Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 33 papers

T-cell Prolymphocytic Leukemia, Cerebriform Variant.

  • José Carvalho‎ et al.
  • Cureus‎
  • 2021‎

T-cell prolymphocytic leukemia (T-PLL) is a very rare and aggressive lymphoproliferative disorder. We present a 70-year-old man with complaints of fatigue, low urinary output, and peripheral edema for one month. Objectively, he presented diminished respiratory sounds bilaterally and peripheral edema. Analytical study revealed mild anemia and mild lymphomonocytosis, acute kidney injury, and urinalysis with proteins, leukocytes, erythrocytes, and cylinders. Chest radiography was consistent with pleural effusion. Subsequent study showed new onset of thrombocytopenia with a progressive increase of lymphocytosis, in association with inguinal adenopathies and splenomegaly. Immunophenotypic study of peripheral blood and lymph node biopsy were compatible with the diagnosis of T-PLL. Negative serology for human T-cell lymphotropic virus type 1 (HTLV-1) excluded adult T-cell leukemia. Progressive changes in the peripheral blood smear were seen, finally showing the presence of lymphocytes with a cerebriform nucleus, revealing this variant. There was a rapid catastrophic progression, spontaneous tumor lysis syndrome, and death.


T-cell prolymphocytic leukemia and tuberculosis: a puzzling association.

  • Pascale Cervera‎ et al.
  • Clinical case reports‎
  • 2017‎

T-cell prolymphocytic leukemia can result in severe immune T-cell deficiency. Clinicians should be aware of this complication in this rare lymphoid malignancy, and opportunistic infections should be ruled out before the use of usual immunosuppressive procedures such as alemtuzumab and hematopoietic stem cell transplantation.


SAMHD1 is recurrently mutated in T-cell prolymphocytic leukemia.

  • Patricia Johansson‎ et al.
  • Blood cancer journal‎
  • 2018‎

T-cell prolymphocytic leukemia (T-PLL) is an aggressive malignancy with a median survival of the patients of less than two years. Besides characteristic chromosomal translocations, frequent mutations affect the ATM gene, JAK/STAT pathway members, and epigenetic regulators. We here performed a targeted mutation analysis for 40 genes selected from a RNA sequencing of 10 T-PLL in a collection of 28 T-PLL, and an exome analysis of five further cases. Nonsynonymous mutations were identified in 30 of the 40 genes, 18 being recurrently mutated. We identified recurrently mutated genes previously unknown to be mutated in T-PLL, which are SAMHD1, HERC1, HERC2, PRDM2, PARP10, PTPRC, and FOXP1. SAMHD1 regulates cellular deoxynucleotide levels and acts as a potential tumor suppressor in other leukemias. We observed destructive mutations in 18% of cases as well as deletions in two further cases. Taken together, we identified additional genes involved in JAK/STAT signaling (PTPRC), epigenetic regulation (PRDM2), or DNA damage repair (SAMHD1, PARP10, HERC1, and HERC2) as being recurrently mutated in T-PLL. Thus, our study considerably extends the picture of pathways involved in molecular pathogenesis of T-PLL and identifies the tumor suppressor gene SAMHD1 with ~20% of T-PLL affected by destructive lesions likely as major player in T-PLL pathogenesis.


CCR7 as a novel therapeutic target in t-cell PROLYMPHOCYTIC leukemia.

  • Carlos Cuesta-Mateos‎ et al.
  • Biomarker research‎
  • 2020‎

T-cell prolymphocytic leukemia (T-PLL) is a poor prognostic disease with very limited options of efficient therapies. Most patients are refractory to chemotherapies and despite high response rates after alemtuzumab, virtually all patients relapse. Therefore, there is an unmet medical need for novel therapies in T-PLL. As the chemokine receptor CCR7 is a molecule expressed in a wide range of malignancies and relevant in many tumor processes, the present study addressed the biologic role of this receptor in T-PLL. Furthermore, we elucidated the mechanisms of action mediated by an anti-CCR7 monoclonal antibody (mAb) and evaluated whether its anti-tumor activity would warrant development towards clinical applications in T-PLL. Our results demonstrate that CCR7 is a prognostic biomarker for overall survival in T-PLL patients and a functional receptor involved in the migration, invasion, and survival of leukemic cells. Targeting CCR7 with a mAb inhibited ligand-mediated signaling pathways and induced tumor cell killing in primary samples. In addition, directing antibodies against CCR7 was highly effective in T-cell leukemia xenograft models. Together, these findings make CCR7 an attractive molecule for novel mAb-based therapeutic applications in T-PLL, a disease where recent drug screen efforts and studies addressing new compounds have focused on chemotherapy or small molecules.


Anti-leukemic effect of CDK9 inhibition in T-cell prolymphocytic leukemia.

  • Patricia Johansson‎ et al.
  • Therapeutic advances in hematology‎
  • 2020‎

T-cell prolymphocytic leukemia (T-PLL) is an aggressive malignancy characterized by chemotherapy resistance and a median survival of less than 2 years. Here, we investigated the pharmacological effects of the novel highly specific cyclin-dependent kinase 9 (CDK9) inhibitor LDC526 and its clinically used derivate atuveciclib employing primary T-PLL cells in an ex vivo drug sensitivity testing platform. Importantly, all T-PLL samples were sensitive to CDK9 inhibition at submicromolar concentrations, while conventional cytotoxic drugs were found to be largely ineffective. At the cellular level LDC526 inhibited the phosphorylation at serine 2 of the RNA polymerase II C-terminal domain resulting in decreased de novo RNA transcription. LDC526 induced apoptotic leukemic cell death through down-regulating MYC and MCL1 both at the mRNA and protein level. Microarray-based transcriptomic profiling revealed that genes down-modulated in response to CDK9 inhibition were enriched for MYC and JAK-STAT targets. By contrast, CDK9 inhibition increased the expression of the tumor suppressor FBXW7, which may contribute to decreased MYC and MCL1 protein levels. Finally, the combination of atuvecliclib and the BCL2 inhibitor venetoclax exhibited synergistic anti-leukemic activity, providing the rationale for a novel targeted-agent-based treatment of T-PLL.


Epigenetic alteration contributes to the transcriptional reprogramming in T-cell prolymphocytic leukemia.

  • Shulan Tian‎ et al.
  • Scientific reports‎
  • 2021‎

T cell prolymphocytic leukemia (T-PLL) is a rare disease with aggressive clinical course. Cytogenetic analysis, whole-exome and whole-genome sequencing have identified primary structural alterations in T-PLL, including inversion, translocation and copy number variation. Recurrent somatic mutations were also identified in genes encoding chromatin regulators and those in the JAK-STAT signaling pathway. Epigenetic alterations are the hallmark of many cancers. However, genome-wide epigenomic profiles have not been reported in T-PLL, limiting the mechanistic study of its carcinogenesis. We hypothesize epigenetic mechanisms also play a key role in T-PLL pathogenesis. To systematically test this hypothesis, we generated genome-wide maps of regulatory regions using H3K4me3 and H3K27ac ChIP-seq, as well as RNA-seq data in both T-PLL patients and healthy individuals. We found that genes down-regulated in T-PLL are mainly associated with defense response, immune system or adaptive immune response, while up-regulated genes are enriched in developmental process, as well as WNT signaling pathway with crucial roles in cell fate decision. In particular, our analysis revealed a global alteration of regulatory landscape in T-PLL, with differential peaks highly enriched for binding motifs of immune related transcription factors, supporting the epigenetic regulation of oncogenes and genes involved in DNA damage response and T-cell activation. Together, our work reveals a causal role of epigenetic dysregulation in T-PLL.


Development of HDAC Inhibitors Exhibiting Therapeutic Potential in T-Cell Prolymphocytic Leukemia.

  • Krimo Toutah‎ et al.
  • Journal of medicinal chemistry‎
  • 2021‎

Epigenetic targeting has emerged as an efficacious therapy for hematological cancers. The rare and incurable T-cell prolymphocytic leukemia (T-PLL) is known for its aggressive clinical course. Current epigenetic agents such as histone deacetylase (HDAC) inhibitors are increasingly used for targeted therapy. Through a structure-activity relationship (SAR) study, we developed an HDAC6 inhibitor KT-531, which exhibited higher potency in T-PLL compared to other hematological cancers. KT-531 displayed strong HDAC6 inhibitory potency and selectivity, on-target biological activity, and a safe therapeutic window in nontransformed cell lines. In primary T-PLL patient cells, where HDAC6 was found to be overexpressed, KT-531 exhibited strong biological responses, and safety in healthy donor samples. Notably, combination studies in T-PLL patient samples demonstrated KT-531 synergizes with approved cancer drugs, bendamustine, idasanutlin, and venetoclax. Our work suggests HDAC inhibition in T-PLL could afford sufficient therapeutic windows to achieve durable remission either as stand-alone or in combination with targeted drugs.


Functional analysis of the SEPT9-ABL1 chimeric fusion gene derived from T-prolymphocytic leukemia.

  • Hidetsugu Kawai‎ et al.
  • Leukemia research‎
  • 2014‎

We analyzed the function of a SEPT9-ABL1 fusion identified in a case of T-prolymphocytic leukemia with tyrosine kinase inhibitor (TKI) resistance. Five isoforms with different N-termini, including SEPT9a-ABL1, SEPT9b-ABL1, SEPT9d-ABL1, SEPT9e-ABL1 and SEPT9f-ABL1, were detected in the leukemic cells. All isoforms except SEPT9d-ABL1 are localized in the cytoplasm, undergo autophosphorylation and phosphorylate the downstream targets, STAT-5 and Crkl, and provided IL-3-independence and in vivo invasiveness to 32D cells. Additionally, these SEPT9-ABL1 isoforms were resistant to TKIs in vitro and in vivo, in comparison to BCR-ABL1. These findings demonstrated that SEPT9-ABL1 had oncogenic activity and conferred resistance to TKIs.


Noncanonical Function of AGO2 Augments T-cell Receptor Signaling in T-cell Prolymphocytic Leukemia.

  • Till Braun‎ et al.
  • Cancer research‎
  • 2022‎

T-cell prolymphocytic leukemia (T-PLL) is a chemotherapy-refractory T-cell malignancy with limited therapeutic options and a poor prognosis. Current disease concepts implicate TCL1A oncogene-mediated enhanced T-cell receptor (TCR) signaling and aberrant DNA repair as central perturbed pathways. We discovered that recurrent gains on chromosome 8q more frequently involve the argonaute RISC catalytic component 2 (AGO2) gene than the adjacent MYC locus as the affected minimally amplified genomic region. AGO2 has been understood as a protumorigenic key regulator of miRNA (miR) processing. Here, in primary tumor material and cell line models, AGO2 overrepresentation associated (i) with higher disease burden, (ii) with enhanced in vitro viability and growth of leukemic T cells, and (iii) with miR-omes and transcriptomes that highlight altered survival signaling, abrogated cell-cycle control, and defective DNA damage responses. However, AGO2 elicited also immediate, rather non-RNA-mediated, effects in leukemic T cells. Systems of genetically modulated AGO2 revealed that it enhances TCR signaling, particularly at the level of ZAP70, PLCγ1, and LAT kinase phosphoactivation. In global mass spectrometric analyses, AGO2 interacted with a unique set of partners in a TCR-stimulated context, including the TCR kinases LCK and ZAP70, forming membranous protein complexes. Models of their three-dimensional structure also suggested that AGO2 undergoes posttranscriptional modifications by ZAP70. This novel TCR-associated noncanonical function of AGO2 represents, in addition to TCL1A-mediated TCR signal augmentation, another enhancer mechanism of this important deregulated growth pathway in T-PLL. These findings further emphasize TCR signaling intermediates as candidates for therapeutic targeting.


Spontaneous retroperitoneal hemorrhage in a patient with prolymphocytic transformation of chronic lymphocytic leukemia.

  • Gwynivere A Davies‎ et al.
  • Case reports in hematology‎
  • 2013‎

Prolymphocytic transformation of chronic lymphocytic leukemia is a rare but recognized entity. We present the case of a 76-year-old gentleman with a previous diagnosis of chronic lymphocytic leukemia who presented with fatigue, fever, and a white blood cell count of 500 000 with prolymphocytes on peripheral blood examination. Chlorambucil and dexamethasone were initiated. He developed progressive anemia during his admission with no clear cause on initial CT examination. Bilateral hip pain began several days later and he was unfortunately diagnosed with a large spontaneous retroperitoneal hemorrhage postmortem. This condition is rare and generally occurs in those receiving therapeutic anticoagulation or dialysis, with known bleeding disorders or vascular malformation, none of which were present in our patient. Pathology revealed marked leukemoid engorgement of the vessels of many organs with prolymphocytes. We discuss the potential etiologies and relationships between these critical diagnoses.


The miR-200c/141-ZEB2-TGFβ axis is aberrant in human T-cell prolymphocytic leukemia.

  • Stefan J Erkeland‎ et al.
  • Haematologica‎
  • 2022‎

T-cell prolymphocytic leukemia (T-PLL) is mostly characterized by aberrant expansion of small- to medium-sized prolymphocytes with a mature post-thymic phenotype, high aggressiveness of the disease and poor prognosis. However, T-PLL is more heterogeneous with a wide range of clinical, morphological, and molecular features, which occasionally impedes the diagnosis. We hypothesized that T-PLL consists of phenotypic and/or genotypic subgroups that may explain the heterogeneity of the disease. Multi-dimensional immuno-phenotyping and gene expression profiling did not reveal clear T-PLL subgroups, and no clear T-cell receptor a or β CDR3 skewing was observed between different T-PLL cases. We revealed that the expression of microRNA (miRNA) is aberrant and often heterogeneous in T-PLL. We identified 35 miRNA that were aberrantly expressed in T-PLL with miR-200c/141 as the most differentially expressed cluster. High miR- 200c/141 and miR-181a/181b expression was significantly correlated with increased white blood cell counts and poor survival. Furthermore, we found that overexpression of miR-200c/141 correlated with downregulation of their targets ZEB2 and TGFβR3 and aberrant TGFβ1- induced phosphorylated SMAD2 (p-SMAD2) and p-SMAD3, indicating that the TGFβ pathway is affected in T-PLL. Our results thus highlight the potential role for aberrantly expressed oncogenic miRNA in T-PLL and pave the way for new therapeutic targets in this disease.


Exploring the molecular pathogenesis associated with T-cell prolymphocytic leukemia based on a comprehensive bioinformatics analysis.

  • Zhangzhen Shi‎ et al.
  • Oncology letters‎
  • 2018‎

As a rare hematological malignancy, T-cell prolymphocytic leukemia (T-PLL) has a high mortality rate. However, the comprehensive mechanisms of the underlying pathogenesis of T-PLL are unknown. The purpose of the present study was to investigate the pathogenesis of T-PLL based on a comprehensive bioinformatics analysis. The differentially expressed genes (DEGs) between T-PLL blood cell samples and normal peripheral blood cell samples were investigated using the GSE5788 Affymetrix microarray data from the Gene Expression Omnibus database. To investigate the functional changes associated with tumor progression, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were used on the identified DEGs, followed by protein-protein interaction (PPI) and sub-PPI analysis. Transcription factors and tumor-associated genes (TAGs) were investigated further. The results identified 84 upregulated genes and 354 downregulated genes in T-PLL samples when compared with healthy samples. These DEGs featured in various functions including cell death and various pathways including apoptosis. The functional analysis of DEGs revealed 17 dysregulated transcription factors and 37 dysregulated TAGs. Furthermore, the PPI network analysis based on node degree (a network topology attribute) identified 61 genes, including the core downregulated gene of the sub-PPI network, signal transducer and activator of transcription 3 (STAT3; degree, 13) and the core upregulated gene, insulin receptor substrate-1 (IRS1; degree, 5), that may have important associations with the progression of T-PLL. Alterations to cell functions, including cell death, and pathways, including apoptosis, may contribute to the process of T-PLL. Candidate genes identified in the present study, including STAT3 and IRS1, should be targets for additional studies.


The MEC1 and MEC2 lines represent two CLL subclones in different stages of progression towards prolymphocytic leukemia.

  • Eahsan Rasul‎ et al.
  • PloS one‎
  • 2014‎

The EBV carrying lines MEC1 and MEC2 were established earlier from explants of blood derived cells of a chronic lymphocytic leukemia (CLL) patient at different stages of progression to prolymphocytoid transformation (PLL). This pair of lines is unique in several respects. Their common clonal origin was proven by the rearrangement of the immunoglobulin genes. The cells were driven to proliferation in vitro by the same indigenous EBV strain. They are phenotypically different and represent subsequent subclones emerging in the CLL population. Furthermore they reflect the clinical progression of the disease. We emphasize that the support for the expression of the EBV encoded growth program is an important differentiation marker of the CLL cells of origin that was shared by the two subclones. It can be surmised that proliferation of EBV carrying cells in vitro, but not in vivo, reflects the efficient surveillance that functions even in the severe leukemic condition. The MEC1 line arose before the aggressive clinical stage from an EBV carrying cell within the subclone that was in the early prolymphocytic transformation stage while the MEC2 line originated one year later, from the subsequent subclone with overt PLL characteristics. At this time the disease was disseminated and the blood lymphocyte count was considerably elevated. The EBV induced proliferation of the MEC cells belonging to the subclones with markers of PLL agrees with earlier reports in which cells of PLL disease were infected in vitro and immortalized to LCL. They prove also that the expression of EBV encoded set of proteins can be determined at the event of infection. This pair of lines is particularly important as they provide in vitro cells that represent the subclonal evolution of the CLL disease. Furthermore, the phenotype of the MEC1 cells shares several characteristics of ex vivo CLL cells.


Micro-RNA networks in T-cell prolymphocytic leukemia reflect T-cell activation and shape DNA damage response and survival pathways.

  • Till Braun‎ et al.
  • Haematologica‎
  • 2022‎

T-cell prolymphocytic leukemia (T-PLL) is a poor-prognostic mature T-cell malignancy. It typically presents with exponentially rising lymphocyte counts, splenomegaly, and bone marrow infiltration. Effective treatment options are scarce and a better understanding of TPLL's pathogenesis is desirable. Activation of the TCL1 proto-oncogene and loss-of-function perturbations of the tumor suppressor ATM are TPLL's genomic hallmarks. The leukemic cell reveals a phenotype of active T-cell receptor (TCR) signaling and aberrant DNA damage responses. Regulatory networks based on the profile of microRNA (miR) have not been described for T-PLL. In a combined approach of small-RNA and transcriptome sequencing in 46 clinically and moleculary well-characterized T-PLL, we identified a global T-PLL-specific miR expression profile that involves 34 significantly deregulated miR species. This pattern strikingly resembled miR-ome signatures of TCR-activated T cells. By integrating these T-PLL miR profiles with transcriptome data, we uncovered regulatory networks associated with cell survival signaling and DNA damage response pathways. Despite a miR-ome that discerned leukemic from normal T cells, there were also robust subsets of T-PLL defined by a small set of specific miR. Most prominently, miR-141 and the miR- 200c-cluster separated cases into two major subgroups. Furthermore, increased expression of miR-223-3p as well as reduced expression of miR-21 and the miR-29 cluster were associated with more activated Tcell phenotypes and more aggressive disease presentations. Based on the implicated pathobiological role of these miR deregulations, targeting strategies around their effectors appear worth pursuing. We also established a combinatorial miR-based overall survival score for T-PLL (miROS-T-PLL), that might improve current clinical stratifications.


Shikonin Derivatives from Onsoma visianii Decrease Expression of Phosphorylated STAT3 in Leukemia Cells and Exert Antitumor Activity.

  • Zeljko Todorovic‎ et al.
  • Nutrients‎
  • 2021‎

Antitumor effects of shikonins on chronic lymphocytic leukemia (CLL) and B-cell prolymphocytic leukemia (B-PLL) are mostly unexplored. The antitumor activity of shikonins, isolated from Onosma visianii Clem (Boraginaceae), in BCL1, mouse CLL cells and JVM-13, human B-PLL cells was explored in this study. The cytotoxicity of shikonin derivatives was measured by an MTT test. Cell death, proliferation, cell cycle, and expression of molecules that control these processes were analyzed by flow cytometry. Expression of STAT3-regulated genes was analyzed by real-time q-RT-PCR (Quantitative Real-Time Polymerase Chain Reaction). The antitumor effects of shikonin derivatives in vivo were analyzed, using flow cytometry, by detection of leukemia cells in the peripheral blood and spleens of mice intravenously injected with BCL1 cells. The two most potent derivatives, isobutyrylshikonin (IBS) and α-methylbutyrylshikonin (MBS), induced cell cycle disturbances and apoptosis, inhibited proliferation, and decreased expression of phospho-STAT3 and downstream-regulated molecules in BCL1 and JVM-13 cells. IBS and MBS decreased the percentage of leukemia cells in vivo. The link between the decrease in phosphorylated STAT3 by MBS and IBS and BCL1 cell death was confirmed by detection of enhanced cell death after addition of AG490, an inhibitor of Jak2 kinase. It seems that IBS and MBS, by decreasing STAT3 phosphorylation, trigger apoptosis, inhibit cell proliferation, and attenuate leukemia cell stemness.


Identification of Differentially Expressed Human Endogenous Retrovirus Families in Human Leukemia and Lymphoma Cell Lines and Stem Cells.

  • Kristina Engel‎ et al.
  • Frontiers in oncology‎
  • 2021‎

Endogenous retroviruses (ERVs) are becoming more and more relevant in cancer research and might be potential targets. The oncogenic potential of human ERVs (HERVs) has been recognized and includes immunosuppression, cell fusion, antigenicity of viral proteins, and regulation of neighboring genes. To decipher the role of HERVs in human cancers, we used a bioinformatics approach and analyzed RNA sequencing data from the LL-100 panel, covering 22 entities of hematopoietic neoplasias including T cell, B cell and myeloid malignancies. We compared HERV expression in this panel with hematopoietic stem cells (HSCs), embryonic stem cells (ESCs) and normal blood cells. RNA sequencing data were mapped against a comprehensive synthetic viral metagenome with 116 HERV sequences from 14 different HERV families. Of these, 13 HERV families and elements were differently expressed in malignant hematopoietic cells and stem cells. We found transcriptional upregulation of HERVE family in acute megakaryocytic and erythroid leukemia and of HERVFc family in multiple myeloma/plasma cell leukemia (PCL). The HERVFc member HERVFc-1 was found transcriptionally active in the multiple myeloma cell line OPM-2 and also in the Hodgkin lymphoma cell line L-428. The expression of HERVFc-1 in L-428 cells was validated by qRT-PCR. We also confirm transcriptional downregulation of ERV3 in acute megakaryocytic and erythroid leukemia, and HERVK in acute monocytic and myelocytic leukemia and a depression of HERVF in all malignant entities. Most of the higher expressed HERV families could be detected in stem cells including HERVK (HML-2), HERV-like, HERVV, HERVT, ERV9, HERVW, HERVF, HERVMER, ERV3, HERVH and HERVPABLB.


T Cell Leukemia/Lymphoma 1A is essential for mouse epidermal keratinocytes proliferation promoted by insulin-like growth factor 1.

  • Antonella Bresin‎ et al.
  • PloS one‎
  • 2018‎

T Cell Leukemia/Lymphoma 1A is expressed during B-cell differentiation and, when over-expressed, acts as an oncogene in mouse (Tcl1a) and human (TCL1A) B-cell chronic lymphocytic leukemia (B-CLL) and T-cell prolymphocytic leukemia (T-PLL). Furthermore, in the murine system Tcl1a is expressed in the ovary, testis and in pre-implantation embryos, where it plays an important role in blastomere proliferation and in embryonic stem cell (ESC) proliferation and self-renewal. We have also observed that Tcl1-/- adult mice exhibit alopecia and deep ulcerations. This finding has led us to investigate the role of TCL1 in mouse skin and hair follicles. We have found that TCL1 is expressed in the proliferative structure (i.e. the secondary hair germ) and in the stem cell niche (i.e. the bulge) of the hair follicle during regeneration phase and it is constitutively expressed in the basal layer of epidermis where it is required for the correct proliferative-differentiation program of the keratinocytes (KCs). Taking advantage of the murine models we have generated, including the Tcl1-/- and the K14-TCL1 transgenic mouse, we have analysed the function of TCL1 in mouse KCs and the molecular pathways involved. We provide evidence that in the epidermal compartment TCL1 has a role in the regulation of KC proliferation, differentiation, and apoptosis. In particular, the colony-forming efficiency (CFE) and the insulin-like growth factor 1 (IGF1)-induced proliferation are dramatically impaired, while apoptosis is increased, in KCs from Tcl1-/- mice when compared to WT. Moreover, the expression of differentiation markers such as cytokeratin 6 (KRT6), filaggrin (FLG) and involucrin (IVL) are profoundly altered in mutant mice (Tcl1-/-). Importantly, by over-expressing TCL1A in basal KCs of the K14-TCL1 transgenic mouse model, we observed a significant rescue of cell proliferation, differentiation and apoptosis of the mutant phenotype. Finally, we found TCL1 to act, at least in part, via increasing phospho-ERK1/2 and decreasing phospho-P38 MAPK. Hence, our data demonstrate that regulated levels of Tcl1a are necessary for the correct proliferation and differentiation of the interfollicular KCs.


Expression of A-myb, but not c-myb and B-myb, is restricted to Burkitt's lymphoma, sIg+ B-acute lymphoblastic leukemia, and a subset of chronic lymphocytic leukemias.

  • J Golay‎ et al.
  • Blood‎
  • 1996‎

The A-myb gene encodes a transcription factor that is related both functionally and structurally to the v-myb oncogene. Following our observations that A-myb is expressed in a restricted subset of normal mature human B lymphocytes, with the phenotype CD38+, CD39-, slgM-, we have now investigated the pattern of A-myb expression in neoplastic B cells representating the whole spectrum of B-cell differentiation and compared it to that of c-myb and B-myb. In a panel of 32 B-cell lines, A-myb was very strongly expressed in most Burkitt's lymphoma (BL) cell lines, but weak or negative in 2 pre-B acute lymphoblastic leukemia (ALL), 4 non-Hodgkin's lymphoma (NHL), 6 Epstein-Barr virus-immortalized lymphoblastoid cell lines, and 6 myeloma lines. Protein expression paralleled that of the RNA. We have also investigated A-myb expression in 49 fresh cases of B leukemias. Among 24 ALL, 6 were of the null and 11 of the common type and all these were negative for A-myb expression; on the other hand, all 7 B-ALL cases (slg+), as well as one fresh BL case with bone marrow infiltration, expressed A-myb. A-myb was undetectable in 4 prolymphocytic leukemias (PLL) but was strongly expressed in 5/20 (25%) of chronic lymphocytic leukemia (CLL) samples. In the latter A-myb did not correlate with phenotype or clinical stage. Finally, we have studied the progression of one case of CLL into Richter's syndrome and have found that the Richter's cells expressed about 25-fold less A-myb RNA than the CLL cells from the same patient. The pattern of c-myb and B-myb was clearly distinct from that of A-myb. C-myb and B-myb were expressed in all neoplastic groups, except in CLL cells. Thus, A-myb expression, unlike that of c-myb and B-myb, is restricted to a subset of B-cell neoplasias (in particular BL and slg+B-ALL) representative of a specific stage of B-cell differentiation. This expression may in part reflect expression of A-myb by the normal germinal center B cells that are the normal counterpart of these transformed B cells. The data presented strongly support a role for this transcription factor in B-cell differentiation and perhaps in B-cell transformation in some neoplasias.


Spectrum of mutational signatures in T-cell lymphoma reveals a key role for UV radiation in cutaneous T-cell lymphoma.

  • Christine L Jones‎ et al.
  • Scientific reports‎
  • 2021‎

T-cell non-Hodgkin's lymphomas develop following transformation of tissue resident T-cells. We performed a meta-analysis of whole exome sequencing data from 403 patients with eight subtypes of T-cell non-Hodgkin's lymphoma to identify mutational signatures and associated recurrent gene mutations. Signature 1, indicative of age-related deamination, was prevalent across all T-cell lymphomas, reflecting the derivation of these malignancies from memory T-cells. Adult T-cell leukemia-lymphoma was specifically associated with signature 17, which was found to correlate with the IRF4 K59R mutation that is exclusive to Adult T-cell leukemia-lymphoma. Signature 7, implicating UV exposure was uniquely identified in cutaneous T-cell lymphoma (CTCL), contributing 52% of the mutational burden in mycosis fungoides and 23% in Sezary syndrome. Importantly this UV signature was observed in CD4 + T-cells isolated from the blood of Sezary syndrome patients suggesting extensive re-circulation of these T-cells through skin and blood. Analysis of non-Hodgkin's T-cell lymphoma cases submitted to the national 100,000 WGS project confirmed that signature 7 was only identified in CTCL strongly implicating UV radiation in the pathogenesis of cutaneous T-cell lymphoma.


Markers of Immune Activation and Inflammation, and Non-Hodgkin Lymphoma: A Meta-Analysis of Prospective Studies.

  • Solomon B Makgoeng‎ et al.
  • JNCI cancer spectrum‎
  • 2018‎

Chronic inflammation and immune activation are reported to play a key role in the etiology of non-Hodgkin lymphoma (NHL). We conducted a meta-analysis on the associations between prediagnosis circulating levels of immune stimulatory markers, interleukin 6 (IL-6), IL-10, tumor necrosis factor α (TNF-α), CXCL13, soluble CD23 (sCD23), sCD27, sCD30, and the risk of NHL.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: