Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 96 papers

Junctional adhesion molecules JAM-B and JAM-C promote autoimmune-mediated liver fibrosis in mice.

  • Edith Hintermann‎ et al.
  • Journal of autoimmunity‎
  • 2018‎

Fibrosis remains a serious health concern in patients with chronic liver disease. We recently reported that chemically induced chronic murine liver injury triggers increased expression of junctional adhesion molecules (JAMs) JAM-B and JAM-C by endothelial cells and de novo synthesis of JAM-C by hepatic stellate cells (HSCs). Here, we demonstrate that biopsies of patients suffering from primary biliary cholangitis (PBC), primary sclerosing cholangitis (PSC) or autoimmune hepatitis (AIH) display elevated levels of JAM-C on portal fibroblasts (PFs), HSCs, endothelial cells and cholangiocytes, whereas smooth muscle cells expressed JAM-C constitutively. Therefore, localization and function of JAM-B and JAM-C were investigated in three mouse models of autoimmune-driven liver inflammation. A PBC-like disease was induced by immunization with 2-octynoic acid-BSA conjugate, which resulted in the upregulation of both JAMs in fibrotic portal triads. Analysis of a murine model of PSC revealed a role of JAM-C in PF cell-cell adhesion and contractility. In mice suffering from AIH, endothelial cells increased JAM-B level and HSCs and capsular fibroblasts became JAM-C-positive. Most importantly, AIH-mediated liver fibrosis was reduced in JAM-B-/- mice or when JAM-C was blocked by soluble recombinant JAM-C. Interestingly, loss of JAM-B/JAM-C function had no effect on leukocyte infiltration, suggesting that the well-documented function of JAMs in leukocyte recruitment to inflamed tissue was not effective in the tested chronic models. This might be different in patients and may even be complicated by the fact that human leukocytes express JAM-C. Our findings delineate JAM-C as a mediator of myofibroblast-operated contraction of the liver capsule, intrahepatic vasoconstriction and bile duct stricture. Due to its potential to interact heterophilically with endothelial JAM-B, JAM-C supports also HSC/PF mural cell function. Together, these properties allow JAM-B and JAM-C to actively participate in vascular remodeling associated with liver/biliary fibrosis and suggest them as valuable targets for anti-fibrosis therapies.


Influence of hypothermia and subsequent rewarming upon leukocyte-endothelial interactions and expression of Junctional-Adhesion-Molecules A and B.

  • Nicolai V Bogert‎ et al.
  • Scientific reports‎
  • 2016‎

Patients with risks of ischemic injury, e.g. during circulatory arrest in cardiac surgery, or after resuscitation are subjected to therapeutic hypothermia. For aortic surgery, the body is traditionally cooled down to 18 °C and then rewarmed to body temperature. The role of hypothermia and the subsequent rewarming process on leukocyte-endothelial interactions and expression of junctional-adhesion-molecules is not clarified yet. Thus, we investigated in an in-vitro model the influence of temperature modulation during activation and transendothelial migration of leukocytes through human endothelial cells. Additionally, we investigated the expression of JAMs in the rewarming phase. Exposure to low temperatures alone during transmigration scarcely affects leukocyte extravasation, whereas hypothermia during treatment and transendothelial migration improves leukocyte-endothelial interactions. Rewarming causes a significant up-regulation of transmigration with falling temperatures. JAM-A is significantly modulated during rewarming. Our data suggest that transendothelial migration of leukocytes is not only modulated by cell-activation itself. Activation temperatures and the rewarming process are essential. Continued hypothermia significantly inhibits transendothelial migration, whereas the rewarming process enhances transmigration strongly. The expression of JAMs, especially JAM-A, is strongly modulated during the rewarming process. Endothelial protection prior to warm reperfusion and mild hypothermic conditions reducing the difference between hypothermia and rewarming temperatures should be considered.


Using the Power of Junctional Adhesion Molecules Combined with the Target of CAR-T to Inhibit Cancer Proliferation, Metastasis and Eradicate Tumors.

  • Christopher Mendoza‎ et al.
  • Biomedicines‎
  • 2022‎

Decades of evidence suggest that alterations in the adhesion properties of neoplastic cells endow them with an invasive and migratory phenotype. Tight junctions (TJs) are present in endothelial and epithelial cells. Tumors arise from such tissues, thus, the role of TJ proteins in the tumor microenvironment is highly relevant. In the TJ, junctional adhesion molecules (JAM) play a key role in assembly of the TJ and control of cell-cell adhesion. Reprogramming of immune cells using chimeric antigen receptors (CAR) to allow for target recognition and eradication of tumors is an FDA approved therapy. The best-studied CAR-T cells recognize CD19, a B-cell surface molecule. CD19 is not a unique marker for tumors, liquid or solid. To address this limitation, we developed a biologic containing three domains: (1) pH-low-insertion peptide (pHLIP), which recognizes the low pH of the cancer cells, leading to the insertion of the peptide into the plasma membrane. (2) An extracellular domain of JAM proteins that fosters cell-cell interactions. (3) CD19 to be targeted by CAR-T cells. Our modular design only targets cancer cells and when coupled with anti-CD19 CAR-T cells, it decreases proliferation and metastasis in at least two cancer cell lines.


Early decrease in Cx36 is associated with increased cell adhesion molecules (CAMs) junctional content in mouse pancreatic islets after short-term high-fat diet feeding.

  • Carolina Martinez‎ et al.
  • Annals of anatomy = Anatomischer Anzeiger : official organ of the Anatomische Gesellschaft‎
  • 2022‎

Cell-to-cell interactions mediated by intercellular junctions (IJs) are crucial for beta-cell functioning and proper insulin secretion, however, their role in type-2 diabetes is still unclear. This work aimed to evaluate the cellular distribution and expression of proteins associated with adherens (AJs) and gap junctions (GJs) in pancreatic islets of C57BL6 mice fed a high-fat (HF) diet. The administration of HF diet for 30 days induced an increase in body weight, post-prandial glycemia, insulinemia, glucose intolerance, and moderate insulin resistance associated with mild perturbations in insulin secretion. The intercellular content of the AJ-associated proteins (namely, E-, N-cadherins, and α-, β-catenins) was significantly higher in islet cells of HF-fed mice. Inversely, the gap junctional content of Cx36 was significantly decreased, as revealed by immunofluorescence, which was paralleled by a reduction in the frequency of calcium oscillations in islets of prediabetic mice. In conclusion, the endocrine pancreas displays significant changes in the content of several junctional proteins at the cell-cell contact region following short-term HF diet administration, indicating that IJs may be involved in the adaptive response of beta cells seen during this state.


Junctional adhesion molecule-A promotes proliferation and inhibits apoptosis of gastric cancer.

  • Koichi Ikeo‎ et al.
  • Hepato-gastroenterology‎
  • 2015‎

Junctional adhesion molecules (JAMs) are known as integral constituents of cellular tight junctions. However, the functions of JAMs in cancer tissues are controversial and the function of JAM-A in gastric cancer is unclear. Acordingly, we investigated the function of JAM-A in gastric epithelial and gastric cancer cell proliferation, invasion and apoptosis.


X-ray structure of junctional adhesion molecule: structural basis for homophilic adhesion via a novel dimerization motif.

  • D Kostrewa‎ et al.
  • The EMBO journal‎
  • 2001‎

Junctional adhesion molecules (JAMs) are a family of immunoglobulin-like single-span transmembrane molecules that are expressed in endothelial cells, epithelial cells, leukocytes and myocardia. JAM has been suggested to contribute to the adhesive function of tight junctions and to regulate leukocyte trans migration. We describe the crystal structure of the recombinant extracellular part of mouse JAM (rsJAM) at 2.5 A resolution. rsJAM consists of two immunoglobulin-like domains that are connected by a conformationally restrained short linker. Two rsJAM molecules form a U-shaped dimer with highly complementary interactions between the N-terminal domains. Two salt bridges are formed in a complementary manner by a novel dimerization motif, R(V,I,L)E, which is essential for the formation of rsJAM dimers in solution and common to the known members of the JAM family. Based on the crystal packing and studies with mutant rsJAM, we propose a model for homophilic adhesion of JAM. In this model, U-shaped JAM dimers are oriented in cis on the cell surface and form a two-dimensional network by trans-interactions of their N-terminal domains with JAM dimers from an opposite cell surface.


Structure of reovirus sigma1 in complex with its receptor junctional adhesion molecule-A.

  • Eva Kirchner‎ et al.
  • PLoS pathogens‎
  • 2008‎

Viral attachment to specific host receptors is the first step in viral infection and serves an essential function in the selection of target cells. Mammalian reoviruses are highly useful experimental models for studies of viral pathogenesis and show promise as vectors for oncolytics and vaccines. Reoviruses engage cells by binding to carbohydrates and the immunoglobulin superfamily member, junctional adhesion molecule-A (JAM-A). JAM-A exists at the cell surface as a homodimer formed by extensive contacts between its N-terminal immunoglobulin-like domains. We report the crystal structure of reovirus attachment protein sigma1 in complex with a soluble form of JAM-A. The sigma1 protein disrupts the JAM-A dimer, engaging a single JAM-A molecule via virtually the same interface that is used for JAM-A homodimerization. Thus, reovirus takes advantage of the adhesive nature of an immunoglobulin-superfamily receptor by usurping the ligand-binding site of this molecule to attach to the cell surface. The dissociation constant (K(D)) of the interaction between sigma1 and JAM-A is 1,000-fold lower than that of the homophilic interaction between JAM-A molecules, indicating that JAM-A strongly prefers sigma1 as a ligand. Analysis of reovirus mutants engineered by plasmid-based reverse genetics revealed residues in sigma1 required for binding to JAM-A and infectivity of cultured cells. These studies define biophysical mechanisms of reovirus cell attachment and provide a platform for manipulating reovirus tropism to enhance vector targeting.


Junctional adhesion molecule C (JAM-C) dimerization aids cancer cell migration and metastasis.

  • Sarah Garrido-Urbani‎ et al.
  • Biochimica et biophysica acta. Molecular cell research‎
  • 2018‎

Most cancer deaths result from metastasis, which is the dissemination of cells from a primary tumor to distant organs. Metastasis involves changes to molecules that are essential for tumor cell adhesion to the extracellular matrix and to endothelial cells. Junctional Adhesion Molecule C (JAM-C) localizes at intercellular junctions as homodimers or more affine heterodimers with JAM-B. We previously showed that the homodimerization site (E66) in JAM-C is also involved in JAM-B binding. Here we show that neoexpression of JAM-C in a JAM-C-negative carcinoma cell line induced loss of adhesive property and pro-metastatic capacities. We also identify two critical structural sites (E66 and K68) for JAM-C/JAM-B interaction by directed mutagenesis of JAM-C and studied their implication on tumor cell behavior. JAM-C mutants did not bind to JAM-B or localize correctly to junctions. Moreover, mutated JAM-C proteins increased adhesion and reduced proliferation and migration of lung carcinoma cell lines. Carcinoma cells expressing mutant JAM-C grew slower than with JAM-C WT and were not able to establish metastatic lung nodules in mice. Overall these data demonstrate that the dimerization sites E66-K68 of JAM-C affected cell adhesion, polarization and migration and are essential for tumor cell metastasis.


Novel cytokine-independent induction of endothelial adhesion molecules regulated by platelet/endothelial cell adhesion molecule (CD31).

  • M Litwin‎ et al.
  • The Journal of cell biology‎
  • 1997‎

Tumor necrosis factor-alpha, interleukin-1, and endotoxin stimulate the expression of vascular endothelial cell (EC) adhesion molecules. Here we describe a novel pathway of adhesion molecule induction that is independent of exogenous factors, but which is dependent on integrin signaling and cell-cell interactions. Cells plated onto gelatin, fibronectin, collagen or fibrinogen, or anti-integrin antibodies, expressed increased amounts of E-selectin, vascular cell adhesion molecule-1, and intercellular adhesion molecule-1. In contrast, ECs failed to express E-selectin when plated on poly-L-lysine or when plated on fibrinogen in the presence of attachment-inhibiting, cyclic Arg-Gly-Asp peptides. The duration and magnitude of adhesion molecule expression was dependent on EC density. Induction of E-selectin on ECs plated at confluent density was transient and returned to basal levels by 15 h after plating when only 7 +/- 2% (n = 5) of cells were positive. In contrast, cells plated at low density displayed a 17-fold greater expression of E-selectin than did high density ECs with 57 +/- 4% (n = 5) positive for E-selectin expression 15 h after plating, and significant expression still evident 72 h after plating. The confluency-dependent inhibition of expression of E-selectin was at least partly mediated through the cell junctional protein, platelet/endothelial cell adhesion molecule-1 (PECAM-1). Antibodies against PECAM-1, but not against VE-cadherin, increased E-selectin expression on confluent ECs. Co- culture of subconfluent ECs with PECAM-1- coated beads or with L cells transfected with full-length PECAM-1 or with a cytoplasmic truncation PECAM-1 mutant, inhibited E-selectin expression. In contrast, untransfected L cells or L cells transfected with an adhesion-defective domain 2 deletion PECAM-1 mutant failed to regulate E-selectin expression. In an in vitro model of wounding the wound front displayed an increase in the number of E-selectin-expressing cells, and also an increase in the intensity of expression of E-selectin positive cells compared to the nonwounded monolayer. Thus we propose that the EC junction, and in particular, the junctional molecule PECAM-1, is a powerful regulator of endothelial adhesiveness.


Role of Junctional Adhesion Molecule-C in the Regulation of Inner Endothelial Blood-Retinal Barrier Function.

  • Xu Hou‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2021‎

Although JAM-C is abundantly expressed in the retinae and upregulated in choroidal neovascularization (CNV), it remains thus far poorly understood whether it plays a role in the blood-retinal barrier, which is critical to maintain the normal functions of the eye. Here, we report that JAM-C is highly expressed in retinal capillary endothelial cells (RCECs), and VEGF or PDGF-C treatment induced JAM-C translocation from the cytoplasm to the cytomembrane. Moreover, JAM-C knockdown in RCECs inhibited the adhesion and transmigration of macrophages from wet age-related macular degeneration (wAMD) patients to and through RCECs, whereas JAM-C overexpression in RCECs increased the adhesion and transmigration of macrophages from both wAMD patients and healthy controls. Importantly, the JAM-C overexpression-induced transmigration of macrophages from wAMD patients was abolished by the administration of the protein kinase C (PKC) inhibitor GF109203X. Of note, we found that the serum levels of soluble JAM-C were more than twofold higher in wAMD patients than in healthy controls. Mechanistically, we show that JAM-C overexpression or knockdown in RCECs decreased or increased cytosolic Ca2+ concentrations, respectively. Our findings suggest that the dynamic translocation of JAM-C induced by vasoactive molecules might be one of the mechanisms underlying inner endothelial BRB malfunction, and inhibition of JAM-C or PKC in RCECs may help maintain the normal function of the inner BRB. In addition, increased serum soluble JAM-C levels might serve as a molecular marker for wAMD, and modulating JAM-C activity may have potential therapeutic value for the treatment of BRB malfunction-related ocular diseases.


Dysregulation of junctional adhesion molecule-A contributes to ethanol-induced barrier disruption in intestinal epithelial cell monolayers.

  • Daniel M Chopyk‎ et al.
  • Physiological reports‎
  • 2017‎

Alcohol consumption promotes loss of intestinal barrier function. However, mechanisms by which ethanol affects the tight junction (TJ), the cellular structure responsible for maintaining the gut epithelial barrier, are not well understood. Three classes of transmembrane proteins comprise TJs: occludin, claudins, and junctional adhesion molecules (JAMs). It has recently been postulated that JAM-A (F11R), the most abundant JAM expressed in intestinal epithelium, regulates "leak" pathway flux, a paracellular route for the nonselective permeation of large solutes. Since transluminal flux of many gut-derived antigens occurs through this pathway, we investigated the role of JAM-A in ethanol-induced disruption of the intestinal epithelial barrier. Using Caco-2 and SK-CO15 monolayers, we found that ethanol induced a dose- and time-dependent decrease in JAM-A protein expression to about 70% of baseline levels. Alcohol also reduced Ras-related protein 2 (Rap2) activity, and enhanced myosin light chain kinase (MLCK) activity, changes consistent with impaired JAM-A signaling. Stable overexpression and shRNA-mediated knockdown of JAM-A were employed to investigate the role of JAM-A in paracellular-mediated flux following alcohol exposure. The paracellular flux of 40-kDa fluorescein isothiocynate (FITC)-dextran following ethanol treatment was decreased by the overexpression of JAM-A; conversely, flux was enhanced by JAM-A knockdown. Thus, we conclude that ethanol-mediated control of JAM-A expression and function contributes to mechanisms by which this chemical induces intestinal epithelial leakiness.


Transcriptional and Post-Translational Regulation of Junctional Adhesion Molecule-B (JAM-B) in Leukocytes under Inflammatory Stimuli.

  • Priscilla E Day-Walsh‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Junctional adhesion molecules (JAMs; comprising JAM-A, -B and -C) act as receptors for viruses, mediate cell permeability, facilitate leukocyte migration during sterile and non-sterile inflammation and are important for the maintenance of epithelial barrier integrity. As such, they are implicated in the development of both communicable and non-communicable chronic diseases. Here, we investigated the expression and regulation of JAM-B in leukocytes under pathogen- and host-derived inflammatory stimuli using immunoassays, qPCR and pharmacological inhibitors of inflammatory signalling pathways. We show that JAM-B is expressed at both the mRNA and protein level in leukocytes. JAM-B protein is localised to the cytoplasm, Golgi apparatus and in the nucleus around ring-shaped structures. We also provide evidence that JAM-B nuclear localisation occurs via the classical importin-α/β pathway, which is likely mediated through JAM-B protein nuclear localisation signals (NLS) and export signals (NES). In addition, we provide evidence that under both pathogen- and host-derived inflammatory stimuli, JAM-B transcription is regulated via the NF-κB-dependent pathways, whereas at the post-translational level JAM-B is regulated by ubiquitin-proteosome pathways. Anaphase-promoting ubiquitin ligase complex (APC/C) and herpes simplex virus-associated ubiquitin-specific protease (HAUSP/USP) were identified as candidates for JAM-B ubiquitination and de-ubiquitination, respectively. The expression and regulation of JAM-B in leukocytes reported here is a novel observation and contrasts with previous reports. The data reported here suggest that JAM-B expression in leukocytes is under the control of common inflammatory pathways.


Junctional adhesion molecule C expression specifies a CD138low/neg multiple myeloma cell population in mice and humans.

  • Andreas Brandl‎ et al.
  • Blood advances‎
  • 2022‎

Deregulation such as overexpression of adhesion molecules influences cancer progression and survival. Metastasis of malignant cells from their primary tumor site to distant organs is the most common reason for cancer-related deaths. Junctional adhesion molecule-C (JAM-C), a member of the immunoglobulin-like JAM family, can homodimerize and aid cancer cell migration and metastasis. Here we show that this molecule is dynamically expressed on multiple myeloma (MM) cells in the bone marrow and co-localizes with blood vessels within the bone marrow of patients and mice. In addition, upregulation of JAM-C inversely correlates with the downregulation of the canonical plasma cell marker CD138 (syndecan-1), whose surface expression has recently been found to dynamically regulate a switch between MM growth in situ and MM dissemination. Moreover, targeting JAM-C in a syngeneic in vivo MM model ameliorates MM progression and improves outcome. Overall, our data demonstrate that JAM-C might serve not only as an additional novel diagnostic biomarker but also as a therapeutic target in MM disease.


Early Detection of Junctional Adhesion Molecule-1 (JAM-1) in the Circulation after Experimental and Clinical Polytrauma.

  • Stephanie Denk‎ et al.
  • Mediators of inflammation‎
  • 2015‎

Severe tissue trauma-induced systemic inflammation is often accompanied by evident or occult blood-organ barrier dysfunctions, frequently leading to multiple organ dysfunction. However, it is unknown whether specific barrier molecules are shed into the circulation early after trauma as potential indicators of an initial barrier dysfunction. The release of the barrier molecule junctional adhesion molecule-1 (JAM-1) was investigated in plasma of C57BL/6 mice 2 h after experimental mono- and polytrauma as well as in polytrauma patients (ISS ≥ 18) during a 10-day period. Correlation analyses were performed to indicate a linkage between JAM-1 plasma concentrations and organ failure. JAM-1 was systemically detected after experimental trauma in mice with blunt chest trauma as a driving force. Accordingly, JAM-1 was reduced in lung tissue after pulmonary contusion and JAM-1 plasma levels significantly correlated with increased protein levels in the bronchoalveolar lavage as a sign for alveolocapillary barrier dysfunction. Furthermore, JAM-1 was markedly released into the plasma of polytrauma patients as early as 4 h after the trauma insult and significantly correlated with severity of disease and organ dysfunction (APACHE II and SOFA score). The data support an early injury- and time-dependent appearance of the barrier molecule JAM-1 in the circulation indicative of a commencing trauma-induced barrier dysfunction.


The junctional adhesion molecule 3 (JAM-3) on human platelets is a counterreceptor for the leukocyte integrin Mac-1.

  • Sentot Santoso‎ et al.
  • The Journal of experimental medicine‎
  • 2002‎

The recently described junctional adhesion molecules (JAMs) in man and mice are involved in homotypic and heterotypic intercellular interactions. Here, a third member of this family, human JAM-3, was identified and described as a novel counterreceptor on platelets for the leukocyte beta2-integrin Mac-1 (alphaMbeta2, CD11b/CD18). With the help of two monoclonal antibodies, Gi11 and Gi13, against a 43-kD surface glycoprotein on human platelets, a full-length cDNA encoding JAM-3 was identified. JAM-3 is a type I transmembrane glycoprotein containing two Ig-like domains. Although JAM-3 did not undergo homophilic interactions, myelo-monocytic cells adhered to immobilized JAM-3 or to JAM-3-transfected cells. This heterophilic interaction was specifically attributed to a direct interaction of JAM-3 with the beta2-integrin Mac-1 and to a lower extent with p150.95 (alphaXbeta2, CD11c/CD18) but not with LFA-1 (alphaLbeta2, CD11a/CD18) or with beta1-integrins. These results were corroborated by analysis of K562 erythroleukemic cells transfected with different heterodimeric beta2-integrins and by using purified proteins. Moreover, purified JAM-3 or antibodies against JAM-3 blocked the platelet-neutrophil interaction, indicating that platelet JAM-3 serves as a counterreceptor for Mac-1 mediating leukocyte-platelet interactions. JAM-3 thereby provides a novel molecular target for antagonizing interactions between vascular cells that promote inflammatory vascular pathologies such as in atherothrombosis.


MIR21-induced loss of junctional adhesion molecule A promotes activation of oncogenic pathways, progression and metastasis in colorectal cancer.

  • Andrea Lampis‎ et al.
  • Cell death and differentiation‎
  • 2021‎

Junctional adhesion molecules (JAMs) play a critical role in cell permeability, polarity and migration. JAM-A, a key protein of the JAM family, is altered in a number of conditions including cancer; however, consequences of JAM-A dysregulation on carcinogenesis appear to be tissue dependent and organ dependent with significant implications for the use of JAM-A as a biomarker or therapeutic target. Here, we test the expression and prognostic role of JAM-A downregulation in primary and metastatic colorectal cancer (CRC) (n = 947). We show that JAM-A downregulation is observed in ~60% of CRC and correlates with poor outcome in four cohorts of stages II and III CRC (n = 1098). Using JAM-A knockdown, re-expression and rescue experiments in cell line monolayers, 3D spheroids, patient-derived organoids and xenotransplants, we demonstrate that JAM-A silencing promotes proliferation and migration in 2D and 3D cell models and increases tumour volume and metastases in vivo. Using gene-expression and proteomic analyses, we show that JAM-A downregulation results in the activation of ERK, AKT and ROCK pathways and leads to decreased bone morphogenetic protein 7 expression. We identify MIR21 upregulation as the cause of JAM-A downregulation and show that JAM-A rescue mitigates the effects of MIR21 overexpression on cancer phenotype. Our results identify a novel molecular loop involving MIR21 dysregulation, JAM-A silencing and activation of multiple oncogenic pathways in promoting invasiveness and metastasis in CRC.


Functional Antagonism of Junctional Adhesion Molecule-A (JAM-A), Overexpressed in Breast Ductal Carcinoma In Situ (DCIS), Reduces HER2-Positive Tumor Progression.

  • Yvonne E Smith‎ et al.
  • Cancers‎
  • 2022‎

Breast ductal carcinoma in situ (DCIS) is clinically challenging, featuring high diagnosis rates and few targeted therapies. Expression/signaling from junctional adhesion molecule-A (JAM-A) has been linked to poor prognosis in invasive breast cancers, but its role in DCIS is unknown. Since progression from DCIS to invasive cancer has been linked with overexpression of the human epidermal growth factor receptor-2 (HER2), and JAM-A regulates HER2 expression, we evaluated JAM-A as a therapeutic target in DCIS. JAM-A expression was immunohistochemically assessed in patient DCIS tissues. A novel JAM-A antagonist (JBS2) was designed and tested alone/in combination with the HER2 kinase inhibitor lapatinib, using SUM-225 cells in vitro and in vivo as validated DCIS models. Murine tumors were proteomically analyzed. JAM-A expression was moderate/high in 96% of DCIS patient tissues, versus 23% of normal adjacent tissues. JBS2 bound to recombinant JAM-A, inhibiting cell viability in SUM-225 cells and a primary DCIS culture in vitro and in a chick embryo xenograft model. JBS2 reduced tumor progression in in vivo models of SUM-225 cells engrafted into mammary fat pads or directly injected into the mammary ducts of NOD-SCID mice. Preliminary proteomic analysis revealed alterations in angiogenic and apoptotic pathways. High JAM-A expression in aggressive DCIS lesions and their sensitivity to treatment by a novel JAM-A antagonist support the viability of testing JAM-A as a novel therapeutic target in DCIS.


Expression of Cell-Adhesion Molecules in E. coli: A High Throughput Screening to Identify Paracellular Modulators.

  • Jay Rollins‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

Cell-adhesion molecules (CAMs) are responsible for cell-cell, cell-extracellular matrix, and cell-pathogen interactions. Claudins (CLDNs), occludin (OCLN), and junctional adhesion molecules (JAMs) are CAMs' components of the tight junction (TJ), the single protein structure tasked with safeguarding the paracellular space. The TJ is responsible for controlling paracellular permeability according to size and charge. Currently, there are no therapeutic solutions to modulate the TJ. Here, we describe the expression of CLDN proteins in the outer membrane of E. coli and report its consequences. When the expression is induced, the unicellular behavior of E. coli is replaced with multicellular aggregations that can be quantified using Flow Cytometry (FC). Our method, called iCLASP (inspection of cell-adhesion molecules aggregation through FC protocols), allows high-throughput screening (HTS) of small-molecules for interactions with CAMs. Here, we focused on using iCLASP to identify paracellular modulators for CLDN2. Furthermore, we validated those compounds in the mammalian cell line A549 as a proof-of-concept for the iCLASP method.


PDZ Domains from the Junctional Proteins Afadin and ZO-1 Act as Mechanosensors.

  • Vipul T Vachharajani‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Intercellular adhesion complexes must withstand mechanical forces to maintain tissue cohesion, while also retaining the capacity for dynamic remodeling during tissue morphogenesis and repair. Most cell-cell adhesion complexes contain at least one PSD95/Dlg/ZO-1 (PDZ) domain situated between the adhesion molecule and the actin cytoskeleton. However, PDZ-mediated interactions are characteristically nonspecific, weak, and transient, with several binding partners per PDZ domain, micromolar dissociation constants, and bond lifetimes of seconds or less. Here, we demonstrate that the bonds between the PDZ domain of the cytoskeletal adaptor protein afadin and the intracellular domains of the adhesion molecules nectin-1 and JAM-A form molecular catch bonds that reinforce in response to mechanical load. In contrast, the bond between the PDZ3-SH3-GUK (PSG) domain of the cytoskeletal adaptor ZO-1 and the JAM-A intracellular domain becomes dramatically weaker in response to ∼2 pN of load, the amount generated by single molecules of the cytoskeletal motor protein myosin II. These results suggest that PDZ domains can serve as force-responsive mechanical anchors at cell-cell adhesion complexes, and that mechanical load can enhance the selectivity of PDZ-peptide interactions. These results suggest that PDZ mechanosensitivity may help to generate the intricate molecular organization of cell-cell junctions and allow junctional complexes to dynamically remodel in response to mechanical load.


Multicomponent analysis of junctional movements regulated by myosin II isoforms at the epithelial zonula adherens.

  • Michael Smutny‎ et al.
  • PloS one‎
  • 2011‎

The zonula adherens (ZA) of epithelial cells is a site of cell-cell adhesion where cellular forces are exerted and resisted. Increasing evidence indicates that E-cadherin adhesion molecules at the ZA serve to sense force applied on the junctions and coordinate cytoskeletal responses to those forces. Efforts to understand the role that cadherins play in mechanotransduction have been limited by the lack of assays to measure the impact of forces on the ZA. In this study we used 4D imaging of GFP-tagged E-cadherin to analyse the movement of the ZA. Junctions in confluent epithelial monolayers displayed prominent movements oriented orthogonal (perpendicular) to the ZA itself. Two components were identified in these movements: a relatively slow unidirectional (translational) component that could be readily fitted by least-squares regression analysis, upon which were superimposed more rapid oscillatory movements. Myosin IIB was a dominant factor responsible for driving the unilateral translational movements. In contrast, frequency spectrum analysis revealed that depletion of Myosin IIA increased the power of the oscillatory movements. This implies that Myosin IIA may serve to dampen oscillatory movements of the ZA. This extends our recent analysis of Myosin II at the ZA to demonstrate that Myosin IIA and Myosin IIB make distinct contributions to junctional movement at the ZA.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: