dependent thrombogenic PMN functions, may provide some biological plausibility to the protective effect of red wine consumption against CHD.


Secretory leukocyte protease inhibitor (SLPI) is, like its homologue trappin-2 (pre-elafin), a transglutaminase substrate.

  • Kévin Baranger‎ et al.
  • PloS one‎
  • 2011‎

Human lungs contain secretory leukocyte protease inhibitor (SLPI), elafin and its biologically active precursor trappin-2 (pre-elafin). These important low-molecular weight inhibitors are involved in controlling the potentially deleterious proteolytic activities of neutrophil serine proteases including elastase, proteinase 3 and cathepsin G. We have shown previously that trappin-2, and to a lesser extent, elafin can be linked covalently to various extracellular matrix proteins by tissue transglutaminases and remain potent protease inhibitors. SLPI is composed of two distinct domains, each of which is about 40% identical to elafin, but it lacks consensus transglutaminase sequence(s), unlike trappin-2 and elafin. We investigated the actions of type 2 tissue transglutaminase and plasma transglutaminase activated factor XIII on SLPI. It was readily covalently bound to fibronectin or elastin by both transglutaminases but did not compete with trappin-2 cross-linking. Cross-linked SLPI still inhibited its target proteases, elastase and cathepsin G. We have also identified the transglutamination sites within SLPI, elafin and trappin-2 by mass spectrometry analysis of tryptic digests of inhibitors cross-linked to mono-dansyl cadaverin or to a fibronectin-derived glutamine-rich peptide. Most of the reactive lysine and glutamine residues in SLPI are located in its first N-terminal elafin-like domain, while in trappin-2, they are located in both the N-terminal cementoin domain and the elafin moiety. We have also demonstrated that the transglutamination substrate status of the cementoin domain of trappin-2 can be transferred from one protein to another, suggesting that it may provide transglutaminase-dependent attachment properties for engineered proteins. We have thus added to the corpus of knowledge on the biology of these potential therapeutic inhibitors of airway proteases.


Long-term Interactions of Circulating Neutrophils with Titanium Implants, the Role of Platelets in Regulation of Leukocyte Function.

  • Joanna Zdziennicka‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Despite the fact that different biomaterials are widely used in many biomedical applications, they can still cause side effects. Therefore, our aim was to assess neutrophil activity during the inflammatory phase of the repair process and long-term interactions between circulating neutrophils and Titanium (Ti) implants. Additionally, neutrophil in vitro response after stimulation by the extract of antimicrobial peptides (AMP extract), pentoxifylline (PTX) and some platelet-rich (L-PRP and PURE PRP) and platelet-poor (PPP) concentrates were tested. The study was conducted on eight sheep after Ti implant insertion into the tibia and revealed that the Ti implant did not cause any side effects during the course of experiment. After addition of L-PRP into neutrophils, culture activity of these cells significantly increased (p < 0.01), whereas treatment with AMP extract, PURE PRP, PPP or PTX caused decrease in neutrophil enzymatic response (on the basis of elastase, myeloperoxidase and alkaline phosphatase release) and free radical generation. These effects were observed in neutrophils isolated during the inflammatory phase as well as 4 and 10 months after implantation. Obtained results will be useful in regulation of inflammatory response during implantation of biomaterial and create possibility to modulate the cells response towards pro- or anti-inflammatory to reduce host tissue damage.


CD146 deficiency promotes plaque formation in a mouse model of atherosclerosis by enhancing RANTES secretion and leukocyte recruitment.

  • Muriel G Blin‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 2019‎

The progression of atherosclerosis is based on the continued recruitment of leukocytes in the vessel wall. The previously described role of CD146 in leukocyte infiltration suggests an involvement for this adhesion molecule in the inflammatory response. In this study, we investigated the role of CD146 in leukocyte recruitment by using an experimental model of atherogenesis.


Mycobacterial infection induces higher interleukin-1β and dysregulated lung inflammation in mice with defective leukocyte NADPH oxidase.

  • Wen-Cheng Chao‎ et al.
  • PloS one‎
  • 2017‎

Granulomatous inflammation causes severe tissue damage in mycobacterial infection while redox status was reported to be crucial in the granulomatous inflammation. Here, we used a NADPH oxidase 2 (NOX2)-deficient mice (Ncf1-/-) to investigate the role of leukocyte-produced reactive oxygen species (ROS) in mycobacterium-induced granulomatous inflammation. We found poorly controlled mycobacterial proliferation, significant body weight loss, and a high mortality rate after M. marinum infection in Ncf1-/- mice. Moreover, we noticed loose and neutrophilic granulomas and higher levels of interleukin (IL)-1β and neutrophil chemokines in Ncf1-/- mice when compared with those in wild type mice. The lack of ROS led to reduced production of IL-1β in macrophages, whereas neutrophil elastase (NE), an abundant product of neutrophils, may potentially exert increased inflammasome-independent protease activity and lead to higher IL-1β production. Moreover, we showed that the abundant NE and IL-1β were present in the caseous granulomatous inflammation of human TB infection. Importantly, blocking of IL-1β with either a specific antibody or a recombinant IL-1 receptor ameliorated the pulmonary inflammation. These findings revealed a novel role of ROS in the early pathogenesis of neutrophilic granulomatous inflammation and suggested a potential role of IL-1 blocking in the treatment of mycobacterial infection in the lung.


Leukocyte function assessed via serial microlitre sampling of peripheral blood from sepsis patients correlates with disease severity.

  • Bakr Jundi‎ et al.
  • Nature biomedical engineering‎
  • 2019‎

Dysregulated leukocyte responses underlie the pathobiology of sepsis, which is a leading cause of death. However, measures of leukocyte function are not routinely available in clinical care. Here we report the development and testing of an inertial microfluidic system for the label-free isolation and downstream functional assessment of leukocytes from 50 μl of peripheral blood. We used the system to assess leukocyte phenotype and function in serial samples from 18 hospitalized patients with sepsis and 10 healthy subjects. The sepsis samples had significantly higher levels of CD16dim and CD16- neutrophils and CD16+ 'intermediate' monocytes, as well as significantly lower levels of neutrophil-elastase release, O2- production and phagolysosome formation. Repeated sampling of sepsis patients over 7 days showed that leukocyte activation (measured by isodielectric separation) and leukocyte phenotype and function were significantly more predictive of the clinical course than complete-blood-count parameters. We conclude that the serial assessment of leukocyte function in microlitre blood volumes is feasible and that it provides significantly more prognostic information than leukocyte counting.


Elevated lymphocyte specific protein 1 expression is involved in the regulation of leukocyte migration and immunosuppressive microenvironment in glioblastoma.

  • Jing-Yuan Cao‎ et al.
  • Aging‎
  • 2020‎

Immune cell infiltration mediates therapeutic response to immune therapies. The investigation on the genes regulating leukocyte migration may help us to understand the mechanisms regulating immune cell infiltration in tumor microenvironment. Here, we collected the data from Chinese Glioma Genome Atlas (CGGA) and The Cancer Genome Atlas (TCGA) to analyze the expression of leukocyte migration related genes in glioblastoma (GBM). Lymphocyte specific protein 1 (LSP1) was identified as the only gene in this family which not only has an elevated expression, but also serve as an independent predictive factor for progressive malignancy in glioma. We further confirmed these results in clinical glioma samples by quantitative PCR, immunofluorescence, immunohistochemistry, and western blot. Moreover, LSP1 expression was closely related to the response to radio- and chemotherapy in GBM, and positively correlated with immunosuppressive cell populations, including M2 macrophages, neutrophil, and regulatory T cell. Additionally, elevated LSP-1 expression enhanced the expression of immunosuppression related genes like programmed cell death 1 (PD1) and leukocyte associated immunoglobulin like receptor 1 (LAIR1) in macrophages. LSP1 also promoted the migration of macrophages. Together, our study suggests a novel role of LSP1 contributing to immunosuppressive microenvironment in GBM and serving as a potential therapeutic target for it.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: