Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 484 papers

Reactions of kynurenic acid with hypobromous acid and hypochlorous acid.

  • Toshinori Suzuki‎ et al.
  • Journal of clinical biochemistry and nutrition‎
  • 2021‎

Kynurenic acid, a tryptophan metabolite, acts as antagonist or agonist of several receptors. Hypobromous acid (HOBr) and hypochlorous acid (HOCl) are generated by eosinophils and neutrophils. At inflammation sites, kynurenic acid may encounter HOBr and HOCl to generate products. When kynurenic acid was incubated with HOBr under neutral conditions, kynurenic acid generated a single product almost exclusively. This was identified as 3-bromokynurenic acid. Kynurenic acid reacted with HOCl, generating two products. The major product was identified as 3-chlorokynurenic acid with its oxidative decarboxylation product, 3-chloro-4-hydroxy-2(1H)-quinolinone as a by-product. Free amino acids suppressed the reactions of kynurenic acid with HOBr and HOCl. Taurine suppressed the HOCl reaction but not the HOBr reaction. An eosinophil peroxidase system containing H2O2, NaCl, and NaBr reacted with kynurenic acid, generating 3-bromokynurenic acid under mildly acidic conditions. Although a myeloperoxidase system containing H2O2 and NaCl reacted with kynurenic acid to generate 3-chlorokynurenic acid under mildly acidic conditions, the product was altered to 3-bromokynurenic acid by addition of NaBr to the system. These results suggest that 3-bromokynurenic acid and 3-chlorokynurenic acid may be generated from kynurenic acid at inflammation sites in humans, although their formation will be suppressed by coexistent amino acids.


Amino acids inhibit kynurenic acid formation via suppression of kynurenine uptake or kynurenic acid synthesis in rat brain in vitro.

  • Airi Sekine‎ et al.
  • SpringerPlus‎
  • 2015‎

The tryptophan metabolite, kynurenic acid (KYNA), is a preferential antagonist of the α7 nicotinic acetylcholine receptor at endogenous brain concentrations. Recent studies have suggested that increase of brain KYNA levels is involved in psychiatric disorders such as schizophrenia and depression. KYNA-producing enzymes have broad substrate specificity for amino acids, and brain uptake of kynurenine (KYN), the immediate precursor of KYNA, is via large neutral amino acid transporters (LAT). In the present study, to find out amino acids with the potential to suppress KYNA production, we comprehensively investigated the effects of proteinogenic amino acids on KYNA formation and KYN uptake in rat brain in vitro. Cortical slices of rat brain were incubated for 2 h in Krebs-Ringer buffer containing a physiological concentration of KYN with individual amino acids. Ten out of 19 amino acids (specifically, leucine, isoleucine, phenylalanine, methionine, tyrosine, alanine, cysteine, glutamine, glutamate, and aspartate) significantly reduced KYNA formation at 1 mmol/L. These amino acids showed inhibitory effects in a dose-dependent manner, and partially inhibited KYNA production at physiological concentrations. Leucine, isoleucine, methionine, phenylalanine, and tyrosine, all LAT substrates, also reduced tissue KYN concentrations in a dose-dependent manner, with their inhibitory rates for KYN uptake significantly correlated with KYNA formation. These results suggest that five LAT substrates inhibit KYNA formation via blockade of KYN transport, while the other amino acids act via blockade of the KYNA synthesis reaction in brain. Amino acids can be a good tool to modulate brain function by manipulation of KYNA formation in the brain. This approach may be useful in the treatment and prevention of neurological and psychiatric diseases associated with increased KYNA levels.


Kynurenic acid and cancer: facts and controversies.

  • Katarzyna Walczak‎ et al.
  • Cellular and molecular life sciences : CMLS‎
  • 2020‎

Kynurenic acid (KYNA) is an endogenous tryptophan metabolite exerting neuroprotective and anticonvulsant properties in the brain. However, its importance on the periphery is still not fully elucidated. KYNA is produced endogenously in various types of peripheral cells, tissues and by gastrointestinal microbiota. Furthermore, it was found in several products of daily human diet and its absorption in the digestive tract was evidenced. More recent studies were focused on the potential role of KYNA in carcinogenesis and cancer therapy; however, the results were ambiguous and the biological activity of KYNA in these processes has not been unequivocally established. This review aims to summarize the current views on the relationship between KYNA and cancer. The differences in KYNA concentration between physiological conditions and cancer, as well as KYNA production by both normal and cancer cells, will be discussed. The review also describes the effect of KYNA on cancer cell proliferation and the known potential molecular mechanisms of this activity.


Time of Day-Dependent Alterations in Hippocampal Kynurenic Acid, Glutamate, and GABA in Adult Rats Exposed to Elevated Kynurenic Acid During Neurodevelopment.

  • Courtney J Wright‎ et al.
  • Frontiers in psychiatry‎
  • 2021‎

Hypofunction of glutamatergic signaling is causally linked to neurodevelopmental disorders, including psychotic disorders like schizophrenia and bipolar disorder. Kynurenic acid (KYNA) has been found to be elevated in postmortem brain tissue and cerebrospinal fluid of patients with psychotic illnesses and may be involved in the hypoglutamatergia and cognitive dysfunction experienced by these patients. As insults during the prenatal period are hypothesized to be linked to the pathophysiology of psychotic disorders, we presently utilized the embryonic kynurenine (EKyn) paradigm to induce a prenatal hit. Pregnant Wistar dams were fed chow laced with kynurenine to stimulate fetal brain KYNA elevation from embryonic day 15 to embryonic day 22. Control dams (ECon) were fed unlaced chow. Plasma and hippocampal tissue from young adult (postnatal day 56) ECon and EKyn male and female offspring were collected at the beginning of the light (Zeitgeber time, ZT 0) and dark (ZT 12) phases to assess kynurenine pathway metabolites. Hippocampal tissue was also collected at ZT 6 and ZT 18. In separate animals, in vivo microdialysis was conducted in the dorsal hippocampus to assess extracellular KYNA, glutamate, and γ-aminobutyric acid (GABA). Biochemical analyses revealed no changes in peripheral metabolites, yet hippocampal tissue KYNA levels were significantly impacted by EKyn treatment, and increased in male EKyn offspring at ZT 6. Interestingly, extracellular hippocampal KYNA levels were only elevated in male EKyn offspring during the light phase. Decreases in extracellular glutamate levels were found in the dorsal hippocampus of EKyn male and female offspring, while decreased GABA levels were present only in males during the dark phase. The current findings suggest that the EKyn paradigm may be a useful tool for investigation of sex- and time-dependent changes in hippocampal neuromodulation elicited by prenatal KYNA elevation, which may influence behavioral phenotypes and have translational relevance to psychotic disorders.


Kynurenic Acid Electrochemical Immunosensor: Blood-Based Diagnosis of Alzheimer's Disease.

  • Jose Marrugo-Ramírez‎ et al.
  • Biosensors‎
  • 2021‎

Alzheimer's disease (AD) is a neurodegenerative disorder, characterized by a functional deterioration of the brain. Currently, there are selected biomarkers for its diagnosis in cerebrospinal fluid. However, its extraction has several disadvantages for the patient. Therefore, there is an urgent need for a detection method using sensitive and selective blood-based biomarkers. Kynurenic acid (KYNA) is a potential biomarker candidate for this purpose. The alteration of the KYNA levels in blood has been related with inflammatory processes in the brain, produced as a protective function when neurons are damaged. This paper describes a novel electrochemical immunosensor for KYNA detection, based on successive functionalization multi-electrode array. The resultant sensor was characterized by cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS). The proposed biosensor detects KYNA within a linear calibration range from 10 pM to 100 nM using CA and EIS, obtaining a limit of detection (LOD) of 16.9 pM and 37.6 pM in buffer, respectively, being the lowest reported LOD for this biomarker. Moreover, to assess our device closer to the real application, the developed immunosensor was also tested under human serum matrix, obtaining an LOD of 391.71 pM for CA and 278.8 pM for EIS with diluted serum.


Overexpression of kynurenic acid in stroke: An endogenous neuroprotector?

  • A Mangas‎ et al.
  • Annals of anatomy = Anatomischer Anzeiger : official organ of the Anatomische Gesellschaft‎
  • 2017‎

It is known that kynurenic acid (KYNA) exerts a neuroprotective effect against the neuronal loss induced by ischemia; acting as a scavenger, and exerting antioxidant action. In order to study the distribution of KYNA, a highly specific monoclonal antibody directed against KYNA was developed. This distribution was studied in control rats and in animals in which a middle cerebral artery occlusion (stroke model) was induced. By double immunohistochemistry, astrocytes containing KYNA and GFAP were exclusively found in the ipsilateral cerebral cortex and/or striatum, at 2, 5 and 21days after the induction of stroke. In control animals and in the contralateral side of the stroke animals, no immunoreactivity for KYNA was found. Under pathological conditions, the presence of KYNA is reported for the first time in the mammalian brain from early phases of stroke. The distribution of KYNA matches perfectly with the infarcted regions suggesting that, in stroke, this overexpressed molecule could be involved in neuroprotective/scavenger/antioxidant mechanisms.


Carotid surgery affects plasma kynurenic acid concentration: a pilot study.

  • Piotr Terlecki‎ et al.
  • Medical science monitor : international medical journal of experimental and clinical research‎
  • 2014‎

An increase in plasma kynurenic acid (KYNA) concentration has been observed following surgery, inflammation, and cerebral pathologies. The aim of the present study was to analyze the changes in plasma KYNA concentration in patients undergoing carotid surgery (CS).


Kynurenic acid as the neglected ingredient of commercial baby formulas.

  • Pawel Milart‎ et al.
  • Scientific reports‎
  • 2019‎

The global increase in resorting to artificial nutritional formulas replacing breastfeeding has been identified among the complex causes of the obesity epidemic in infants and children. One of the factors recently recognized to influence metabolism and weight gain is kynurenic acid (KYNA), an agonist of G protein-coupled receptor (GPR35). Therefore the aim of the study was to determine the concentration of KYNA in artificial nutritional formulas in comparison with its level in human breast milk and to evaluate developmental changes in rats exposed to KYNA enriched diet during the time of breastfeeding. KYNA levels were measured in milk samples from 25 heathy breast-feeding women during the first six months after labor and were compared with 21 time-adjusted nutritional formulas. Animal experiments were performed on male Wistar rats. KYNA was administered in drinking water. The content of KYNA in human milk increases more than 13 times during the time of breastfeeding while its level is significantly lower in artificial formulas. KYNA was detected in breast milk of rats and it was found that the supplementation of rat maternal diet with KYNA in drinking water results in its increase in maternal milk. By means of the immunoblotting technique, GPR35 was evidenced in the mucosa of the jejunum of 1-day-old rats and distinct morphological changes in the jejunum of 21-day-old rats fed by mothers exposed to water supplemented with KYNA were found. A significant reduction of body weight gain of rats postnatally exposed to KYNA supplementation without changes in total body surface and bone mineral density was observed. The rat offspring fed with breast milk with artificially enhanced KYNA content demonstrated a lower mass gain during the first 21 days of life, which indicates that KYNA may act as an anti-obesogen. Further studies are, therefore, warranted to investigate the mechanisms regulating KYNA secretion via breast milk, as well as the influence of breast milk KYNA on mass gain. In the context of lifelong obesity observed worldwide in children fed artificially, our results imply that insufficient amount of KYNA in baby formulas could be considered as one of the factors associated with increased mass gain.


Alternative kynurenic acid synthesis routes studied in the rat cerebellum.

  • Tonali Blanco Ayala‎ et al.
  • Frontiers in cellular neuroscience‎
  • 2015‎

Kynurenic acid (KYNA), an astrocyte-derived, endogenous antagonist of α7 nicotinic acetylcholine and excitatory amino acid receptors, regulates glutamatergic, GABAergic, cholinergic and dopaminergic neurotransmission in several regions of the rodent brain. Synthesis of KYNA in the brain and elsewhere is generally attributed to the enzymatic conversion of L-kynurenine (L-KYN) by kynurenine aminotransferases (KATs). However, alternative routes, including KYNA formation from D-kynurenine (D-KYN) by D-amino acid oxidase (DAAO) and the direct transformation of kynurenine to KYNA by reactive oxygen species (ROS), have been demonstrated in the rat brain. Using the rat cerebellum, a region of low KAT activity and high DAAO activity, the present experiments were designed to examine KYNA production from L-KYN or D-KYN by KAT and DAAO, respectively, and to investigate the effect of ROS on KYNA synthesis. In chemical combinatorial systems, both L-KYN and D-KYN interacted directly with peroxynitrite (ONOO(-)) and hydroxyl radicals (OH•), resulting in the formation of KYNA. In tissue homogenates, the non-specific KAT inhibitor aminooxyacetic acid (AOAA; 1 mM) reduced KYNA production from L-KYN and D-KYN by 85.1 ± 1.7% and 27.1 ± 4.5%, respectively. Addition of DAAO inhibitors (benzoic acid, kojic acid or 3-methylpyrazole-5-carboxylic acid; 5 μM each) attenuated KYNA formation from L-KYN and D-KYN by ~35% and ~66%, respectively. ONOO(-) (25 μM) potentiated KYNA production from both L-KYN and D-KYN, and these effects were reduced by DAAO inhibition. AOAA attenuated KYNA production from L-KYN + ONOO(-) but not from D-KYN + ONOO(-). In vivo, extracellular KYNA levels increased rapidly after perfusion of ONOO(-) and, more prominently, after subsequent perfusion with L-KYN or D-KYN (100 μM). Taken together, these results suggest that different mechanisms are involved in KYNA production in the rat cerebellum, and that, specifically, DAAO and ROS can function as alternative routes for KYNA production.


Kynurenic acid is a nutritional cue that enables behavioral plasticity.

  • George A Lemieux‎ et al.
  • Cell‎
  • 2015‎

The kynurenine pathway of tryptophan metabolism is involved in the pathogenesis of several brain diseases, but its physiological functions remain unclear. We report that kynurenic acid, a metabolite in this pathway, functions as a regulator of food-dependent behavioral plasticity in C. elegans. The experience of fasting in C. elegans alters a variety of behaviors, including feeding rate, when food is encountered post-fast. Levels of neurally produced kynurenic acid are depleted by fasting, leading to activation of NMDA-receptor-expressing interneurons and initiation of a neuropeptide-y-like signaling axis that promotes elevated feeding through enhanced serotonin release when animals re-encounter food. Upon refeeding, kynurenic acid levels are eventually replenished, ending the elevated feeding period. Because tryptophan is an essential amino acid, these findings suggest that a physiological role of kynurenic acid is in directly linking metabolism to activity of NMDA and serotonergic circuits, which regulate a broad range of behaviors and physiologies.


Overexpression of kynurenic acid and 3-hydroxyanthranilic acid after rat traumatic brain injury.

  • Arturo Mangas‎ et al.
  • European journal of histochemistry : EJH‎
  • 2018‎

Using an immunohistochemical technique, we have studied the distribution of kynuneric acid (KYNA) and 3-hydroxyanthranilic acid (3-HAA) in a rat brain injury model (trauma). The study was carried out inducing a cerebral ablation of the frontal motor cortex. Two mouse monoclonal specific antibodies previously developed by our group directed against KYNA and 3-HAA were used. In control animals (sham-operated), the expression of both KYNA and 3-HAA was not observed. In animals in which the ablation was performed, the highest number of immunoreactive cells containing KYNA or 3-HAA was observed in the region surrounding the lesion and the number of these cells decreased moving away from the lesion. KYNA and 3-HAA were also observed in the white matter (ipsilateral side) located close to the injured region and in some cells placed in the white matter of the contralateral side. The distribution of KYNA and 3-HAA perfectly matched with the peripheral injured regions. The results found were identical independently of the perfusion date of animals (17, 30 or 54 days after brain injury). For the first time, the presence of KYNA and 3-HAA has been described in a rat trauma model. Moreover, by using a double immunocytochemistry protocol, it has been demonstrated that both metabolites were located in astrocytes. The findings observed suggest that, in cerebral trauma, KYNA and 3-HAA are involved in tissue damage and that these compounds could act, respectively, as a neuroprotector and a neurotoxic. This means that, in trauma, a counterbalance occurs and that a regulation of the indoleamine 2,3 dioxygenase (IDO) pathway could be required after a brain injury in order to decrease the deleterious effects of ending metabolites (the neurotoxic picolinic acid). Moreover, the localization of KYNA and 3-HAA in the contralateral side of the lesion suggests that the IDO pathway is also involved in the sprouting and pathfinding that follows a traumatic brain injury.


Structural Evaluation and Electrophysiological Effects of Some Kynurenic Acid Analogs.

  • Evelin Fehér‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2019‎

Kynurenic acid (KYNA), a metabolite of tryptophan, as an excitatory amino acid receptor antagonist is an effective neuroprotective agent in case of excitotoxicity, which is the hallmark of brain ischemia and several neurodegenerative processes. Therefore, kynurenine pathway, KYNA itself, and its derivatives came into the focus of research. During the past fifteen years, our research group has developed several neuroactive KYNA derivatives, some of which proved to be neuroprotective in preclinical studies. In this study, the synthesis of these KYNA derivatives and their evaluation with divergent molecular characteristics are presented together with their most typical effects on the monosynaptic transmission in CA1 region of the hippocampus of the rat. Their effects on the basic neuronal activity (on the field excitatory postsynaptic potentials: fEPSP) were studied in in vitro hippocampal slices in 1 and 200 μM concentrations. KYNA and its derivative 4 in both 1 and 200 μM concentrations proved to be inhibitory, while derivative 8 only in 200 μM decreased the amplitudes of fEPSPs. Derivative 5 facilitated the fEPSPs in 200 μM concentration. This is the first comparative study which evaluates the structural and functional differences of formerly and newly developed KYNA analogs. Considerations on possible relations between molecular structures and their physiological effects are presented.


Kynurenic acid underlies sex-specific immune responses to COVID-19.

  • Yuping Cai‎ et al.
  • medRxiv : the preprint server for health sciences‎
  • 2020‎

Coronavirus disease-2019 (COVID-19) has poorer clinical outcomes in males compared to females, and immune responses underlie these sex-related differences in disease trajectory. As immune responses are in part regulated by metabolites, we examined whether the serum metabolome has sex-specificity for immune responses in COVID-19. In males with COVID- 19, kynurenic acid (KA) and a high KA to kynurenine (K) ratio was positively correlated with age, inflammatory cytokines, and chemokines and was negatively correlated with T cell responses, revealing that KA production is linked to immune responses in males. Males that clinically deteriorated had a higher KA:K ratio than those that stabilized. In females with COVID-19, this ratio positively correlated with T cell responses and did not correlate with age or clinical severity. KA is known to inhibit glutamate release, and we observed that serum glutamate is lower in patients that deteriorate from COVID-19 compared to those that stabilize, and correlates with immune responses. Analysis of Genotype-Tissue Expression (GTEx) data revealed that expression of kynurenine aminotransferase, which regulates KA production, correlates most strongly with cytokine levels and aryl hydrocarbon receptor activation in older males. This study reveals that KA has a sex-specific link to immune responses and clinical outcomes, in COVID-19 infection.


Kynurenic acid modulates experimentally induced inflammation in the trigeminal ganglion.

  • A Csáti‎ et al.
  • The journal of headache and pain‎
  • 2015‎

The trigeminal ganglion (TG) plays a central role in cranial pain. Administration of complete Freund's adjuvant (CFA) into the temporomandibular joint (TMJ) elicits activation of TG. Kynurenic acid (KYNA) is an endogenous excitatory amino acid receptor blocker, which may have an anti-inflammatory effect. We hypothesize that KYNA may reduce CFA-induced activation within the TG.


Kynurenic Acid Protects against Thioacetamide-Induced Liver Injury in Rats.

  • Sebastian Marciniak‎ et al.
  • Analytical cellular pathology (Amsterdam)‎
  • 2018‎

Acute liver failure (ALF) is a life-threatening disorder of liver function. Kynurenic acid (KYNA), a tryptophan metabolite formed along the kynurenine metabolic pathway, possesses anti-inflammatory and antioxidant properties. Its presence in food and its potential role in the digestive system was recently reported. The aim of this study was to define the effect of KYNA on liver failure. The Wistar rat model of thioacetamide-induced liver injury was used. Morphological and biochemical analyses as well as the measurement of KYNA content in liver and hepatoprotective herbal remedies were conducted. The significant attenuation of morphological disturbances and aspartate and alanine transaminase activities, decrease of myeloperoxidase and tumor necrosis factor-α, and elevation of interleukin-10 levels indicating the protective effect of KYNA in thioacetamide (TAA) - induced liver injury were discovered. In conclusion, the hepatoprotective role of KYNA in an animal model of liver failure was documented and the use of KYNA in the treatment of ALF was suggested.


Putative cognition enhancers reverse kynurenic acid antagonism at hippocampal NMDA receptors.

  • A Pittaluga‎ et al.
  • European journal of pharmacology‎
  • 1995‎

Oxiracetam, aniracetam and D-cycloserine, three putative cognition enhancers, were examined in a functional assay for NMDA receptors. Rat hippocampal slices or synaptosomes were labeled with [3H]noradrenaline and exposed to NMDA or glutamate in superfusion. NMDA (100 microM) elicited a remarkable rise (about 500%) in the release of [3H]noradrenaline from slices. The effect of NMDA was antagonized by the glutamate receptor blocker, kynurenic acid. The antagonism by 100 microM kynurenate was reduced by submicromolar concentrations of oxiracetam and totally reversed by 1 microM of the drug. The concentration-antagonism curve for kynurenic acid was shifted to the right in the presence of 0.2 or 1 microM oxiracetam. Aniracetam and D-cycloserine, as well as glycine and D-serine, behaved similarly to oxiracetam: all compounds, tested at 1 microM, reversed the antagonism by 100 microM kynurenate of the NMDA-evoked [3H]noradrenaline release. In superfused hippocampal synaptosomes, 100 microM NMDA or glutamic acid elicited the release of [3H]noradrenaline; the evoked release was enhanced by glycine, but not by oxiracetam. In this preparation 1 microM glycine or 1 microM oxiracetam prevented the antagonism by kynurenate of the NMDA- or the glutamate-evoked [3H]noradrenaline release. As kynurenic acid is an endogenous glutamate receptor antagonist whose brain levels are known to increase in conditions associated to cognitive deficits, it is proposed that the putative cognition enhancers tested may act in vivo by relieving the antagonism produced by excessive endogenous kynurenate.


Experimental hypothyroidism raises brain kynurenic acid - Novel aspect of thyroid dysfunction.

  • Tomasz Tomczyk‎ et al.
  • European journal of pharmacology‎
  • 2020‎

Hypothyroidism frequently manifests with altered mood and disturbed cognition. Kynurenic acid may influence cognition through antagonism of N-methyl-d-aspartate receptors (NMDA) and α7 nicotinic receptors. In here, thyroid hormones effects on kynurenic acid synthesis in rat cortical slices and on kynurenine aminotransferases (KATs) activity in semi-purified cortical homogenates were studied. Furthermore, brain kynurenic acid levels and KATs activities were evaluated in experimental model of hypothyroidism, induced by chronic administration of 0.05% propylthiouracil in drinking water. In vitro, L-thyroxine (T4) and 3,3,5-triiodothyronine (T3), reduced kynurenic acid synthesis and KATs activities (IC50 ~ 50-150 μM). In vivo, propylthiouracil increased cortical, hippocampal and striatal, but not cerebellar kynurenic acid content (192%, 142% and 124% of control, respectively), despite uniformly decreased KAT II activity and lower cortical and striatal KAT I activity. T4 application to hypothyroid animals restored kynurenic acid levels to control values and reversed enzymatic changes. T4 alone did not change brain kynurenic acid levels, despite increased activities of brain KATs. Hence, thyroid hormones modulate kynurenic acid levels by two opposing mechanisms, stimulation of KATs activity, most probably transcriptional, and direct, post-translational inhibition of KATs. Lack of correlation between KATs activity and kynurenic acid level may reflect the influence of T4 on organic anion transporter and result from impaired removal of kynurenic acid from the brain during hypothyroidism. Our data reveal novel mechanism linked with thyroid hormones deficiency and imply the potential involvement of increased brain kynurenic acid in the hypothyroidism-related cognitive disturbance.


Kynurenic Acid Accelerates Healing of Corneal Epithelium In Vitro and In Vivo.

  • Anna Matysik-Woźniak‎ et al.
  • Pharmaceuticals (Basel, Switzerland)‎
  • 2021‎

Kynurenic acid (KYNA) is an endogenous compound with a multidirectional effect. It possesses antiapoptotic, anti-inflammatory, and antioxidative properties that may be beneficial in the treatment of corneal injuries. Moreover, KYNA has been used successfully to improve the healing outcome of skin wounds. The aim of the present study is to evaluate the effects of KYNA on corneal and conjunctival cells in vitro and the re-epithelization of corneal erosion in rabbits in vivo. Normal human corneal epithelial cell (10.014 pRSV-T) and conjunctival epithelial cell (HC0597) lines were used. Cellular metabolism, cell viability, transwell migration, and the secretion of IL-1β, IL-6, and IL-10 were determined. In rabbits, after corneal de-epithelization, eye drops containing 0.002% and 1% KYNA were applied five times a day until full recovery. KYNA decreased metabolism but did not affect the proliferation of the corneal epithelium. It decreased both the metabolism and proliferation of conjunctival epithelium. KYNA enhanced the migration of corneal but not conjunctival epithelial cells. KYNA reduced the secretion of IL-1β and IL-6 from the corneal epithelium, leaving IL-10 secretion unaffected. The release of all studied cytokines from the conjunctival epithelium exposed to KYNA was unchanged. KYNA at higher concentration accelerated the healing of the corneal epithelium. These favorable properties of KYNA suggest that KYNA containing topical pharmaceutical products can be used in the treatment of ocular surface diseases.


Kynurenic Acid and Gpr35 Regulate Adipose Tissue Energy Homeostasis and Inflammation.

  • Leandro Z Agudelo‎ et al.
  • Cell metabolism‎
  • 2018‎

The role of tryptophan-kynurenine metabolism in psychiatric disease is well established, but remains less explored in peripheral tissues. Exercise training activates kynurenine biotransformation in skeletal muscle, which protects from neuroinflammation and leads to peripheral kynurenic acid accumulation. Here we show that kynurenic acid increases energy utilization by activating G protein-coupled receptor Gpr35, which stimulates lipid metabolism, thermogenic, and anti-inflammatory gene expression in adipose tissue. This suppresses weight gain in animals fed a high-fat diet and improves glucose tolerance. Kynurenic acid and Gpr35 enhance Pgc-1α1 expression and cellular respiration, and increase the levels of Rgs14 in adipocytes, which leads to enhanced beta-adrenergic receptor signaling. Conversely, genetic deletion of Gpr35 causes progressive weight gain and glucose intolerance, and sensitizes to the effects of high-fat diets. Finally, exercise-induced adipose tissue browning is compromised in Gpr35 knockout animals. This work uncovers kynurenine metabolism as a pathway with therapeutic potential to control energy homeostasis.


Kynurenic acid may underlie sex-specific immune responses to COVID-19.

  • Yuping Cai‎ et al.
  • Science signaling‎
  • 2021‎

Coronavirus disease 2019 (COVID-19) has poorer clinical outcomes in males than in females, and immune responses underlie these sex-related differences. Because immune responses are, in part, regulated by metabolites, we examined the serum metabolomes of COVID-19 patients. In male patients, kynurenic acid (KA) and a high KA-to-kynurenine (K) ratio (KA:K) positively correlated with age and with inflammatory cytokines and chemokines and negatively correlated with T cell responses. Males that clinically deteriorated had a higher KA:K than those that stabilized. KA inhibits glutamate release, and glutamate abundance was lower in patients that clinically deteriorated and correlated with immune responses. Analysis of data from the Genotype-Tissue Expression (GTEx) project revealed that the expression of the gene encoding the enzyme that produces KA, kynurenine aminotransferase, correlated with cytokine abundance and activation of immune responses in older males. This study reveals that KA has a sex-specific link to immune responses and clinical outcomes in COVID-19, suggesting a positive feedback between metabolites and immune responses in males.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: