Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 416 papers

Identification and application of keto acids transporters in Yarrowia lipolytica.

  • Hongwei Guo‎ et al.
  • Scientific reports‎
  • 2015‎

Production of organic acids by microorganisms is of great importance for obtaining building-block chemicals from sustainable biomass. Extracellular accumulation of organic acids involved a series of transporters, which play important roles in the accumulation of specific organic acid while lack of systematic demonstration in eukaryotic microorganisms. To circumvent accumulation of by-product, efforts have being orchestrated to carboxylate transport mechanism for potential clue in Yarrowia lipolytica WSH-Z06. Six endogenous putative transporter genes, YALI0B19470g, YALI0C15488g, YALI0C21406g, YALI0D24607g, YALI0D20108g and YALI0E32901g, were identified. Transport characteristics and substrate specificities were further investigated using a carboxylate-transport-deficient Saccharomyces cerevisiae strain. These transporters were expressed in Y. lipolytica WSH-Z06 to assess their roles in regulating extracellular keto acids accumulation. In a Y. lipolytica T1 line over expressing YALI0B19470g, α-ketoglutarate accumulated to 46.7 g·L(-1), whereas the concentration of pyruvate decreased to 12.3 g·L(-1). Systematic identification of these keto acids transporters would provide clues to further improve the accumulation of specific organic acids with higher efficiency in eukaryotic microorganisms.


Environmental Processing of Lipids Driven by Aqueous Photochemistry of α-Keto Acids.

  • Rebecca J Rapf‎ et al.
  • ACS central science‎
  • 2018‎

Sunlight can initiate photochemical reactions of organic molecules though direct photolysis, photosensitization, and indirect processes, often leading to complex radical chemistry that can increase molecular complexity in the environment. α-Keto acids act as photoinitiators for organic species that are not themselves photoactive. Here, we demonstrate this capability through the reaction of two α-keto acids, pyruvic acid and 2-oxooctanoic acid, with a series of fatty acids and fatty alcohols. We show for five different cases that a cross-product between the photoinitiated α-keto acid and non-photoactive species is formed during photolysis in aqueous solution. Fatty acids and alcohols are relatively unreactive species, which suggests that α-keto acids are able to act as radical initiators for many atmospherically relevant molecules found in the sea surface microlayer and on atmospheric aerosol particles.


Branched-chain keto acids inhibit mitochondrial pyruvate carrier and suppress gluconeogenesis in hepatocytes.

  • Kiyoto Nishi‎ et al.
  • Cell reports‎
  • 2023‎

Branched-chain amino acid (BCAA) metabolism is linked to glucose homeostasis, but the underlying signaling mechanisms are unclear. We find that gluconeogenesis is reduced in mice deficient of Ppm1k, a positive regulator of BCAA catabolism, which protects against obesity-induced glucose intolerance. Accumulation of branched-chain keto acids (BCKAs) inhibits glucose production in hepatocytes. BCKAs suppress liver mitochondrial pyruvate carrier (MPC) activity and pyruvate-supported respiration. Pyruvate-supported gluconeogenesis is selectively suppressed in Ppm1k-deficient mice and can be restored with pharmacological activation of BCKA catabolism by BT2. Finally, hepatocytes lack branched-chain aminotransferase that alleviates BCKA accumulation via reversible conversion between BCAAs and BCKAs. This renders liver MPC most susceptible to circulating BCKA levels hence a sensor of BCAA catabolism.


Branched-chain keto acids promote an immune-suppressive and neurodegenerative microenvironment in leptomeningeal disease.

  • Mariam Lotfy Khaled‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Leptomeningeal disease (LMD) occurs when tumors seed into the leptomeningeal space and cerebrospinal fluid (CSF), leading to severe neurological deterioration and poor survival outcomes. We utilized comprehensive multi-omics analyses of CSF from patients with lymphoma LMD to demonstrate an immunosuppressive cellular microenvironment and identified dysregulations in proteins and lipids indicating neurodegenerative processes. Strikingly, we found a significant accumulation of toxic branched-chain keto acids (BCKA) in the CSF of patients with LMD. The BCKA accumulation was found to be a pan-cancer occurrence, evident in lymphoma, breast cancer, and melanoma LMD patients. Functionally, BCKA disrupted the viability and function of endogenous T lymphocytes, chimeric antigen receptor (CAR) T cells, neurons, and meningeal cells. Treatment of LMD mice with BCKA-reducing sodium phenylbutyrate significantly improved neurological function, survival outcomes, and efficacy of anti-CD19 CAR T cell therapy. This is the first report of BCKA accumulation in LMD and provides preclinical evidence that targeting these toxic metabolites improves outcomes.


Abomasal infusion of branched-chain amino acids or branched-chain keto-acids alter lactation performance and liver triglycerides in fresh cows.

  • Kristen Gallagher‎ et al.
  • Journal of animal science and biotechnology‎
  • 2024‎

Dairy cows are at high risk of fatty liver disease in early lactation, but current preventative measures are not always effective. Cows with fatty liver have lower circulating branched-chain amino acid (BCAA) concentrations whereas cows with high circulating BCAA levels have low liver triglyceride (TG). Our objective was to determine the impact of BCAA and their corresponding ketoacids (branched-chain ketoacids, BCKA) on production performance and liver TG accumulation in Holstein cows in the first 3 weeks postpartum.


Mitochondrial complex II participates in normoxic and hypoxic regulation of α-keto acids in the murine heart.

  • Jörg Mühling‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 2010‎

α-Keto acids (α-KAs) are not just metabolic intermediates but are also powerful modulators of different cellular pathways. Here, we tested the hypothesis that α-KA concentrations are regulated by complex II (succinate dehydrogenase=SDH), which represents an intersection between the mitochondrial respiratory chain for which an important function in cardiopulmonary oxygen sensing has been demonstrated, and the Krebs cycle, a central element of α-KA metabolism. SDH subunit D heterozygous (SDHD(+/-)) and wild-type (WT) mice were housed at normoxia or hypoxia (10% O(2)) for 4 days or 3 weeks, and right ventricular pressure, right ventricle/(left ventricle+septum) ratio, cardiomyocyte ultrastructure, pulmonary vascular remodelling, ventricular complex II subunit expression, SDH activity and α-KA concentrations were analysed. In both strains, hypoxia induced increases in right ventricular pressure and enhanced muscularization of distal pulmonary arteries. Right ventricular hypertrophy was less severe in SDHD(+/-) mice although the cardiomyocyte ultrastructure and mitochondrial morphometric parameters were unchanged. Protein amounts of SDHA, SDHB and SDHC, and SDH activity were distinctly reduced in SDHD(+/-) mice. In normoxic SDHD(+/-) mice, α-ketoisocaproate concentration was lowered to 50% as compared to WT animals. Right/left ventricular concentration differences and the hypoxia-induced decline in individual α-KAs were less pronounced in SDHD(+/-) animals indicating that mitochondrial complex II participates in the adjustment of cardiac α-KA concentrations both under normoxic and hypoxic conditions. These characteristics are not related to the hemodynamic consequences of hypoxia-induced pulmonary vascular remodelling, since its extent and right ventricular pressure were not affected in SDHD(+/-) mice albeit right ventricular hypertrophy was attenuated.


Two antibacterial and PPARα/γ-agonistic unsaturated keto fatty acids from a coral-associated actinomycete of the genus Micrococcus.

  • Amit Raj Sharma‎ et al.
  • Beilstein journal of organic chemistry‎
  • 2020‎

A pair of geometrically isomeric unsaturated keto fatty acids, (6E,8Z)- and (6E,8E)-5-oxo-6,8-tetradecadienoic acids (1 and 2), were isolated from the culture broth of an actinomycete of the genus Micrococcus, which was associated with a stony coral, Catalaphyllia sp. Their chemical structures were elucidated by spectroscopic analysis including NMR and MS, with special assistance of spin system simulation studies for the assignment of an E geometry at C8 in 2. As metabolites of microbes, compounds 1 and 2 are unprecedented in terms of bearing a 2,4-dienone system. Both 1 and 2 showed antibacterial activity against the plant pathogen Rhizobium radiobacter and the fish pathogen Tenacibaculum maritimum, with a contrasting preference that 1 is more effective to the former strain while 2 is so to the latter. In addition, compounds 1 and 2 displayed agonistic activity against peroxisome proliferator-activated receptors (PPARs) with an isoform specificity towards PPARα and PPARγ.


Effect of a low-protein diet supplemented with keto-acids on autophagy and inflammation in 5/6 nephrectomized rats.

  • Yue-Yue Zhang‎ et al.
  • Bioscience reports‎
  • 2015‎

Ketoacids (KA) are known to preserve muscle mass among patients with chronic kidney disease (CKD) on a low-protein diet (LPD). The present study was to compare the effects of KA supplemented diet therapy in autophagy and inflammation in CKD rats' skeletal muscle. Rats with 5/6 nephrectomy were randomly divided into three groups and fed with either 11 g/kg/day protein [normal-protein diet (NPD)], 3 g/kg/day protein (LPD) or 3 g/kg/day protein which including 5% protein plus 1% KA (LPD + KA) for 24 weeks. Sham-operated rats with NPD intake were used as control. LPD could improve body weight, gastrocnemius muscle mass, as well as gastrocnemius muscle cross-sectional area, with the effect being more obvious in the LPD + KA group. The autophagy marker LC3 (microtubule-associated protein 1 light chain 3), p62, Parkin and PTEN induced putative kinase 1 (PINK1) were significantly attenuate in LPD + KA group than LPD group. LPD + KA group had the lower total mtDNA (mitochondiral DNA) and cytosol mtDNA, NACHT-PYD-containing protein 3 (NALP3) inflammasome than LPD group, but its reactive oxygen species (ROS), caspase-1 and apoptosis-associated speck-like protein containing a CARD (ASC) level was higher. Immunoblotting showed IL-1β (interleukin-1-beta) was lower in LPD and LPD + KA group than the NPD group, but IL-18 showed no significant difference among control and CKD group; toll-like receptor signalling-dependent IL-6 was higher in LPD + KA group than LPD group, but tumor necrosis factor-α (TNF-α) was not significantly changed between LPD + KA and LPD group. Systematic changes of the four cytokines were different from that of the tissue. Although LPD + KA could further ameliorate-activated autophagy than LPD, its effect on the activated inflammation state in CKD was not distinctly. Further study is still required to explore the method of ameliorating inflammation to provide new therapeutic approaches for CKD protein energy wasting (PEW).


Efficient production of α-keto acids by immobilized E. coli-pETduet-1-PmiLAAO in a jacketed packed-bed reactor.

  • Licheng Wu‎ et al.
  • Royal Society open science‎
  • 2019‎

α-keto acids are compounds of primary interest for the fine chemical, pharmaceutical and agrochemical sectors. l-amino acid oxidases as an efficient tool are used for α-keto acids preparation in this study. Firstly, an l-amino acid oxidase (PmiLAAO) from Proteus mirabilis was discovered by data mining. Secondly, by gene expression vector screening, pETDuet-1-PmiLAAO activity improved by 130%, as compared to the pET20b-PmiLAAO. PmiLAAO production was increased to 9.8 U ml-1 by optimized expression condition (OD600 = 0.65, 0.45 mmol l-1 IPTG, 20 h of induction). Furthermore, The PmiLAAO was stabile in the pH range of 4.0-9.0 and in the temperature range of 10-40°C; the optimal pH and temperature of recombinant PmiLAAO were 6.5 and 37°C, respectively. Afterwards, in order to simplify product separation process, E. coli-pETduet-1-PmiLAAO was immobilized in Ca-alginate beads. Continuous production of 2-oxo-3-phenylpropanoic acid was conducted in a packed-bed reactor via immobilized E. coli-pETduet-1-PmiLAAO. Significantly, 29.66 g l-1 2-oxo-3-phenylpropanoic acid with a substrate conversion rate of 99.5% was achieved by correspondingly increasing the residence time (25 h). This method holds the potential to be used for efficiently producing pure α-keto acids.


Keto acid metabolites of branched-chain amino acids inhibit oxidative stress-induced necrosis and attenuate myocardial ischemia-reperfusion injury.

  • Weibing Dong‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 2016‎

Branched chain α-keto acids (BCKAs) are endogenous metabolites of branched-chain amino acids (BCAAs). BCAA and BCKA are significantly elevated in pathologically stressed heart and contribute to chronic pathological remodeling and dysfunction. However, their direct impact on acute cardiac injury is unknown. Here, we demonstrated that elevated BCKAs significantly attenuated ischemia-reperfusion (I/R) injury and preserved post I/R function in isolated mouse hearts. BCKAs protected cardiomyocytes from oxidative stress-induced cell death in vitro. Mechanistically, BCKA protected oxidative stress induced cell death by inhibiting necrosis without affecting apoptosis or autophagy. Furthermore, BCKAs, but not BCAAs, protected mitochondria and energy production from oxidative injury. Finally, administration of BCKAs during reperfusion was sufficient to significantly attenuate cardiac I/R injury. These findings uncover an unexpected role of BCAA metabolites in cardioprotection against acute ischemia/reperfusion injury, and demonstrate the potential use of BCKA treatment to preserve ischemic tissue during reperfusion.


Regulation of glutamate metabolism by hydrocortisone and branched chain keto acids in cultured rat retinal Müller cells (TR-MUL).

  • Mohammad Shamsul Ola‎ et al.
  • Neurochemistry international‎
  • 2011‎

Glutamate released from retinal neurons during neurotransmission is taken up by retinal Müller cells, where much of the amino acid is subsequently amidated to glutamine or transaminated to α-ketoglutarate for oxidation. Müller cell glutamate levels may have to be carefully maintained at fairly low concentrations to avoid excesses of glutamate in extracellular spaces of the retina that would otherwise cause excitotoxicity. We employed a cultured rat retinal Müller cell line in order to study the metabolism and the role of Müller cell specific enzymes on the glutamate disposal pathways. We found that the TR-MUL cells express the glial specific enzymes, glutamine synthetase, the mitochondrial isoform of branched chain aminotransferase (BCATm) and pyruvate carboxylase, all of which are involved in glutamate metabolism and homeostasis in the retina. Hydrocortisone treatment of TR-MUL cells increased glutamine synthetase expression and the rate of glutamate amidation to glutamine. Addition of branched chain keto acids (BCKAs) increased lactate and aspartate formation from glutamate and also oxidation of glutamate to CO(2) and H(2)O. The two glutamate disposal pathways (amidation and oxidation) did not influence each other. When glutamate levels were independently depleted within TR-MUL cells, the uptake of glutamate from the extracellular fluid increased compared to uptake from control (undepleted) cells suggesting that the level of intracellular glutamate may influence clearing of extracellular glutamate.


Elevated branched-chain α-keto acids exacerbate macrophage oxidative stress and chronic inflammatory damage in type 2 diabetes mellitus.

  • Shuyun Liu‎ et al.
  • Free radical biology & medicine‎
  • 2021‎

Chronic inflammation is a primary reason for type 2 diabetes mellitus (T2DM) and its complications, while disordered branched-chain amino acids (BCAA) metabolism is found in T2DM, but the link between BCAA catabolic defects and inflammation in T2DM remains elusive and needs to be investigated.


Cationized liposomal keto-mycolic acids isolated from Mycobacterium bovis bacillus Calmette-Guérin induce antitumor immunity in a syngeneic murine bladder cancer model.

  • Takayuki Yoshino‎ et al.
  • PloS one‎
  • 2019‎

Intravesical therapy using Mycobacterium bovis bacillus Calmette-Guérin (BCG) is the most established cancer immunotherapy for bladder cancer. However, its underlying mechanisms are unknown. Mycolic acid (MA), the most abundant lipid of the BCG cell wall, is suspected to be one of the essential active components of this immunogenicity. Here, we developed cationic liposomes incorporating three subclasses (α, keto, and methoxy) of MA purified separately from BCG, using the dendron-bearing lipid D22. The cationic liposomes using D22 were efficiently taken up by the murine bladder cancer cell line MB49 in vitro, but the non-cationic liposomes were not. Lip-kMA, a cationic liposome containing keto-MA, presented strong antitumor activity in two murine syngeneic graft models using the murine bladder cancer cell lines MB49 and MBT-2 in comparison to both Lip-aMA and Lip-mMA, which contained α-MA and methoxy-MA, respectively. Interestingly, Lip-kMA(D12), which was made of D12 instead of D22, did not exhibit antitumor activity in the murine syngeneic graft model using MB49 cells, although it was successfully taken up by MB49 cells in vitro. Histologically, compared to the number of infiltrating CD4 lymphocytes, the number of CD8 lymphocytes was higher in the tumors treated with Lip-kMA. Antitumor effects of Lip-kMA were not observed in nude mice, whereas weak but significant effects were observed in beige mice with natural killer activity deficiency. Thus, a cationized liposome containing keto-MA derived from BCG induced in vivo antitumor immunity. These findings will provide new insights into lipid immunogenicity and the underlying mechanisms of BCG immunotherapy.


Stereoselective Bioreduction of α-diazo-β-keto Esters.

  • Sergio González-Granda‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

Diazo compounds are versatile reagents in chemical synthesis and biology due to the tunable reactivity of the diazo functionality and its compatibility with living systems. Much effort has been made in recent years to explore their accessibility and synthetic potential; however, their preparation through stereoselective enzymatic asymmetric synthesis has been scarcely reported in the literature. Alcohol dehydrogenases (ADHs, also called ketoreductases, KREDs) are powerful redox enzymes able to reduce carbonyl compounds in a highly stereoselective manner. Herein, we have developed the synthesis and subsequent bioreduction of nine α-diazo-β-keto esters to give optically active α-diazo-β-hydroxy esters with potential applications as chiral building blocks in chemical synthesis. Therefore, the syntheses of prochiral α-diazo-β-keto esters bearing different substitution patterns at the adjacent position of the ketone group (N3CH2, ClCH2, BrCH2, CH3OCH2, NCSCH2, CH3, and Ph) and in the alkoxy portion of the ester functionality (Me, Et, and Bn), were carried out through the diazo transfer reaction to the corresponding β-keto esters in good to excellent yields (81-96%). After performing the chemical reduction of α-diazo-β-keto esters with sodium borohydride and developing robust analytical conditions to monitor the biotransformations, their bioreductions were exhaustively studied using in-house made Escherichia coli overexpressed and commercially available KREDs. Remarkably, the corresponding α-diazo-β-hydroxy esters were obtained in moderate to excellent conversions (60 to >99%) and high selectivities (85 to >99% ee) after 24 h at 30 °C. The best biotransformations in terms of conversion and enantiomeric excess were successfully scaled up to give the expected chiral alcohols with almost the same activity and selectivity values observed in the enzyme screening experiments.


Acceleration of an aldo-keto reductase by minimal loop engineering.

  • C Krump‎ et al.
  • Protein engineering, design & selection : PEDS‎
  • 2014‎

Aldo-keto reductases tighten coenzyme binding by forming a hydrogen bond across the pyrophosphate group of NAD(P)(H). Mutation of the hydrogen bonding anchor Lys24 in Candida tenuis xylose reductase prevents fastening of the "safety belt" around NAD(H). The loosened NAD(H) binding leads to increased turnover numbers (k(cat)) for reductions of bulky-bulky ketones at constant substrate and coenzyme affinities (i.e. K(m Ketone), K(m NADH)).


Convenient Genetic Encoding of Phenylalanine Derivatives through Their α-Keto Acid Precursors.

  • Li Liu‎ et al.
  • Biomolecules‎
  • 2021‎

The activity and function of proteins can be improved by incorporation of non-canonical amino acids (ncAAs). To avoid the tedious synthesis of a large number of chiral phenylalanine derivatives, we synthesized the corresponding phenylpyruvic acid precursors. Escherichia coli strain DH10B and strain C321.ΔA.expΔPBAD were selected as hosts for phenylpyruvic acid bioconversion and genetic code expansion using the MmPylRS/pyltRNACUA system. The concentrations of keto acids, PLP and amino donors were optimized in the process. Eight keto acids that can be biotransformed and their coupled genetic code expansions were identified. Finally, the genetic encoded ncAAs were tested for incorporation into fluorescent proteins with keto acids.


Aldo-keto reductases protect metastatic melanoma from ER stress-independent ferroptosis.

  • Mara Gagliardi‎ et al.
  • Cell death & disease‎
  • 2019‎

The incidence of melanoma is increasing over the years with a still poor prognosis and the lack of a cure able to guarantee an adequate survival of patients. Although the new immuno-based coupled to target therapeutic strategy is encouraging, the appearance of targeted/cross-resistance and/or side effects such as autoimmune disorders could limit its clinical use. Alternative therapeutic strategies are therefore urgently needed to efficiently kill melanoma cells. Ferroptosis induction and execution were evaluated in metastasis-derived wild-type and oncogenic BRAF melanoma cells, and the process responsible for the resistance has been dissected at molecular level. Although efficiently induced in all cells, in an oncogenic BRAF- and ER stress-independent way, most cells were resistant to ferroptosis execution. At molecular level we found that: resistant cells efficiently activate NRF2 which in turn upregulates the early ferroptotic marker CHAC1, in an ER stress-independent manner, and the aldo-keto reductases AKR1C1 ÷ 3 which degrades the 12/15-LOX-generated lipid peroxides thus resulting in ferroptotic cell death resistance. However, inhibiting AKRs activity/expression completely resensitizes resistant melanoma cells to ferroptosis execution. Finally, we found that the ferroptotic susceptibility associated with the differentiation of melanoma cells cannot be applied to metastatic-derived cells, due to the EMT-associated gene expression reprogramming process. However, we identified SCL7A11 as a valuable marker to predict the susceptibility of metastatic melanoma cells to ferroptosis. Our results identify the use of pro-ferroptotic drugs coupled to AKRs inhibitors as a new valuable strategy to efficiently kill human skin melanoma cells.


Expressing 2-keto acid pathway enzymes significantly increases photosynthetic isobutanol production.

  • Hao Xie‎ et al.
  • Microbial cell factories‎
  • 2022‎

Cyanobacteria, photosynthetic microorganisms, are promising green cell factories for chemical production, including biofuels. Isobutanol, a four-carbon alcohol, is considered as a superior candidate as a biofuel for its high energy density with suitable chemical and physical characteristics. The unicellular cyanobacterium Synechocystis PCC 6803 has been successfully engineered for photosynthetic isobutanol production from CO2 and solar energy in a direct process.


Characterization of highly active 2-keto-3-deoxy-L-arabinonate and 2-keto-3-deoxy-D-xylonate dehydratases in terms of the biotransformation of hemicellulose sugars to chemicals.

  • Samuel Sutiono‎ et al.
  • Applied microbiology and biotechnology‎
  • 2020‎

2-keto-3-L-arabinonate dehydratase (L-KdpD) and 2-keto-3-D-xylonate dehydratase (D-KdpD) are the third enzymes in the Weimberg pathway catalyzing the dehydration of respective 2-keto-3-deoxy sugar acids (KDP) to α-ketoglutaric semialdehyde (KGSA). The Weimberg pathway has been explored recently with respect to the synthesis of chemicals from L-arabinose and D-xylose. However, only limited work has been done toward characterizing these two enzymes. In this work, several new L-KdpDs and D-KdpDs were cloned and heterologously expressed in Escherichia coli. Following kinetic characterizations and kinetic stability studies, the L-KdpD from Cupriavidus necator (CnL-KdpD) and D-KdpD from Pseudomonas putida (PpD-KdpD) appeared to be the most promising variants from each enzyme class. Magnesium had no effect on CnL-KdpD, whereas increased activity and stability were observed for PpD-KdpD in the presence of Mg2+. Furthermore, CnL-KdpD was not inhibited in the presence of L-arabinose and L-arabinonate, whereas PpD-KdpD was inhibited with D-xylonate (I50 of 75 mM), but not with D-xylose. Both enzymes were shown to be highly active in the one-step conversions of L-KDP and D-KDP. CnL-KdpD converted > 95% of 500 mM L-KDP to KGSA in the first 2 h while PpD-KdpD converted > 90% of 500 mM D-KDP after 4 h. Both enzymes in combination were able to convert 83% of a racemic mixture of D,L-KDP (500 mM) after 4 h, with both enzymes being specific toward the respective stereoisomer. Key points • L-KdpDs and D-KdpDs are specific toward L- and D-KDP, respectively. • Mg2+affected activity and stabilities of D-KdpDs, but not of L-KdpDs. • CnL-KdpD and PpD-KdpD converted 0.5 M of each KDP isomer reaching 95 and 90% yield. • Both enzymes in combination converted 0.5 M racemic D,L-KDP reaching 83% yield.


Statistical Evaluation of HTS Assays for Enzymatic Hydrolysis of β-Keto Esters.

  • O Buß‎ et al.
  • PloS one‎
  • 2016‎

β-keto esters are used as precursors for the synthesis of β-amino acids, which are building blocks for some classes of pharmaceuticals. Here we describe the comparison of screening procedures for hydrolases to be used for the hydrolysis of β-keto esters, the first step in the preparation of β-amino acids. Two of the tested high throughput screening (HTS) assays depend on coupled enzymatic reactions which detect the alcohol released during ester hydrolysis by luminescence or absorption. The third assay detects the pH shift due to acid formation using an indicator dye. To choose the most efficient approach for screening, we assessed these assays with different statistical methods-namely, the classical Z'-factor, standardized mean difference (SSMD), the Kolmogorov-Smirnov-test, and t-statistics. This revealed that all three assays are suitable for HTS, the pH assay performing best. Based on our data we discuss the explanatory power of different statistical measures. Finally, we successfully employed the pH assay to identify a very fast hydrolase in an enzyme-substrate screening.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: