Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 338 papers

Ultrasmall polymeric nanocarriers for drug delivery to podocytes in kidney glomerulus.

  • Riccardo Bruni‎ et al.
  • Journal of controlled release : official journal of the Controlled Release Society‎
  • 2017‎

We explored the use of new drug-loaded nanocarriers and their targeted delivery to the kidney glomerulus and in particular to podocytes, in order to overcome the failure of current therapeutic regimens in patients with proteinuric (i.e. abnormal amount of proteins in the urine) diseases. Podocytes are glomerular cells which are mainly responsible for glomerular filtration and are primarily or secondarily involved in chronic kidney diseases. Therefore, the possibility to utilise a podocyte-targeted drug delivery could represent a major breakthrough in kidney disease research, particularly in terms of dosage reduction and elimination of systemic side effects of current therapies. Four-arm star-shaped polymers, with/without a hydrophobic poly-ε-caprolactone core and a brush-like polyethylene glycol (PEG) hydrophilic shell, were synthesised by controlled/living polymerisation (ROP and ATRP) to allow the formation of stable ultrasmall colloidal nanomaterials of tuneable size (5-30nm), which are able to cross the glomerular filtration barrier (GFB). The effects of these nanomaterials on glomerular cells were evaluated in vitro. Nanomaterial accumulation and permeability in the kidney glomerulus were also assessed in mice under physiological and pathological conditions. Drug (dexamethasone) encapsulation was performed in order to test loading capacity, release kinetics, and podocyte repairing effects. The marked efficacy of these drug-loaded nanocarriers in repairing damaged podocytes may pave the way for developing a cell-targeted administration of new and traditional drugs, increasing efficacy and limiting side effects.


Analysis of the three dimensional structure of the kidney glomerulus capillary network.

  • Mark Terasaki‎ et al.
  • Scientific reports‎
  • 2020‎

The capillary network of the kidney glomerulus filters small molecules from the blood. The glomerular 3D structure should help to understand its function, but it is poorly characterized. We therefore devised a new approach in which an automated tape collecting microtome (ATUM) was used to collect 0.5 μm thick serial sections from fixed mouse kidneys. The sections were imaged by scanning electron microscopy at ~ 50 nm/pixel resolution. With this approach, 12 glomeruli were reconstructed at an x-y-z resolution ~ 10 × higher than that of paraffin sections. We found a previously undescribed no-cross zone between afferent and efferent branches on the vascular pole side; connections here would allow blood to exit without being adequately filtered. The capillary diameters throughout the glomerulus appeared to correspond with the amount of blood flow within them. The shortest path (minimum number of branches to travel from afferent to efferent arterioles) is relatively independent of glomerular size and is present primarily on the vascular pole size. This suggests that new branches and longer paths form on the urinary pole side. Network analysis indicates that the glomerular network does not form by repetitive longitudinal splitting of capillaries. Thus the 3D structure of the glomerular capillary network provides useful information with which to understand glomerular function. Other tissue structures in the body may benefit from this new three dimensional approach.


Large-scale identification of genes implicated in kidney glomerulus development and function.

  • Minoru Takemoto‎ et al.
  • The EMBO journal‎
  • 2006‎

To advance our understanding of development, function and diseases in the kidney glomerulus, we have established and large-scale sequenced cDNA libraries from mouse glomeruli at different stages of development, resulting in a catalogue of 6053 different genes. The glomerular cDNA clones were arrayed and hybridized against a series of labeled targets from isolated glomeruli, non-glomerular kidney tissue, FACS-sorted podocytes and brain capillaries, which identified over 300 glomerular cell-enriched transcripts, some of which were further sublocalized to podocytes, mesangial cells and juxtaglomerular cells by in situ hybridization. For the earliest podocyte marker identified, Foxc2, knockout mice were used to analyze the role of this protein during glomerular development. We show that Foxc2 controls the expression of a distinct set of podocyte genes involved in podocyte differentiation and glomerular basement membrane maturation. The primary podocyte defects also cause abnormal differentiation and organization of the glomerular vascular cells. We surmise that studies on the other novel glomerulus-enriched transcripts identified in this study will provide new insight into glomerular development and pathomechanisms of disease.


A neural network for glomerulus classification based on histological images of kidney biopsy.

  • Giacomo Donato Cascarano‎ et al.
  • BMC medical informatics and decision making‎
  • 2021‎

Computer-aided diagnosis (CAD) systems based on medical images could support physicians in the decision-making process. During the last decades, researchers have proposed CAD systems in several medical domains achieving promising results. CAD systems play an important role in digital pathology supporting pathologists in analyzing biopsy slides by means of standardized and objective workflows. In the proposed work, we designed and tested a novel CAD system module based on image processing techniques and machine learning, whose objective was to classify the condition affecting renal corpuscles (glomeruli) between sclerotic and non-sclerotic. Such discrimination is useful for the biopsy slides evaluation performed by pathologists.


Human Kidney Disease-causing INF2 Mutations Perturb Rho/Dia Signaling in the Glomerulus.

  • Hua Sun‎ et al.
  • EBioMedicine‎
  • 2014‎

Mutations in Inverted Formin 2 (INF2), a diaphanous formin family protein that regulates actin cytoskeleton dynamics, cause focal segmental glomerulosclerosis (FSGS) and Charcot-Marie-Tooth Disease (CMT) in humans. In addition to directly remodeling actin filaments in vitro, we have shown that INF2 regulates intracellular actin dynamics and actin dependent cellular behavior by opposing Rhoa/Dia signaling. As a step towards a better understanding of the human kidney disease, we wanted to explore the relevance of these findings to the in vivo situation. We used dose dependent knockdown of INF2 to first define an in vivo model and establish an overt glomerular phenotype in zebrafish. This simple assay was validated by rescue with wild type INF2 confirming the specificity of the findings. The edema, podocyte dysfunction, and an altered glomerular filtration barrier observed in the zebrafish pronephros correlate with mistrafficking of glomerular slit diaphragm proteins, defective slit-diaphragm signaling, and disinhibited diaphanous formin (mDia) activity. In contrast to wild-type human INF2, INF2 mutants associated with kidney disease fail to rescue the zINF2 morphant phenotype. Of particular interest, this INF2 knockdown phenotype is also rescued by loss of either RhoA or Dia2. This simple assay allows the demonstration that INF2 functions, at least in part, to modulate Dia-mediated Rho signaling, and that disease causing mutations specifically impair this regulatory function. These data support a model in which disease-associated diaphanous inhibitory domain (DID) mutants in INF2 interfere with its binding to and inhibition of Dia, leading to uncontrolled Rho/Dia signaling and perturbed actin dynamics. Methods to fine tune Rho signaling in the glomerulus may lead to new approaches to therapy in humans.


Near-Single-Cell Proteomics Profiling of the Proximal Tubular and Glomerulus of the Normal Human Kidney.

  • Tara K Sigdel‎ et al.
  • Frontiers in medicine‎
  • 2020‎

Molecular assessments at the single cell level can accelerate biological research by providing detailed assessments of cellular organization and tissue heterogeneity in both disease and health. The human kidney has complex multi-cellular states with varying functionality, much of which can now be completely harnessed with recent technological advances in tissue proteomics at a near single-cell level. We discuss the foundational steps in the first application of this mass spectrometry (MS) based proteomics method for analysis of sub-sections of the normal human kidney, as part of the Kidney Precision Medicine Project (KPMP). Using ~30-40 laser captured micro-dissected kidney cells, we identified more than 2,500 human proteins, with specificity to the proximal tubular (PT; n = 25 proteins) and glomerular (Glom; n = 67 proteins) regions of the kidney and their unique metabolic functions. This pilot study provides the roadmap for application of our near-single-cell proteomics workflow for analysis of other renal micro-compartments, on a larger scale, to unravel perturbations of renal sub-cellular function in the normal kidney as well as different etiologies of acute and chronic kidney disease.


Mori cortex prevents kidney damage through inhibiting expression of inflammatory factors in the glomerulus in streptozocin-induced diabetic rats.

  • Lili Ma‎ et al.
  • Iranian journal of basic medical sciences‎
  • 2017‎

It has been widely reported that Mori cortex extract (MCE) is used for the treatment of diabetes mellitus in traditional medicine. The present study was designed to investigate its mechanism of action in the treatment of diabetic nephropathy (DN). We assessed whether MCE preventive treatment ameliorates kidney damage in high-fat diet and streptozotocin (STZ)-induced type 2 diabetic rats.


APOL1 promotes endothelial cell activation beyond the glomerulus.

  • Miguel Carracedo‎ et al.
  • iScience‎
  • 2023‎

Apolipoprotein L1 (APOL1) high-risk genotypes are associated with increased risk of chronic kidney disease (CKD) in people of West African ancestry. Given the importance of endothelial cells (ECs) in CKD, we hypothesized that APOL1 high-risk genotypes may contribute to disease via EC-intrinsic activation and dysfunction. Single cell RNA sequencing (scRNA-seq) analysis of the Kidney Precision Medicine Project dataset revealed APOL1 expression in ECs from various renal vascular compartments. Utilizing two public transcriptomic datasets of kidney tissue from African Americans with CKD and a dataset of APOL1-expressing transgenic mice, we identified an EC activation signature; specifically, increased intercellular adhesion molecule 1 (ICAM-1) expression and enrichment in leukocyte migration pathways. In vitro, APOL1 expression in ECs derived from genetically modified human induced pluripotent stem cells and glomerular ECs triggered changes in ICAM-1 and platelet endothelial cell adhesion molecule 1 (PECAM-1) leading to an increase in monocyte attachment. Overall, our data suggest the involvement of APOL1 as an inducer of EC activation in multiple renal vascular beds with potential effects beyond the glomerular vasculature.


A Personalized Glomerulus Chip Engineered from Stem Cell-Derived Epithelium and Vascular Endothelium.

  • Yasmin Roye‎ et al.
  • Micromachines‎
  • 2021‎

Progress in understanding kidney disease mechanisms and the development of targeted therapeutics have been limited by the lack of functional in vitro models that can closely recapitulate human physiological responses. Organ Chip (or organ-on-a-chip) microfluidic devices provide unique opportunities to overcome some of these challenges given their ability to model the structure and function of tissues and organs in vitro. Previously established organ chip models typically consist of heterogenous cell populations sourced from multiple donors, limiting their applications in patient-specific disease modeling and personalized medicine. In this study, we engineered a personalized glomerulus chip system reconstituted from human induced pluripotent stem (iPS) cell-derived vascular endothelial cells (ECs) and podocytes from a single patient. Our stem cell-derived kidney glomerulus chip successfully mimics the structure and some essential functions of the glomerular filtration barrier. We further modeled glomerular injury in our tissue chips by administering a clinically relevant dose of the chemotherapy drug Adriamycin. The drug disrupts the structural integrity of the endothelium and the podocyte tissue layers, leading to significant albuminuria as observed in patients with glomerulopathies. We anticipate that the personalized glomerulus chip model established in this report could help advance future studies of kidney disease mechanisms and the discovery of personalized therapies. Given the remarkable ability of human iPS cells to differentiate into almost any cell type, this work also provides a blueprint for the establishment of more personalized organ chip and 'body-on-a-chip' models in the future.


Constitutive activation of the mTOR signaling pathway within the normal glomerulus.

  • Gearoid M McMahon‎ et al.
  • Biochemical and biophysical research communications‎
  • 2012‎

Agents that target the activity of the mammalian target of rapamycin (mTOR) kinase in humans are associated with proteinuria. However, the mechanisms underlying mTOR activity and signaling within the kidney are poorly understood. In this study, we developed a sensitive immunofluorescence technique for the evaluation of activated pmTOR and its associated signals in situ. While we find that pmTOR is rarely expressed in normal non-renal tissues, we consistently find intense expression in glomeruli within normal mouse and human kidneys. Using double staining, we find that the expression of pmTOR co-localizes with nephrin in podocytes and expression appears minimal within other cell types in the glomerulus. In addition, we found that pmTOR was expressed on occasional renal tubular cells within mouse and human kidney specimens. We also evaluated mTOR signaling in magnetic bead-isolated glomeruli from normal mice and, by Western blot analysis, we confirmed function of the pathway in glomerular cells vs. interstitial cells. Furthermore, we found that the activity of the pathway as well as the expression of VEGF, a target of mTOR-induced signaling, were reduced within glomeruli of mice following treatment with rapamycin. Collectively, these findings demonstrate that the mTOR signaling pathway is constitutively hyperactive within podocytes. We suggest that pmTOR signaling functions to regulate glomerular homeostasis in part via the inducible expression of VEGF.


A comparative analysis of glomerulus development in the pronephros of medaka and zebrafish.

  • Koichiro Ichimura‎ et al.
  • PloS one‎
  • 2012‎

The glomerulus of the vertebrate kidney links the vasculature to the excretory system and produces the primary urine. It is a component of every single nephron in the complex mammalian metanephros and also in the primitive pronephros of fish and amphibian larvae. This systematic work highlights the benefits of using teleost models to understand the pronephric glomerulus development. The morphological processes forming the pronephric glomerulus are astoundingly different between medaka and zebrafish. (1) The glomerular primordium of medaka - unlike the one of zebrafish - exhibits a C-shaped epithelial layer. (2) The C-shaped primordium contains a characteristic balloon-like capillary, which is subsequently divided into several smaller capillaries. (3) In zebrafish, the bilateral pair of pronephric glomeruli is fused at the midline to form a glomerulus, while in medaka the two parts remain unmerged due to the interposition of the interglomerular mesangium. (4) Throughout pronephric development the interglomerular mesangial cells exhibit numerous cytoplasmic granules, which are reminiscent of renin-producing (juxtaglomerular) cells in the mammalian afferent arterioles. Our systematic analysis of medaka and zebrafish demonstrates that in fish, the morphogenesis of the pronephric glomerulus is not stereotypical. These differences need be taken into account in future analyses of medaka mutants with glomerulus defects.


Development of a Functional Glomerulus at the Organ Level on a Chip to Mimic Hypertensive Nephropathy.

  • Mengying Zhou‎ et al.
  • Scientific reports‎
  • 2016‎

Glomerular hypertension is an important factor exacerbating glomerular diseases to end-stage renal diseases because, ultimately, it results in glomerular sclerosis (especially in hypertensive and diabetic nephropathy). The precise mechanism of glomerular sclerosis caused by glomerular hypertension is unclear, due partly to the absence of suitable in vitro or in vivo models capable of mimicking and regulating the complex mechanical forces and/or organ-level disease processes. We developed a "glomerulus-on-a-chip" (GC) microfluidic device. This device reconstitutes the glomerulus with organ-level glomerular functions to create a disease model-on-a chip that mimics hypertensive nephropathy in humans. It comprises two channels lined by closely opposed layers of glomerular endothelial cells and podocytes that experience fluid flow of physiological conditions to mimic the glomerular microenvironment in vivo. Our results revealed that glomerular mechanical forces have a crucial role in cellular cytoskeletal rearrangement as well as the damage to cells and their junctions that leads to increased glomerular leakage observed in hypertensive nephropathy. Results also showed that the GC could readily and flexibly meet the demands of a renal-disease model. The GC could provide drug screening and toxicology testing, and create potential new personalized and accurate therapeutic platforms for glomerular disease.


Nephrin is necessary for podocyte recovery following injury in an adult mature glomerulus.

  • Rakesh Verma‎ et al.
  • PloS one‎
  • 2018‎

Nephrin (Nphs1) is an adhesion protein that is expressed at the podocyte intercellular junction in the glomerulus. Nphs1 mutations in humans or deletion in animal genetic models results in a developmental failure of foot process formation. A number of studies have shown decrease in expression of nephrin in various proteinuric kidney diseases as well as in animal models of glomerular disease. Decrease in nephrin expression has been suggested to precede podocyte loss and linked to the progression of kidney disease. Whether the decrease in expression of nephrin is related to loss of podocytes or lead to podocyte detachment is unclear. To answer this central question we generated an inducible model of nephrin deletion (Nphs1Tam-Cre) in order to lower nephrin expression in healthy adult mice. Following tamoxifen-induction there was a 75% decrease in nephrin expression by 14 days. The Nphs1Tam-Cre mice had normal foot process ultrastructure and intact filtration barriers up to 4-6 weeks post-induction. Despite the loss of nephrin expression, the podocyte number and density remained unchanged during the initial period. Unexpectedly, nephrin expression, albeit at low levels persisted at the slit diaphragm up to 16-20 weeks post-tamoxifen induction. The mice became progressively proteinuric with glomerular hypertrophy and scarring reminiscent of focal and segmental glomerulosclerosis at 20 weeks. Four week-old Nphs1 knockout mice subjected to protamine sulfate model of podocyte injury demonstrated failure to recover from foot process effacement following heparin sulfate. Similarly, Nphs1 knockout mice failed to recover following nephrotoxic serum (NTS) with persistence of proteinuria and foot process effacement. Our results suggest that as in development, nephrin is necessary for maintenance of a healthy glomerular filter. In contrast to the developmental phenotype, lowering nephrin expression in a mature glomerulus resulted in a slowly progressive disease that histologically resembles FSGS a disease linked closely with podocyte depletion. Podocytes with low levels of nephrin expression are both susceptible and unable to recover following perturbation. Our results suggest that decreased nephrin expression independent of podocyte loss occurring as an early event in proteinuric kidney diseases might play a role in disease progression.


Interactions among glomerulus infiltrating macrophages and intrinsic cells via cytokines in chronic lupus glomerulonephritis.

  • Sun-Sang J Sung‎ et al.
  • Journal of autoimmunity‎
  • 2020‎

Inflammation plays a key role in the pathogenesis of lupus nephritis (LN) and inflammatory cytokines within the glomeruli are critical in this process. However, little information is available for the identities of the cell types that are primarily responsible for the production and function of the various cytokines. We have devised a novel method to visualize cytokine signals in the kidney by confocal microscopy and found that cytokine production within the glomerulus is cell type-specific and under translational control. In the lupus-prone NZM2328 mice with chronic glomerulonephritis, IL-6, IL-1β, and TNF-α in the glomerulus were produced predominantly by mesangial cells, podocytes, and glomerulus-infiltrating blood-derived macrophages, respectively. Microarray and RNASeq analyses showed that these cells expressed the receptors for these cytokines. Together the 3 cell types form a cytokine circuit in amplifying cytokine responses in LN. The intrinsic cells and infiltrating macrophages also produced other cytokines including M-CSF, SCF, and IL-34 that constituted within the enclosed glomerular space the soluble effector milieu which may mediate cellular damage and proliferation, and cytokine transcriptional and translation regulation. IL-10 and IL-1β were translationally regulated in the glomeruli in the intact kidney in a cell type-specific manner. The production of these 2 cytokines by infiltrating macrophages was undetectable in a visualization system for in situ protein accumulation despite high mRNA expression levels. However, these macrophages in isolated glomeruli which are released from Bowman's capsules produced large amounts of IL-10 and IL-1β. These data reveal the complexity of cytokine regulation, production, and function in the glomerulus and provide a model in which cytokine blocking may be beneficial in LN treatment.


Increased hexokinase II expression in the renal glomerulus of mice in response to arsenic.

  • Michele D Pysher‎ et al.
  • Toxicology and applied pharmacology‎
  • 2007‎

Epidemiological studies link arsenic exposure to increased risks of cancers of the skin, kidney, lung, bladder and liver. Additionally, a variety of non-cancerous conditions such as diabetes mellitus, hypertension, and cardiovascular disease have been associated with chronic ingestion of low levels of arsenic. However, the biological and molecular mechanisms by which arsenic exerts its effects remain elusive. Here we report increased renal hexokinase II (HKII) expression in response to arsenic exposure both in vivo and in vitro. In our model, HKII was up-regulated in the renal glomeruli of mice exposed to low levels of arsenic (10 ppb or 50 ppb) via their drinking water for up to 21 days. Additionally, a similar effect was observed in cultured renal mesangial cells exposed to arsenic. This correlation between our in vivo and in vitro data provides further evidence for a direct link between altered renal HKII expression and arsenic exposure. Thus, our data suggest that alterations in renal HKII expression may be involved in arsenic-induced pathological conditions involving the kidney. More importantly, these results were obtained using environmentally relevant arsenic concentrations.


Mesangial cells are key contributors to the fibrotic damage seen in the lupus nephritis glomerulus.

  • Rachael D Wright‎ et al.
  • Journal of inflammation (London, England)‎
  • 2019‎

Lupus nephritis (LN) affects up to 80% of juvenile-onset systemic lupus erythematosus patients. Mesangial cells (MCs) comprise a third of the glomerular cells and are key contributors to fibrotic changes within the kidney. This project aims to identify the roles of MCs in an in vitro model of LN.


High Glucose Impairs Insulin Signaling in the Glomerulus: An In Vitro and Ex Vivo Approach.

  • Elias N Katsoulieris‎ et al.
  • PloS one‎
  • 2016‎

Chronic hyperglycaemia, as seen in type II diabetes, results in both morphological and functional impairments of podocytes in the kidney. We investigated the effects of high glucose (HG) on the insulin signaling pathway, focusing on cell survival and apoptotic markers, in immortalized human glomerular cells (HGEC; podocytes) and isolated glomeruli from healthy rats.


Modelling Renal Filtration and Reabsorption Processes in a Human Glomerulus and Proximal Tubule Microphysiological System.

  • Stephanie Y Zhang‎ et al.
  • Micromachines‎
  • 2021‎

Kidney microphysiological systems (MPS) serve as potentially valuable preclinical instruments in probing mechanisms of renal clearance and osmoregulation. Current kidney MPS models target regions of the nephron, such as the glomerulus and proximal tubule (PCT), but fail to incorporate multiple filtration and absorption interfaces. Here, we describe a novel, partially open glomerulus and PCT microdevice that integrates filtration and absorption in a single MPS. The system equalizes pressure on each side of the PCT that operates with one side "closed" by recirculating into the bloodstream, and the other "opened" by exiting as primary filtrate. This design precisely controls the internal fluid dynamics and prevents loss of all fluid to the open side. Through this feature, an in vitro human glomerulus and proximal tubule MPS was constructed to filter human serum albumin and reabsorb glucose for seven days of operation. For proof-of-concept experiments, three human-derived cell types-conditionally immortalized human podocytes (CIHP-1), human umbilical vein endothelial cells (HUVECs), and human proximal tubule cells (HK-2)-were adapted into a common serum-free medium prior to being seeded into the three-component MPS (T-junction splitter, glomerular housing unit, and parallel proximal tubule barrier model). This system was optimized geometrically (tubing length, tubing internal diameter, and inlet flow rate) using in silico computational modeling. The prototype tri-culture MPS successfully filtered blood serum protein and generated albumin filtration in a physiologically realistic manner, while the device cultured only with proximal tubule cells did not. This glomerulus and proximal convoluted tubule MPS is a potential prototype for the human kidney used in both human-relevant testing and examining pharmacokinetic interactions.


Acute podocyte vascular endothelial growth factor (VEGF-A) knockdown disrupts alphaVbeta3 integrin signaling in the glomerulus.

  • Delma Veron‎ et al.
  • PloS one‎
  • 2012‎

Podocyte or endothelial cell VEGF-A knockout causes thrombotic microangiopathy in adult mice. To study the mechanism involved in acute and local injury caused by low podocyte VEGF-A we developed an inducible, podocyte-specific VEGF-A knockdown mouse, and we generated an immortalized podocyte cell line (VEGF(KD)) that downregulates VEGF-A upon doxycycline exposure. Tet-O-siVEGF:podocin-rtTA mice express VEGF shRNA in podocytes in a doxycycline-regulated manner, decreasing VEGF-A mRNA and VEGF-A protein levels in isolated glomeruli to ~20% of non-induced controls and urine VEGF-A to ~30% of control values a week after doxycycline induction. Induced tet-O-siVEGF:podocin-rtTA mice developed acute renal failure and proteinuria, associated with mesangiolysis and microaneurisms. Glomerular ultrastructure revealed endothelial cell swelling, GBM lamination and podocyte effacement. VEGF knockdown decreased podocyte fibronectin and glomerular endothelial alpha(V)beta(3) integrin in vivo. VEGF receptor-2 (VEGFR2) interacts with beta(3) integrin and neuropilin-1 in the kidney in vivo and in VEGF(KD) podocytes. Podocyte VEGF knockdown disrupts alpha(V)beta(3) integrin activation in glomeruli, detected by WOW1-Fab. VEGF silencing in cultured VEGF(KD) podocytes downregulates fibronectin and disrupts alpha(V)beta(3) integrin activation cell-autonomously. Collectively, these studies indicate that podocyte VEGF-A regulates alpha(V)beta(3) integrin signaling in the glomerulus, and that podocyte VEGF knockdown disrupts alpha(V)beta(3) integrin activity via decreased VEGFR2 signaling, thereby damaging the three layers of the glomerular filtration barrier, causing proteinuria and acute renal failure.


Development of glomerulus-, tubule-, and collecting duct-specific mRNA assay in human urinary exosomes and microvesicles.

  • Taku Murakami‎ et al.
  • PloS one‎
  • 2014‎

Urinary exosomes and microvesicles (EMV) are promising biomarkers for renal diseases. Although the density of EMV is very low in urine, large quantity of urine can be easily obtained. In order to analyze urinary EMV mRNA, a unique filter device to adsorb urinary EMV from 10 mL urine was developed, which is far more convenient than the standard ultracentrifugation protocol. The filter part of the device is detachable and aligned to a 96-well microplate format, therefore multiple samples can be processed simultaneously in a high throughput manner following the isolation step. For EMV mRNA quantification, the EMV on the filter is lysed directly by adding lysis buffer and transferred to an oligo(dT)-immobilized microplate for mRNA isolation followed by cDNA synthesis and real-time PCR. Under the optimized assay condition, our method provided comparable or even superior results to the standard ultracentrifugation method in terms of mRNA assay sensitivity, linearity, intra-assay reproducibility, and ease of use. The assay system was applied to quantification of kidney-specific mRNAs such as NPHN and PDCN (glomerular filtration), SLC12A1 (tubular absorption), UMOD and ALB (tubular secretion), and AQP2 (collecting duct water absorption). 12-hour urine samples were collected from four healthy subjects for two weeks, and day-to-day and individual-to-individual variations were investigated. Kidney-specific genes as well as control genes (GAPDH, ACTB, etc.) were successfully detected and confirmed their stable expressions through the two-week study period. In conclusion, this method is readily available to clinical studies of kidney diseases.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: