Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,623 papers

Modelling the Gastrointestinal Carriage of Klebsiella pneumoniae Infections.

  • Ricardo Calderon-Gonzalez‎ et al.
  • mBio‎
  • 2023‎

Klebsiella pneumoniae is a leading cause of nosocomial and community acquired infections, making K. pneumoniae the pathogen that is associated with the second largest number of deaths attributed to any antibiotic resistant infection. K. pneumoniae colonizes the nasopharynx and the gastrointestinal tract in an asymptomatic manner without dissemination to other tissues. Importantly, gastrointestinal colonization is a requisite for infection. Our understanding of K. pneumoniae colonization is still based on interrogating mouse models in which animals are pretreated with antibiotics to disturb the colonization resistance imposed by the gut microbiome. In these models, infections disseminate to other tissues. Here, we report a murine model to allow for the study of the gastrointestinal colonization of K. pneumoniae without tissue dissemination. Hypervirulent and antibiotic resistant strains stably colonize the gastrointestinal tract of in an inbred mouse population without antibiotic treatment. The small intestine is the primary site of colonization and is followed by a transition to the colon over time, without dissemination to other tissues. Our model recapitulates the disease dynamics of the metastatic K. pneumoniae strains that are able to disseminate from the gastrointestinal tract to other sterile sites. Colonization is associated with mild to moderate histopathology, no significant inflammation, and no effect on the richness of the microbiome. Our model sums up the clinical scenario in which antibiotic treatment disturbs the colonization of K. pneumoniae and results in dissemination to other tissues. Finally, we establish that the capsule polysaccharide is necessary for the colonization of the large intestine, whereas the type VI secretion system contributes to colonization across the gastrointestinal tract. IMPORTANCE Klebsiella pneumoniae is one of the pathogens that is sweeping the world in the antibiotic resistance pandemic. Klebsiella colonizes the nasopharynx and the gut of healthy subjects in an asymptomatic manner, making gut colonization a requisite for infection. This makes it essential to understand the gastrointestinal carriage in preventing Klebsiella infections. Current research models rely on the perturbation of the gut microbiome by antibiotics, resulting in an invasive infection. Here, we report a new model of K. pneumoniae gut colonization that recapitulates key features of the asymptomatic human gastrointestinal tract colonization. In our model, there is no need to disturb the microbiota to achieve stable colonization, and there is no dissemination to other tissues. Our model sums up the clinical scenario in which antibiotic treatment triggers invasive infection. We envision that our model will be an excellent platform upon which to investigate factors enhancing colonization and invasive infections and to test therapeutics to eliminate Klebsiella asymptomatic colonization.


Analysis of hypervirulent Klebsiella pneumoniae and classic Klebsiella pneumoniae infections in a Chinese hospital.

  • Dongjie Chen‎ et al.
  • Journal of applied microbiology‎
  • 2022‎

To evaluate the clinical and genetic virulence characteristics of critically ill patients with hypervirulent Klebsiella pneumoniae (hvKP) and classic KP (cKP) infection.


Proinflammatory cytokines in antilipopolysaccharide immunity against Klebsiella infections.

  • Tomislav Rukavina‎ et al.
  • Mediators of inflammation‎
  • 2005‎

This study was undertaken in order to determine whether proinflammatory cytokines are involved in a previously described protection against Klebsiella infection mediated by antilipopolysaccharide antibodies. BALB/c mice were infected intraperitoneally with a lethal challenge of Klebsiella pneumoniae Caroli. One group of mice was protected with monoclonal antibodies against lipopolysaccharide prior to infection and the second was not. We determined the number of colony-forming units at different time points in the blood of infected animals and paralleled them with plasma levels of five proinflammatory cytokines measured by enzyme immunoassays. Our results show that the two groups of animals tested expressed different plasma concentrations for all cytokines. The greatest difference was detected 24 hours after infection, with a higher production in the unprotected group. We concluded that a reduced cytokine production is partially responsible for the survival of protected animals.


Clinical characteristics in blood stream infections caused by Klebsiella pneumoniae, Klebsiella variicola, and Klebsiella quasipneumoniae: a comparative study, Japan, 2014-2017.

  • Kazuo Imai‎ et al.
  • BMC infectious diseases‎
  • 2019‎

Klebsiella variicola and K. quasipneumoniae are new species distinguishable from K. pneumoniae but they are often misidentified as K. pneumoniae in clinical settings. Several reports have demonstrated the possibility that the virulence factors and clinical features differ among these three phylogroups. In this study, we aimed to clarify whether there were differences in clinical and bacterial features between the three phylogroups isolated from patients with bloodstream infections (BSIs) in Japan.


IL-10 in antilipopolysaccharide immunity against systemic Klebsiella infections.

  • Tomislav Rukavina‎ et al.
  • Mediators of inflammation‎
  • 2006‎

This study was undertaken in order to determine whether anti-inflammatory cytokine interleukin-10 is responsible for a previously described protection against Klebsiella infection mediated by antilipopolysaccharide antibodies.


Heterogeneous Klebsiella pneumoniae Co-infections Complicate Personalized Bacteriophage Therapy.

  • Jinhong Qin‎ et al.
  • Frontiers in cellular and infection microbiology‎
  • 2020‎

Multidrug-resistant (MDR) organisms have increased worldwide, posing a major challenge for the clinical management of infection. Bacteriophage is expected as potential effective therapeutic agents for difficult-to-treat infections. When performing bacteriophage therapy, the susceptibility of lytic bacteriophage to the target bacteria is selected by laboratory isolate from patients. The presence of a subpopulation in a main population of tested cells, coupled with the rapid development of phage-resistant populations, will make bacteriophage therapy ineffective. We aimed to treat a man with multifocal urinary tract infections of MDR Klebsiella pneumoniae by phage therapy. However, the presence of polyclonal co-infectious cells in his renal pelvis and bladder led to the failure of three consecutive phage therapies. After analysis, the patient was performed with percutaneous nephrostomy (PCN). A cocktail of bacteriophages was selected for activity against all 21 heterogeneous isolates and irrigated simultaneously via the kidney and bladder to eradicate multifocal colonization, combined with antibiotic treatment. Finally, the patient recovered with an obviously improved bladder. The success of this case provides valuable treatment ideas and solutions for phage treatment of complex infections.


Invasive Klebsiella pneumoniae Infections in Community-Settings and Healthcare Settings.

  • Yue Qiu‎ et al.
  • Infection and drug resistance‎
  • 2021‎

To assess clinical characteristics, outcomes and antimicrobial resistance of invasive Klebsiella pneumoniae (KP) infections in Chinese pediatric patients in hospital and community settings.


Risk Factors for Carbapenem-Resistant Klebsiella pneumoniae Bloodstream Infections and Outcomes.

  • Youhua Yuan‎ et al.
  • Infection and drug resistance‎
  • 2020‎

The incidence of carbapenem-resistant Klebsiella pneumoniae (CRKP) bloodstream infections (BSIs) is increasing globally; however, little has been reported on the risk factors and outcomes of CRKP BSIs in central China. This study aimed to determine the clinical risk factors for CRKP BSIs and the outcomes of CRKP BSIs.


Multidrug-Resistant Klebsiella pneumoniae Causing Severe Infections in the Neuro-ICU.

  • Nadezhda K Fursova‎ et al.
  • Antibiotics (Basel, Switzerland)‎
  • 2021‎

The purpose of this study was the identification of genetic lineages and antimicrobial resistance (AMR) and virulence genes in Klebsiella pneumoniae isolates associated with severe infections in the neuro-ICU. Susceptibility to antimicrobials was determined using the Vitek-2 instrument. AMR and virulence genes, sequence types (STs), and capsular types were identified by PCR. Whole-genome sequencing was conducted on the Illumina MiSeq platform. It was shown that K. pneumoniae isolates of ST14K2, ST23K57, ST39K23, ST76K23, ST86K2, ST218K57, ST219KL125/114, ST268K20, and ST2674K47 caused severe systemic infections, including ST14K2, ST39K23, and ST268K20 that were associated with fatal incomes. Moreover, eight isolates of ST395K2 and ST307KL102/149/155 were associated with manifestations of vasculitis and microcirculation disorders. Another 12 K. pneumoniae isolates of ST395K2,KL39, ST307KL102/149/155, and ST147K14/64 were collected from patients without severe systemic infections. Major isolates (n = 38) were XDR and MDR. Beta-lactamase genes were identified: blaSHV (n = 41), blaCTX-M (n = 28), blaTEM (n = 21), blaOXA-48 (n = 21), blaNDM (n = 1), and blaKPC (n = 1). The prevalent virulence genes were wabG (n = 41), fimH (n = 41), allS (n = 41), and uge (n = 34), and rarer, detected only in the genomes of the isolates causing severe systemic infections-rmpA (n = 8), kfu (n = 6), iroN (n = 5), and iroD (n = 5) indicating high potential of the isolates for hypervirulence.


Cefquinome-loaded microsphere formulations against Klebsiella pneumonia infection during experimental infections.

  • Shaoqi Qu‎ et al.
  • Drug delivery‎
  • 2018‎

The aim of this study was to prepare cefquinome-loaded polylactic acid microspheres and to evaluate their in vitro and in vivo characteristics and pharmacodynamics for the therapy of pneumonia in a rat model. Microspheres were prepared using a 0.7 mm two-fluid nozzle spray drier in one step resulting in spherical and smooth microspheres of uniform size (9.8 ± 3.6 μm). The encapsulation efficiency and drug loading of cefquinome were 91.6 ± 2.6% and 18.7 ± 1.2%, respectively. In vitro release of cefquinome from the microspheres was sustained for 36 h. Cefquinome-loaded polylactic acid microspheres as a drug delivery system was successful for clearing experimental Klebsiella pneumonia lung infections. A decrease in inflammatory cells and an inhibition of inflammatory cytokines TNF-α, IL-1β and IL-8 after microspheres treatment was found. Changes in cytokine levels and types are secondary manifestations of drug bactericidal effects. Rats were considered to be microbiologically cured because the bacterial load was less than 100 CFU/g. These results also indicated that the spray-drying method of loading therapeutic drug into polylactic acid microspheres is a straightforward and safe method for lung-targeting therapy in animals.


Review of therapeutic options for infections with carbapenem-resistant Klebsiella pneumoniae.

  • Rasmus G Bandick‎ et al.
  • European journal of microbiology & immunology‎
  • 2020‎

Infections with multi-drug resistant (MDR) bacteria including carbapenem-resistant Klebsiella pneumoniae are emerging worldwide but are difficult to treat with the currently available antibiotic compounds and therefore constitute serious threats to human health. This prompted us to perform a literature survey applying the MEDLINE database and Cochrane Register of Controlled Trials including clinical trials comparing different treatment regimens for infections caused by carbapenem-resistant K. pneumoniae. Our survey revealed that a combined application of antibiotic compounds such as meropenem plus vaborbactam, meropenem plus colistin and carbapenem plus carbapenem, resulted in significantly increased clinical cure and decreased mortality rates as compared to respective control treatment. However, further research on novel antibiotic compounds, but also on antibiotic-independent molecules providing synergistic or at least resistance-modifying properties needs to be undertaken in vitro as well as in large clinical trials to provide future options in the combat of emerging life-threatening infections caused by MDR bacteria.


Phenotypic and molecular characterization of Klebsiella spp. isolates causing community-acquired infections.

  • U Garza-Ramos‎ et al.
  • New microbes and new infections‎
  • 2018‎

Klebsiella spp. isolates from community-acquired infections were characterized. A total of 39 Klebsiella spp. isolates were obtained from outpatients at four rural hospitals in Mexico (2013-2014). The biochemical tests identified all as being K. pneumoniae. The molecular multiplex-PCR test identified 36 (92.4%) K. pneumoniae isolates and one (2.5%) K. variicola isolate, and phylogenetic analysis of the rpoB gene identified two isolates (5.1%) belonging to K. quasipneumoniae subsp. quasipneumoniae and K. quasivariicola. The last one was confirmed by phylogenetic analysis of six-loci concatenated genes. Mostly the isolates were multidrug resistant; however, a minority were extended-spectrum β-lactamase producing (10.2%). The extended-spectrum β-lactamase CTX-M-15 gene was identified in these isolates. Analysis of biofilm production and the hypermucoviscosity phenotype showed a total of 35 (92.3%) and seven (17.9%) of the isolates were positive for these phenotypes respectively. The K2 (4/39, 10.2%), K5 (2/39, 5.1%) and K54 (1/39, 2.5%) serotypes were identified in seven (17.9%) of the isolates, and only 28.5% (2/7) hypermucoviscous isolates were positive for the K2 and K5 serotypes. In general, the sequence type (ST) analysis and phylogenetic analysis of seven multilocus sequence typing loci were heterogeneous; however, ST29 was the most prevalent ST in the analysed isolates, accounting for 19% (4/21) of the total isolates. Two of the four ST29 isolates had the hypermucoviscosity phenotype. The virulence factors for fimbriae were the most prevalent, followed by siderophores. Community-acquired infections are caused by various species from Klebsiella genus, with different profiles of antibiotic resistance and heterogeneous virulence factors.


In vitro research of combination therapy for multidrug-resistant Klebsiella pneumoniae bloodstream infections.

  • Leiming Sun‎ et al.
  • The Journal of international medical research‎
  • 2022‎

Multidrug-resistant Klebsiella pneumoniae (MDR KP) bloodstream infections are a serious problem. The objective of this study was to investigate the effects of appropriate combination therapies on MDR KP bloodstream infections.


Resistance Trends of Klebsiella pneumoniae Causing Urinary Tract Infections in Chongqing, 2011-2019.

  • Yanhui Ding‎ et al.
  • Infection and drug resistance‎
  • 2021‎

To analyze the characteristics and trends of drug resistance for Klebsiella pneumoniae (K. pneumoniae), isolated from urinary tract infections (UTIs), to common antibiotics used in clinics.


Carbapenem-Resistant Klebsiella pneumoniae Infections in ICU COVID-19 Patients-A Scoping Review.

  • Wioletta Mędrzycka-Dąbrowska‎ et al.
  • Journal of clinical medicine‎
  • 2021‎

The spread of multidrug-resistant pathogens is a serious problem and challenge for the whole medical community. Carbapenem-resistant Klebsiella pneumoniae (CRKP) infections in immunocompromised patients have a severe course and may be fatal. Increasingly, these bacteria are exhibiting resistance to carbapenem antibiotics, which have been used as so-called drugs of last resort. The emergence of the new coronavirus and the pandemic that it has caused require changes to protect against the spread of the new SARS-CoV-2. These changes paradoxically may contribute to the spread of other infections.


Host Immune Response to Clinical Hypervirulent Klebsiella pneumoniae Pulmonary Infections via Transcriptome Analysis.

  • Langhuan Lei‎ et al.
  • Journal of immunology research‎
  • 2022‎

Klebsiella pneumoniae (K. pneumoniae), especially those with hypervirulence, is becoming a global concern and posing great threat to human health. Studies on individual immune cells or cytokines have partially revealed the function of the host immune defense against K. pneumoniae pulmonary infection. However, systematic immune response against K. pneumoniae has not been fully elucidated. Herein, we report a transcriptome analysis of the lungs from a mouse pneumonia model infected with a newly isolated K. pneumoniae clinical strain YBQ. Total RNA was isolated from the lungs of mice 48 hours post infection to assess transcriptional alteration of genes. Transcriptome data were analyzed with KEGG, GO, and ICEPOP. Results indicated that upregulated transcription level of numerous cytokines and chemokines was coordinated with remarkably activated ribosome and several critical immune signaling pathways, including IL-17 and TNF signaling pathways. Notably, transcription of cysteine cathepsin inhibitor (stfa1, stfa2, and stfa3) and potential cysteine-type endopeptidase inhibitor (cstdc4, cstdc5, and cstdc6) were upregulated. Results of ICEPOP showed neutrophils functions as the most essential cell type against K. pneumoniae infection. Critical gene alterations were further validated by rt-PCR. Our findings provided a global transcriptional perspective on the mechanisms of host defense against K. pneumoniae infection and revealed some unique responding genes.


High Prevalence of ESBL-Producing Klebsiella pneumoniae Causing Community-Onset Infections in China.

  • Jing Zhang‎ et al.
  • Frontiers in microbiology‎
  • 2016‎

The aim of this work was to investigate the epidemiological and genetic characteristics of ESBL-producing Klebsiella pneumoniae (ESBL-Kp) causing community-onset infections. K. pneumoniae isolates were collected from 31 Chinese secondary hospitals between August 2010 and 2011. Genes encoding ESBL and AmpC beta-lactamases were detected by PCR. The isolates were assigned to sequence types (STs) using multi-locus sequence typing (MLST). Eleven ESBL-Kp strains were selected for whole-genome sequencing (WGS) for investigating the genetic environment and plasmids encoding ESBL genes. A total of 578 K. pneumoniae isolates were collected, and 184 (31.8%) carried ESBL genes. The prevalence of ESBL-Kp varied from different geographical areas of China (10.2-50.3%). The three most prevalent ESBL genes were blaCTX-M-14 (n = 74), blaCTX-M-15 (n = 60), and blaCTX-M-3 (n = 40). MLST assigned 127 CTX-M-14 and CTX-M-15 producers to 54 STs, and CC17 was the most prevalent population (12.6%). STs (23, 37, and 86) that were known frequently associated with hypervirulent K. pneumoniae (hvKP) account for 14.1% (18/127). Phylogenetic analysis by concatenating the seven loci of MLST revealed the existence of ESBL-producing K. quasipneumoniae (two strains) and K. varricola (one strain), which was further confirmed by WGS. This study highlights the challenge of community-onset infections caused by ESBL-Kp in China. The prevalence of STs frequently associating with hvKP should be of concern. Surveillance of ESBL-KP causing community-onset infections now appears imperative.


Synergy of Plant Essential Oils in Antibiotic Therapy to Combat Klebsiella pneumoniae Infections.

  • Mariana Romo-Castillo‎ et al.
  • Pharmaceuticals (Basel, Switzerland)‎
  • 2023‎

Increased antibiotic resistance presents a health problem worldwide. The World Health Organization published a list of pathogens considered a priority for designing new treatments. Klebsiella pneumoniae (Kp) is a top-priority microorganism, highlighting the strains that produce carbapenemases. Developing new efficient therapies or complementing existing treatments is a priority, and essential oils (EOs) provide an alternative. EOs could act as antibiotic adjuvants and enhance antibiotic activity. Employing standard methodologies, the antibacterial activity of the EOs and their synergic effect with antibiotics were detected. A string test was used to identify the impact of the EOs over the hypermucoviscosity phenotype presented by Kp strains, and Gas Chromatography-Mass Spectrometry analysis identified EOs and the composition of EOs. The potential of EOs for designing synergistic therapies with antibiotics to combat the infection of KPC diseases was demonstrated. In addition, the alteration of the hypermucoviscosity phenotype was shown as the principal mechanism of a synergic action between EOs and antibiotics. The differential composition of the EOs lets us identify some molecules that will be analyzed. Synergic activity of EOs and antibiotics can provide a solid platform for combating multiresistant pathogens that represent a severe health sector problem, such as Kp infections.


Molecular epidemiology and clinical impact of Klebsiella spp. causing bloodstream infections in Hong Kong.

  • Xuemei Yang‎ et al.
  • EBioMedicine‎
  • 2024‎

The epidemiological features of the Klebsiella pneumoniae causing bloodstream infections in Hong Kong and their potential threats to human health remained unknown.


Fighting MDR-Klebsiella pneumoniae Infections by a Combined Host- and Pathogen-Directed Therapeutic Approach.

  • Noemi Poerio‎ et al.
  • Frontiers in immunology‎
  • 2022‎

Klebsiella pneumoniae is an opportunistic pathogen that is very difficult to treat mainly due to its high propensity to acquire complex resistance traits. Notably, multidrug resistance (MDR)-Klebsiella pneumoniae (KP) infections are responsible for 22%-72% of mortality among hospitalized and immunocompromised patients. Although treatments with new drugs or with combined antibiotic therapies have some degree of success, there is still the urgency to investigate and develop an efficient approach against MDR-KP infections. In this study, we have evaluated, in an in vitro model of human macrophages, the efficacy of a combined treatment consisting of apoptotic body-like liposomes loaded with phosphatidylinositol 5-phosphate (ABL/PI5P) and φBO1E, a lytic phage specific for the major high-risk clone of KPC-positive MDR-KP. Results show that ABL/PI5P did not affect in a direct manner KKBO-1 viability, being able to reduce only the intracellular KKBO-1 bacterial load. As expected, φBO1E was effective mainly on reducing extracellular bacilli. Importantly, the combination of both treatments resulted in a simultaneous reduction of both intracellular and extracellular bacilli. Moreover, the combined treatment of KKBO-1-infected cells reduced proinflammatory TNF-α and IL-1β cytokines and increased anti-inflammatory TGF-β cytokine production. Overall, our data support the therapeutic value of a combined host- and pathogen-directed therapy as a promising approach, alternative to single treatments, to simultaneously target intracellular and extracellular pathogens and improve the clinical management of patients infected with MDR pathogens such as MDR-KP.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: