Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 39 papers

Ophthalmologic abnormalities in encephalocraniocutaneous lipomatosis.

  • M J MacLaren‎ et al.
  • Documenta ophthalmologica. Advances in ophthalmology‎
  • 1995‎

Encephalocraniocutaneous lipomatosis (ECCL) is a sporadically occurring disorder that belongs to the group of neurocutaneous syndromes. Important characteristics of the case we present are: intracranial lipomas, a skull hamartoma, bilateral lipodermoids and jaw tumors (ossifying fibromas and compound odontomas). We propose four minimal criteria for the diagnosis of ECCL and review the ocular abnormalities reported to date.


The Shape of the Jaw-Zebrafish Col11a1a Regulates Meckel's Cartilage Morphogenesis and Mineralization.

  • Jonathon C Reeck‎ et al.
  • Journal of developmental biology‎
  • 2022‎

The expression of the col11a1a gene is essential for normal skeletal development, affecting both cartilage and bone. Loss of function mutations have been shown to cause abnormalities in the growth plate of long bones, as well as in craniofacial development. However, the specific effects on Meckel's cartilage have not been well studied. To further understand the effect of col11a1a gene function, we analyzed the developing jaw in zebrafish using gene knockdown by the injection of an antisense morpholino oligonucleotide using transgenic Tg(sp7:EGFP) and Tg(Fli1a:EGFP) EGFP reporter fish, as well as wildtype AB zebrafish. Our results demonstrate that zebrafish col11a1a knockdown impairs the cellular organization of Meckel's cartilage in the developing jaw and alters the bone formation that occurs adjacent to the Meckel's cartilage. These results suggest roles for Col11a1a protein in cartilage intermediates of bone development, the subsequent mineralization of the bony collar of long bones, and that which occurs adjacent to Meckel's cartilage in the developing jaw.


Parafibromin Abnormalities in Ossifying Fibroma.

  • Jessica Costa-Guda‎ et al.
  • Journal of the Endocrine Society‎
  • 2021‎

Ossifying fibromas are very rare tumors that are sometimes seen as part of the hyperparathyroidism-jaw tumor syndrome (HPT-JT), which is caused by inactivating mutations of the HRPT2/CDC73 tumor suppressor gene. CDC73 mutations have been identified in a subset of sporadic cases but aberrant expression of the encoded protein, parafibromin, has not been demonstrated in ossifying fibroma. We sought to determine if loss of parafibromin regularly contributes to the development of sporadic, nonsyndromic ossifying fibroma. We examined a series of 9 ossifying fibromas, including ossifying, cemento-ossifying, and juvenile active variants, for parafibromin protein expression by immunohistochemistry and for CDC73 sequence abnormalities by Sanger sequencing and/or targeted AmpliSeq panel sequencing. Four ossifying fibromas showed a complete absence of nuclear parafibromin expression; loss of parafibromin expression was coupled with aberrant cytoplasmic parafibromin expression in 1 case. CDC73 mutations were detected in 2 cases with aberrant parafibromin expression. These results provide novel evidence, at the level of protein expression, that loss of the parathyroid CDC73/parafibromin tumor suppressor may play a role in the pathogenesis of a subset of ossifying fibromas.


Phenotype-genotype relationships in Xenopus sox9 crispants provide insights into campomelic dysplasia and vertebrate jaw evolution.

  • Nusrat Hossain‎ et al.
  • Development, growth & differentiation‎
  • 2023‎

Since CRISPR-based genome editing technology works effectively in the diploid frog Xenopus tropicalis, a growing number of studies have successfully modeled human genetic diseases in this species. However, most of their targets were limited to non-syndromic diseases that exhibit abnormalities in a small fraction of tissues or organs in the body. This is likely because of the complexity of interpreting the phenotypic variations resulting from somatic mosaic mutations generated in the founder animals (crispants). In this study, we attempted to model the syndromic disease campomelic dysplasia (CD) by generating sox9 crispants in X. tropicalis. The resulting crispants failed to form neural crest cells at neurula stages and exhibited various combinations of jaw, gill, ear, heart, and gut defects at tadpole stages, recapitulating part of the syndromic phenotype of CD patients. Genotyping of the crispants with a variety of allelic series of mutations suggested that the heart and gut defects depend primarily on frame-shift mutations expected to be null, whereas the jaw, gill, and ear defects could be induced not only by such mutations but also by in-frame deletion mutations expected to delete part of the jawed vertebrate-specific domain from the encoded Sox9 protein. These results demonstrate that Xenopus crispants are useful for investigating the phenotype-genotype relationships behind syndromic diseases and examining the tissue-specific role of each functional domain within a single protein, providing novel insights into vertebrate jaw evolution.


Rare duplication of the CDC73 gene and atypical hyperparathyroidism-jaw tumor syndrome: A case report and review of the literature.

  • Guilhaume Garrigues‎ et al.
  • Molecular genetics & genomic medicine‎
  • 2023‎

Hyperparathyroidism jaw-tumor syndrome (HPT-JT) is the rarest familial cause of primary hyperparathyroidism, with an incidence <1/1000000, caused by a pathogenic variant in the CDC73 (or HRPT2) gene that encodes parafibromin, a protein involved in many cellular mechanisms. Patients with HPT-JT have a 15-20% of risk of developing parathyroid carcinoma, whereas it accounts for only 1% of all cases of primary hyperparathyroidism. Patients also develop jaw tumors in 30% of cases, kidney abnormalities in 15% of cases, and uterine tumors in 50% of patients.


Intraoral localized methotrexate-associated lymphoproliferative disorders concurrent with antiresorptive agent-related osteonecrosis of the jaw: A case report and literature review.

  • Masaki Minabe‎ et al.
  • Clinical case reports‎
  • 2020‎

Intraoral localized methotrexate-associated lymphoproliferative disorders can cause antiresorptive agent-related osteonecrosis of the jaw associated with infection due to its immunological abnormalities and ulcer formation.


Osteogenesis of Multipotent Progenitor Cells using the Epigallocatechin Gallate-Modified Gelatin Sponge Scaffold in the Rat Congenital Cleft-Jaw Model.

  • Satoshi Sasayama‎ et al.
  • International journal of molecular sciences‎
  • 2018‎

Cost-effective and functionalized scaffolds are in high demand for stem-cell-based regenerative medicine to treat refractory bone defects in craniofacial abnormalities and injuries. One potential strategy is to utilize pharmacological and cost-effective plant polyphenols and biocompatible proteins, such as gelatin. Nevertheless, the use of chemically modified proteins with plant polyphenols in this strategy has not been standardized. Here, we demonstrated that gelatin chemically modified with epigallocatechin gallate (EGCG), the major catechin isolated from green tea, can be a useful material to induce bone regeneration in a rat congenial cleft-jaw model in vivo when used with/without adipose-derived stem cells or dedifferentiated fat cells. Vacuum-heated gelatin sponges modified with EGCG (vhEGCG-GS) induced superior osteogenesis from these two cell types compared with vacuum-heated gelatin sponges (vhGS). The EGCG-modification converted the water wettability of vhGS to a hydrophilic property (contact angle: 110° to 3.8°) and the zeta potential to a negative surface charge; the modification enhanced the cell adhesion property and promoted calcium phosphate precipitation. These results suggest that the EGCG-modification with chemical synthesis can be a useful platform to modify the physicochemical property of gelatin. This alteration is likely to provide a preferable microenvironment for multipotent progenitor cells, inducing superior bone formation in vivo.


Microstructural white matter abnormalities in type 2 diabetes mellitus: a diffusion tensor imaging study.

  • Jung-Lung Hsu‎ et al.
  • NeuroImage‎
  • 2012‎

This study investigated whether diffusion tensor imaging (DTI) could identify potential abnormalities in type 2 diabetes mellitus (T2DM) patients without cognitive complaints compared to healthy controls. In addition, the existence of associations between diffusion measures and clinical parameters was examined. Forty T2DM patients and 97 non-diabetic controls completed a clinical and biochemistry examination. Structural MRI scans (DTI, T1, T2, FLAIR) were subsequently acquired with a 1.5 Tesla scanner. In addition to a global DTI analysis, voxel-based analysis was performed on the fractional anisotropy (FA), mean diffusivity (MD), and axial (AD) and transverse (TD) diffusivity maps to investigate regions that exhibit (i) WM differences between patients and controls; and (ii) associations between clinical measurements and these DTI indices. There were no significant differences in age, gender, and WM hyperintensity scores derived by the conventional MRI scans between controls and T2DM patients. For the T2DM patients, however, the MD of the brain parenchyma was significantly increased compared to controls and was positively correlated with disease duration. The voxel based analyses revealed (i) a significantly decreased FA in the bilateral frontal WM compared to controls which was mainly caused by an increased TD and not a decreased AD within these regions; (ii) a significant association between disease duration and microstructural properties in several brain regions including bilateral cerebellum, temporal lobe WM, right caudate, bilateral cingulate gyrus, pons, and parahippocampal gyrus. Our findings indicate that microstructural WM abnormalities and associations with clinical measurements can be detected with DTI in T2DM patients.


Defects in cardiac function precede morphological abnormalities in fish embryos exposed to polycyclic aromatic hydrocarbons.

  • John P Incardona‎ et al.
  • Toxicology and applied pharmacology‎
  • 2004‎

Fish embryos exposed to complex mixtures of polycyclic aromatic hydrocarbons (PAHs) from petrogenic sources show a characteristic suite of abnormalities, including cardiac dysfunction, edema, spinal curvature, and reduction in the size of the jaw and other craniofacial structures. To elucidate the toxic mechanisms underlying these different defects, we exposed zebrafish (Danio rerio) embryos to seven non-alkylated PAHs, including five two- to four-ring compounds that are abundant in crude oil and two compounds less abundant in oil but informative for structure-activity relationships. We also analyzed two PAH mixtures that approximate the composition of crude oil at different stages of weathering. Exposure to the three-ring PAHs dibenzothiophene and phenanthrene alone was sufficient to induce the characteristic suite of defects, as was genetic ablation of cardiac function using a cardiac troponin T antisense morpholino oligonucleotide. The primary etiology of defects induced by dibenzothiophene or phenanthrene appears to be direct effects on cardiac conduction, which have secondary consequences for late stages of cardiac morphogenesis, kidney development, neural tube structure, and formation of the craniofacial skeleton. The relative toxicity of the different mixtures was directly proportional to the amount of phenanthrene, or the dibenzothiophene-phenanthrene total in the mixture. Pyrene, a four-ring PAH, induced a different syndrome of anemia, peripheral vascular defects, and neuronal cell death, similar to the effects previously described for potent aryl hydrocarbon receptor ligands. Therefore, different PAH compounds have distinct and specific effects on fish at early life history stages.


Dental developmental abnormalities in a patient with subtelomeric 7q36 deletion syndrome may confirm a novel role for the SHH gene.

  • Natália D Linhares‎ et al.
  • Meta gene‎
  • 2014‎

Studies in mice demonstrated that the Shh gene is crucial for normal development of both incisors and molars, causing a severe retardation in tooth growth, which leads to abnormal placement of the tooth in the jaw and disrupted tooth morphogenesis. In humans the SHH gene is located on chromosome 7q36. Defects in its protein or signaling pathway may cause holoprosencephaly spectrum, a disorder in which the developing forebrain fails to correctly separate into right and left hemispheres and that can be manifested in microforms such as single maxillary central incisor. A novel role for this gene in the developing human primary dentition was recently demonstrated. We report a 12-year old boy with a de novo 7q36.1-qter deletion characterized by high-resolution karyotyping, oligonucleotide aCGH and FISH. His phenotype includes intellectual disability, non-verbal communication, hypospadia, partial sacral agenesis and absence of coccyx, which are distinctive features of the syndrome and mainly correlated with the MNX1, HTR5A and EN2 genes. No microforms of holoprosencephaly spectrum were observed; but the patient had diastema and dental developmental abnormalities, such as conical, asymmetric and tapered inferior central incisors. The dental anomalies are reported herein for the first time in subtelomeric 7q36 deletion syndrome and may confirm clinically a novel role for the SHH gene in dental development.


The Special Developmental Biology of Craniofacial Tissues Enables the Understanding of Oral and Maxillofacial Physiology and Diseases.

  • Manuel Weber‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Maxillofacial hard tissues have several differences compared to bones of other localizations of the human body. These could be due to the different embryological development of the jaw bones compared to the extracranial skeleton. In particular, the immigration of neuroectodermally differentiated cells of the cranial neural crest (CNC) plays an important role. These cells differ from the mesenchymal structures of the extracranial skeleton. In the ontogenesis of the jaw bones, the development via the intermediate stage of the pharyngeal arches is another special developmental feature. The aim of this review was to illustrate how the development of maxillofacial hard tissues occurs via the cranial neural crest and pharyngeal arches, and what significance this could have for relevant pathologies in maxillofacial surgery, dentistry and orthodontic therapy. The pathogenesis of various growth anomalies and certain syndromes will also be discussed.


Association of common variants in PAH and LAT1 with non-syndromic cleft lip with or without cleft palate (NSCL/P) in the Polish population.

  • Kamil K Hozyasz‎ et al.
  • Archives of oral biology‎
  • 2014‎

Non-syndromic cleft lip with or without cleft palate (NSCL/P) is a common structural malformation with a complex and multifactorial aetiology. Associations of abnormalities in phenylalanine metabolism and orofacial clefts have been suggested.


Abnormal palatopharyngeal muscle morphology in sleep-disordered breathing.

  • Rolf Lindman‎ et al.
  • Journal of the neurological sciences‎
  • 2002‎

The aim of the present study was to investigate whether histopathological changes can be detected in two soft palate muscles, the palatopharyngeus and the uvula, in 11 patients with long duration of sleep-disordered breathing (SDB). Muscle samples were collected from patients undergoing uvulo-palatopharyngoplasty (UPPP). Reference samples from the corresponding areas were obtained at autopsy from five previously healthy subjects. Muscle morphology, fibre type and myosin heavy chain (MyHC) compositions were analysed with enzyme-histochemical, immunohistochemical and biochemical techniques. The muscle samples from the patients, and especially those from the palatopharyngeus, showed several morphological abnormalities. The most striking findings were (i) increased amount of connective tissue, (ii) abnormal variability in fibre size, (iii) increased proportion of small-sized fibres, (iv) alterations in fibre type and MyHC compositions, (v) increased frequency of fibres containing developmental MyHC isoforms. Our findings point towards a pathological process of denervation and degeneration in the patient samples. Conclusively, the morphological abnormalities suggest a neuromuscular disorder of the soft palate in SDB patients.


Association of maxillary dental developmental abnormality with precocious puberty: a case-control study.

  • Yesel Kim‎ et al.
  • Maxillofacial plastic and reconstructive surgery‎
  • 2020‎

Dental studies of precocious puberty have focused on examination of jaw and dentition growth. The aim of the study was to analyze the relationship between precocious puberty and maxillary dental developmental abnormalities (DDAs).


Efficacy of Octacalcium Phosphate Collagen Composite for Titanium Dental Implants in Dogs.

  • Tadashi Kawai‎ et al.
  • Materials (Basel, Switzerland)‎
  • 2018‎

Previous studies showed that octacalcium (OCP) collagen composite (OCP/Col) can be used to repair human jaw bone defects without any associated abnormalities. The present study investigated whether OCP/Col could be applied to dental implant treatment using a dog tooth extraction socket model.


A novel PTCH1 mutation in a patient with Gorlin syndrome.

  • Nana Okamoto‎ et al.
  • Human genome variation‎
  • 2014‎

Gorlin syndrome is an autosomal dominant disorder characterized by a wide range of developmental abnormalities and a predisposition to various tumors, and it is linked to the alteration of several causative genes, including PTCH1. We performed targeted resequencing using a next-generation sequencer to analyze genes associated with known clinical phenotypes in an 11-year-old male with sporadic jaw keratocysts. A novel duplication mutation (c.426dup) in PTCH1, resulting in a truncated protein, was identified.


Phenotype of Parathyroid-targeted Cdc73 Deletion in Mice Is Strain-dependent.

  • Jessica Costa-Guda‎ et al.
  • Journal of the Endocrine Society‎
  • 2024‎

Hyperparathyroidism jaw-tumor syndrome is an autosomal dominant disorder caused by mutations in the CDC73/HRPT2 tumor suppressor gene, encoding parafibromin, and manifesting benign or malignant parathyroid tumors, ossifying jaw fibromas, uterine tumors, and kidney lesions. Sporadic parathyroid carcinomas also frequently exhibit inactivating CDC73 mutations and loss of parafibromin. To study the role of CDC73 in parathyroid cell proliferation in vivo, we generated mice with a parathyroid-specific deletion of Cdc73. Homozygous knockout mice on a mixed B6/129/CD1 background had decreased serum calcium and PTH and smaller parathyroid glands compared with heterozygous or wild-type littermates, whereas homozygous Cdc73-null mice on other backgrounds exhibited no abnormalities in parathyroid gland function or development. No hypercalcemia or parathyroid hypercellularity was observed in mice of any background examined at any age. Thus, although postnatally acquired complete loss of CDC73 causes parathyroid cell proliferation and hyperparathyroidism, such as seen in human hyperparathyroidism jaw-tumor syndrome, our results suggest that earlier, developmentally imposed complete loss of Cdc73 can cause a primary defect in parathyroid gland structure/function in a strain-dependent manner. This striking disparity in parathyroid phenotype related to genetic background offers a unique opportunity in an in vivo model system to precisely dissect and identify the responsible molecular mechanisms.


Odontogenic keratocysts are an important clue for diagnosing basal cell nevus syndrome.

  • Kaori Kaibuchi-Ando‎ et al.
  • Nagoya journal of medical science‎
  • 2021‎

Basal cell nevus syndrome (BCNS) is an autosomal dominant skin disorder characterized by multiple basal cell nevi. Patients with BCNS tend to develop basal cell carcinoma (BCC) and frequently show skeletal abnormalities. Most cases of BCNS are caused by mutations in patched 1 (PTCH1). PTCH1 encodes a transmembrane receptor protein for the secreted molecule sonic hedgehog, which plays a key role in the development of animals ranging from insects to mammals. We analyzed two Japanese BCNS patients from two independent families. Both of our patients had multiple jaw keratocysts. In one patient, these were the key to noticing his BCNS, as he had no skin tumors. The early detection of PTCH1 mutations would enable BCNS patients to be carefully followed up for the occurrence of BCC. The diagnosis of BCC at the early stage leads to prompt surgical treatments, resulting in a good prognosis. The present cases suggest that keratocysts of the jaw might be an important clue for diagnosing BCNS.


Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome.

  • H Hahn‎ et al.
  • Cell‎
  • 1996‎

The nevoid basal cell carcinoma syndrome (NBCCS) is an autosomal dominant disorder characterized by multiple basal cell carcinomas (BCCs), pits of the palms and soles, jaw keratocysts, a variety of other tumors, and developmental abnormalities. NBCCS maps to chromosome 9q22.3. Familial and sporadic BCCs display loss of heterozygosity in this region, consistent with the gene being a tumor suppressor. A human sequence (PTC) with strong homology to the Drosophila segment polarity gene, patched, was isolated from a YAC and cosmid contig of the NBCCS region. Mutation analysis revealed alterations of PTC in NBCCS patients and in related tumors. We propose that a reduction in expression of the patched gene can lead to the developmental abnormalities observed in the syndrome and that complete loss of patched function contributes to transformation of certain cell types.


Digital pathology-based artificial intelligence models for differential diagnosis and prognosis of sporadic odontogenic keratocysts.

  • Xinjia Cai‎ et al.
  • International journal of oral science‎
  • 2024‎

Odontogenic keratocyst (OKC) is a common jaw cyst with a high recurrence rate. OKC combined with basal cell carcinoma as well as skeletal and other developmental abnormalities is thought to be associated with Gorlin syndrome. Moreover, OKC needs to be differentiated from orthokeratinized odontogenic cyst and other jaw cysts. Because of the different prognosis, differential diagnosis of several cysts can contribute to clinical management. We collected 519 cases, comprising a total of 2 157 hematoxylin and eosin-stained images, to develop digital pathology-based artificial intelligence (AI) models for the diagnosis and prognosis of OKC. The Inception_v3 neural network was utilized to train and test models developed from patch-level images. Finally, whole slide image-level AI models were developed by integrating deep learning-generated pathology features with several machine learning algorithms. The AI models showed great performance in the diagnosis (AUC = 0.935, 95% CI: 0.898-0.973) and prognosis (AUC = 0.840, 95%CI: 0.751-0.930) of OKC. The advantages of multiple slides model for integrating of histopathological information are demonstrated through a comparison with the single slide model. Furthermore, the study investigates the correlation between AI features generated by deep learning and pathological findings, highlighting the interpretative potential of AI models in the pathology. Here, we have developed the robust diagnostic and prognostic models for OKC. The AI model that is based on digital pathology shows promise potential for applications in odontogenic diseases of the jaw.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: