Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 25 papers

Diverse isoquinolines with anti-inflammatory and analgesic bioactivities from Hypecoum erectum.

  • Hai-Lian Yuan‎ et al.
  • Journal of ethnopharmacology‎
  • 2021‎

Hypecoum erectum has been used extensively in folk medicine to treat inflammation, fever, and pain. However, few investigations have been carried out on the biological activities related to its traditional use. The chemical constituents of this plant along with their anti-inflammatory and analgesic effects have yet to be revealed.


Consensus Virtual Screening Identified [1,2,4]Triazolo[1,5-b]isoquinolines As MELK Inhibitor Chemotypes.

  • Anita Rácz‎ et al.
  • ChemMedChem‎
  • 2022‎

Maternal Embryonic Leucine-zipper Kinase (MELK) is a current oncotarget involved in a diverse range of human cancers, with the usage of MELK inhibitors being explored clinically. Here, we aimed to discover new MELK inhibitor chemotypes from our in-house compound library with a consensus-based virtual screening workflow, employing three screening concepts. After careful retrospective validation, prospective screening and in vitro enzyme inhibition testing revealed a series of [1,2,4]triazolo[1,5-b]isoquinolines as a new structural class of MELK inhibitors, with the lead compound of the series exhibiting a sub-micromolar inhibitory activity. The structure-activity relationship of the series was explored by testing further analogs based on a structure-guided selection process. Importantly, the present work marks the first disclosure of the synthesis and bioactivity of this class of compounds.


Synthesis and Antimicrobial Activity of Novel Piperidinyl Tetrahydrothieno[2,3-c]isoquinolines and Related Heterocycles.

  • Remon M Zaki‎ et al.
  • ACS omega‎
  • 2020‎

A novel series of 1-amino-2-substituted-5-piperidinyl-6,7,8,9-tertahydrothieno[2,3-c]isoquinolines (4a-e) was synthesized upon treatment of 4-cyano-1-piperidinyl-5,6,7,8-tetrahydroisoquinline-3(2H)-thione (2) with α-halo carbonyl compounds such as chloroacetone, ethyl chloroacetate, 2-bromoacetophenone, chloroacetamide, and chloroacetanilide. Construction the pyrrolyl ring associated with the thienotetrahydroisoquinoline moiety was achieved by treatment of compounds 4a, b with 2,5-dimethoxytertahydrofuran in acetic acid. 1-Pyrrolyl-2-substituted-thieno[2,3-c]isoquinolines 5a and 5b which in turn were used as multipurpose precursors for synthesis of other new heterocycles. Assignments of the chemical structures of the respectively synthesized thienotetrahydroisoquinolines and their derivatives were established on the bases of elemental and spectral techniques (Fourier transform infrared, 1H NMR, 13C NMR, and mass spectroscopy). Furthermore, certain compounds were screened for their antimicrobial activity which revealed promising activities against various pathogenic strains of bacteria and fungi.


Synthesis of Pyrrolo[2,3-c]isoquinolines via the Cycloaddition of Benzyne with Arylideneaminopyrroles: Photophysical and Crystallographic Study.

  • Juan-Carlos Castillo‎ et al.
  • ACS omega‎
  • 2019‎

An efficient and quick access toward a series of (E)-2-arylideneaminopyrroles 6 and to their benzyne-promoted aza-Diels-Alder cycloaddition products is provided. These products are three pyrrolo[2,3-c]isoquinolines 8a-c substituted in position 5 with different electron-acceptor (A) or electron-donor (D) aryl groups. Intermediates and products were obtained in good yields (up to 78 and 84%, respectively), and their structures were determined on the basis of NMR measurements and HRMS analysis. Photophysical properties of 8a-c were investigated, finding good Stokes shift in different solvents, but only the product 8c showed appreciable fluorescence intensity since its 5-aryl group (2,4-Cl2Ph) could favor the twisted intramolecular charge transfer effect. In addition, a riveting relationship between solvent viscosity and fluorescence intensity was found. Structures of 6 and 8 were studied and confirmed by single-crystal X-ray diffraction, observing that their electronic distributions effect the supramolecular assembly but with only long-distance hydrophobic interactions. A CE-B3LYP model was used to study the energetic topology and understand the crystal architecture of compounds as well as find a connection with both the synthetic and photophysical results.


Palladium-mediated synthesis and biological evaluation of C-10b substituted Dihydropyrrolo[1,2-b]isoquinolines as antileishmanial agents.

  • Iratxe Barbolla‎ et al.
  • European journal of medicinal chemistry‎
  • 2021‎

The development of new molecules for the treatment of leishmaniasis is, a neglected parasitic disease, is urgent as current anti-leishmanial therapeutics are hampered by drug toxicity and resistance. The pyrrolo[1,2-b]isoquinoline core was selected as starting point, and palladium-catalyzed Heck-initiated cascade reactions were developed for the synthesis of a series of C-10 substituted derivatives. Their in vitro leishmanicidal activity against visceral (L. donovani) and cutaneous (L. amazonensis) leishmaniasis was evaluated. The best activity was found, in general, for the 10-arylmethyl substituted pyrroloisoquinolines. In particular, 2ad (IC50 = 3.30 μM, SI > 77.01) and 2bb (IC50 = 3.93 μM, SI > 58.77) were approximately 10-fold more potent and selective than the drug of reference (miltefosine), against L. amazonensis on in vitro promastigote assays, while 2ae was the more active compound in the in vitro amastigote assays (IC50 = 33.59 μM, SI > 8.93). Notably, almost all compounds showed low cytotoxicity, CC50 > 100 μg/mL in J774 cells, highest tested dose. In addition, we have developed the first Perturbation Theory Machine Learning (PTML) algorithm able to predict simultaneously multiple biological activity parameters (IC50, Ki, etc.) vs. any Leishmania species and target protein, with high values of specificity (>98%) and sensitivity (>90%) in both training and validation series. Therefore, this model may be useful to reduce time and assay costs (material and human resources) in the drug discovery process.


Synthesis and contractile activity of substituted 1,2,3,4-tetrahydroisoquinolines.

  • Iliyan Ivanov‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2011‎

A series of different 1-monosubstituted and 1,1-disubstituted 1,2,3,4-tetrahydro-isoquinolines was synthesized in high yields from different ketoamides. We have developed a convenient method for the synthesis of disubstituted derivatives by interaction of ketoamides with organomagnesium compounds, followed by cyclization in the presence of catalytic amounts of p-toluenesulfonic acid (PTSA). A number of substituents at the C-1 in the isoquinoline skeleton were introduced varying either carboxylic acid or organomagnesium compound. Some of the obtained 1,1-dialkyl-1,2,3,4-tetrahydro-isoquinolines possess contractile activity against guinea pig's gastric smooth muscle preparations.


N-Substituted Auxiliaries for Aerobic Dehydrogenation of Tetrahydro-isoquinoline: A Theory-Guided Photo-Catalytic Design.

  • Savithra Jayaraj‎ et al.
  • Scientific reports‎
  • 2019‎

Visible-light mediated aerobic dehydrogenation of N-heterocyclic compounds is a reaction with enormous potential for application. Herein, we report the first complete aerobic dehydrogenation pathway to large-scale production of isoquinolines. The discovery of this visible light photoredox reaction was enabled through the combination of mathematical simulations and real-time quantitative mass spectrometry screening. The theoretical calculations showed that hyper-conjugation, the main underlying factor hindering the aerobic oxidation of tetrahydroisoquinolines, is relieved both by π- and σ-donating substituents. This mechanistic insight provided a novel photocatalytic route based on N-substituted auxiliaries that facilitated the conversion of tetrahydroisoquinolines into the corresponding isoquinolines in just three simple steps (yield 71.7% in bulk-solution phase), using unmodified Ru(bpy)3Cl2 photocatalyst, sun energy, atmospheric O2, and at ambient temperature.


The synthesis of anticancer sulfonated indolo[2,1-a]isoquinoline and benzimidazo[2,1-a]isoquinolin-6(5H)-ones derivatives via a free radical cascade pathway.

  • You-Lu Pan‎ et al.
  • RSC advances‎
  • 2022‎

A facile CuBr2 induced radical relay addition/cyclization of activated alkenes with substituted-thiosulfonates has been achieved, leading to a broad range of sulfonated indolo[2,1-a]isoquinolines and benzimidazo[2,1-a]isoquinolin-6(5H)-ones in moderate to good yields. In particular, some compounds exhibit bioactivity against cancer cell lines. This protocol shows advantages of low-cost, base-free, simple operation, and broad functional group tolerance.


Structure-guided evolution of potent and selective CHK1 inhibitors through scaffold morphing.

  • John C Reader‎ et al.
  • Journal of medicinal chemistry‎
  • 2011‎

Pyrazolopyridine inhibitors with low micromolar potency for CHK1 and good selectivity against CHK2 were previously identified by fragment-based screening. The optimization of the pyrazolopyridines to a series of potent and CHK1-selective isoquinolines demonstrates how fragment-growing and scaffold morphing strategies arising from a structure-based understanding of CHK1 inhibitor binding can be combined to successfully progress fragment-derived hit matter to compounds with activity in vivo. The challenges of improving CHK1 potency and selectivity, addressing synthetic tractability, and achieving novelty in the crowded kinase inhibitor chemical space were tackled by multiple scaffold morphing steps, which progressed through tricyclic pyrimido[2,3-b]azaindoles to N-(pyrazin-2-yl)pyrimidin-4-amines and ultimately to imidazo[4,5-c]pyridines and isoquinolines. A potent and highly selective isoquinoline CHK1 inhibitor (SAR-020106) was identified, which potentiated the efficacies of irinotecan and gemcitabine in SW620 human colon carcinoma xenografts in nude mice.


Synthesis and Anti-HIV Activity of a Novel Series of Isoquinoline-Based CXCR4 Antagonists.

  • Mastaneh Safarnejad Shad‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

An expansion of the structure-activity relationship study of CXCR4 antagonists led to the synthesis of a series of isoquinolines, bearing a tetrahydroquinoline or a 3-methylpyridinyl moiety as head group. All compounds were investigated for CXCR4 affinity and antagonism in competition binding and calcium mobilization assays, respectively. In addition, the anti-HIV activity of all analogues was determined. All compounds showed excellent activity, with compound 24c being the most promising one, since it displayed consistently low nanomolar activity in the various assays.


Concise and Free-Metal Access to Lactone-Annelated Pyrrolo[2,1-a]isoquinoline Derivatives via a 1,2-Rearrangement Step.

  • Arina Y Obydennik‎ et al.
  • International journal of molecular sciences‎
  • 2024‎

Here, An efficient approach to obtaining previously unknown furo[2',3':2,3]pyrrolo[2,1-a]isoquinoline derivatives from readily available 1-R-1-ethynyl-2-vinylisoquinolines is described. The reaction features a simple procedure, occurs in hexaflouroisopropanol and does not require elevated temperatures. It has been found that the addition of glacial acetic acid significantly increases the yields of the target spirolactone products. Using trifluoroethanol instead of hexaflouroisopropanol results in the formation of pyrido[2,1-a]isoquinolines.


Alkaloids: Therapeutic Potential against Human Coronaviruses.

  • Burtram C Fielding‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

Alkaloids are a class of natural products known to have wide pharmacological activity and have great potential for the development of new drugs to treat a wide array of pathologies. Some alkaloids have antiviral activity and/or have been used as prototypes in the development of synthetic antiviral drugs. In this study, eleven anti-coronavirus alkaloids were identified from the scientific literature and their potential therapeutic value against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is discussed. In this study, in silico studies showed an affinity of the alkaloids for binding to the receptor-binding domain of the SARS-CoV-2 spike protein, putatively preventing it from binding to the host cell. Lastly, several mechanisms for the known anti-coronavirus activity of alkaloids were discussed, showing that the alkaloids are interesting compounds with potential use as bioactive agents against SARS-CoV-2.


Design, Synthesis and Cytotoxicity Evaluation of New 2-Aryl-5, 6-Dihydropyrrolo[2, 1-a]Isoquinoline Derivatives as Topoisomerase Inhibitors.

  • Samaneh Kakhki‎ et al.
  • Iranian journal of pharmaceutical research : IJPR‎
  • 2014‎

Two set of 2-aryl-5, 6-dihydropyrrolo [2,1-a] isoquinolines were designed and synthesized to evaluate their biological activities as topoisomerase inhibitors. Cytotoxic activity of the synthesized compounds 4a-e and 7a-d was assessed against several human cancer cell lines, including MCF-7 (breast cancer cell), HepG2 (liver hepatocellular cells), A549 (adenocarcinomic human alveolar basal epithelial cells), T47D (Human ductal breast epithelial tumor cell line) and Hela (Human cervix cancer). According to our results, HepG2 seems to be the most sensitive cell line for these compounds with mean IC50 values ranging from 4.25 to 70.05 μM. Our results indicated that compound 7b exhibited the best potency against the tested cell lines. These results also suggest that pyrroloisoquinoline moiety constitutes a suitable scaffold to design new anti-proliferative agents.


Metal-free oxidative cross-coupling enabled practical synthesis of atropisomeric QUINOL and its derivatives.

  • Peng-Ying Jiang‎ et al.
  • Nature communications‎
  • 2021‎

As an important platform molecule, atropisomeric QUINOL plays a crucial role in the development of chiral ligands and catalysts in asymmetric catalysis. However, efficient approaches towards QUINOL remain scarce, and the resulting high production costs greatly impede the related academic research as well as downstream industrial applications. Here we report a direct oxidative cross-coupling reaction between isoquinolines and 2-naphthols, providing a straightforward and scalable route to acquire the privileged QUINOL scaffolds in a metal-free manner. Moreover, a NHC-catalyzed kinetic resolution of QUINOL N-oxides with high selectivity factor is established to access two types of promising axially chiral Lewis base catalysts in optically pure forms. The utility of this methodology is further illustrated by facile transformations of the products into QUINAP, an iconic ligand in asymmetric catalysis.


Synthesis of Isomeric 3-Benzazecines Decorated with Endocyclic Allene Moiety and Exocyclic Conjugated Double Bond and Evaluation of Their Anticholinesterase Activity.

  • Alexander A Titov‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2022‎

Transformations of 1-methoxymethylethynyl substituted isoquinolines triggered by terminal alkynes in alcohols were studied and new 3-benzazecine-containing compounds synthesized, such as 6-methoxymethyl-3-benzazecines incorporating an endocyclic C6-C8 allene fragment and the -ylidene derivatives 6-methoxymethylene-3-benzazecines. The reaction mechanisms were investigated and a preliminary in vitro screening of their potential inhibitory activities against human acetyl- and butyrylcholinesterases (AChE and BChE) and monoamine oxidases A and B (MAO-A and MAO-B) showed that the allene compounds were more potent than the corresponding -ylidene ones as selective AChE inhibitors. Among the allenes, 3e (R3 = CH2OMe) was found to be a competitive AChE inhibitor with a low micromolar inhibition constant value (Ki = 4.9 μM), equipotent with the corresponding 6-phenyl derivative 3n (R3 = Ph, Ki = 4.5 μM), but 90-fold more water-soluble.


Design and Synthesis of Pyrrolo[2,1-a]Isoquinoline-Based Derivatives as New Cytotoxic Agents.

  • Samaneh Kakhki‎ et al.
  • Iranian journal of pharmaceutical research : IJPR‎
  • 2016‎

A new series of anti-cancer agents based on 1,2-diaryl-5,6-dihydropyrrolo[2,1-a]isoquinoline scaffold containing N,N-diethylamino-ethoxy, piperidinyl-ethoxy or morpholinyl-ethoxy group at the para position of the C-2 phenyl ring were synthesized and their cytotoxic activities were assessed against several human cancer cell lines including MCF-7 (ER positive breast cancer cell), MDA-MB231 (ER-negative breast cancer cell), T47D (Human ductal breast epithelial tumor cell line), A549 (adenocarcinomic human alveolar basal epithelial cells), and Hela (human cervix adenocarcinoma cells) using MTT assay. Based on results, compounds, 1-(4-(2-(piperidin-1-yl)ethoxy)phenyl)-5,6-dihydro-8,9-dimethoxy-2-phenylpyrrolo[2,1-a]isoquinoline (6a) and 2-(4-(5,6-dihydro-8,9-dimethoxy-2-phenylpyrrolo[2,1-a] isoquinolin-1-yl)phenoxy)-N,N-diethylethanamine (6c) were the most potent cytotoxic compounds and more toxic than the reference compound against T47D cell line, while all the compounds had satisfactory activity against HeLa cell line with mean IC50 values ranging from 1.93 to 33.84 µM.


The Evaluation of Pro-Cognitive and Antiamnestic Properties of Berberine and Magnoflorine Isolated from Barberry Species by Centrifugal Partition Chromatography (CPC), in Relation to QSAR Modelling.

  • Wirginia Kukula-Koch‎ et al.
  • International journal of molecular sciences‎
  • 2017‎

Civilization diseases associated with memory disorders are important health problems occurring due to a prolonged life span. The manuscript shows the results of an in vivo study targeting the emergence of two drug candidates with anti-amnestic properties. The preceding quantitative structure-activity relationship (QSAR) studies provided information on the ability of berberine and magnoflorine to cross the blood-brain barrier (BBB). In the light of these findings, both compounds were purified from crude plant extracts of barberries: berberine-from Berberis siberica using a method published earlier, and magnoflorine-from Berberis cretica by centrifugal partition chromatography (solvent system: ethyl acetate:butanol:water-0.6:1.5:3 v/v/v). Both the compounds were evaluated for their memory enhancing and scopolamine inhibitory properties in an in vivo passive avoidance (PA) test on mice towards short-term and long-term memory. Cognition enhancing properties were observed at the following doses: 5 mg/kg (i.p.) for berberine and 20 mg/kg (i.p.) for magnoflorine. In addition, both the tested isoquinolines with the co-administered scopolamine were found to block long-term but not short-term memory impairment. No influence on the locomotor activity was observed for the tested doses. The results confirmed a marked central activity of magnoflorine and showed the necessity to lower the dosage of berberine. Optimized purification conditions have been elaborated for magnoflorine.


Neuroprotective Effect of the Endogenous Amine 1MeTIQ in an Animal Model of Parkinson's Disease.

  • Agnieszka Wąsik‎ et al.
  • Neurotoxicity research‎
  • 2016‎

Parkinson's disease (PD) is a neurodegenerative disorder that is hallmarked by pathological changes associated with the death of dopaminergic neurons, particularly in the extrapyramidal system (substantia nigra pars compacta, striatum) of the brain. Although the causes of slow neuronal death in PD are unknown, both genetic and environmental factors are likely involved. Endogenous isoquinolines, such as 1-benzyl-1,2,3,4-tetrahydroisoquinoline (1BnTIQ), present in the human brain have been previously reported to participate in the pathogenesis of PD. The chronic administration of 1BnTIQ induced parkinsonism in primates, and this effect might be associated with idiopathic PD. However, another endogenous derivative of tetrahydroisoquinoline, 1-methyl-1,2,3,4-tetrahydroisoquinoline (1MeTIQ), displays clear neuroprotective properties in the brain. In the present study, we investigated the neuroprotective effects of 1MeTIQ (25 and 50 mg/kg) in an animal model of PD after the chronic administration of 1BnTIQ (25 mg/kg). Behavioral analyses demonstrate that both acute and repeated treatment with 1MeTIQ completely antagonized 1BnTIQ-induced changes in rat locomotor activity. Neurochemical experiments indicate that 1MeTIQ co-administered with 1BnTIQ completely antagonized 1BnTIQ-induced reduction in the dopamine (DA) concentration in rat brain structures. In conclusion, the results demonstrate that 1MeTIQ possesses important neuroprotective properties in the animal model of PD and that the rats did not develop tolerance after its chronic administration.


Apremilast ameliorates acute respiratory distress syndrome by inhibiting neutrophil-induced oxidative stress.

  • Yung-Fong Tsai‎ et al.
  • Biomedical journal‎
  • 2023‎

The pathogenesis of acute respiratory distress syndrome (ARDS) is attributed to the dysregulation of oxidative stress and neutrophil recruitment. We aimed to investigate the anti-inflammatory effects of apremilast on human neutrophils and assess its efficacy for treating ARDS.


Metabolomics Analyses Provide Insights Into Nutritional Value and Abiotic Stress Tolerance in Halophyte Halogeton glomeratus.

  • Juncheng Wang‎ et al.
  • Frontiers in plant science‎
  • 2021‎

Halogeton glomeratus is a succulent annual herbaceous halophyte belonging to the Chenopodiaceae family, has attracted wide attention as a promising candidate for phytoremediation and as an oilseed crop and noodle-improver. More importantly, H. glomeratus has important medicinal value in traditional Chinese medicine. However, there are few comprehensive studies on the nutrients, particularly secondary metabolites. Here, we adopted untargeted metabolomics to compare the differences in metabolites of different tissues (root, stem, leaf, and seed) and identify the compounds related to pharmacological effects and response to abiotic stress in H. glomeratus. A total of 2,152 metabolites were identified, and the metabolic profiles of root, stem, leaf, and seed samples were clearly separated. More than 50% of the metabolites showed significant differences among root, stem, leaf, and seed. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of differential metabolites suggested an extensive alteration in the metabolome among the different organs. Furthermore, the identified metabolites related to pharmacological effects and response to abiotic stress included flavones, flavonols, flavandiols, glucosinolates, isoquinolines, pyridines, indoles, amino acids, lipids, carbohydrates, and ATP-binding cassette transporters. These metabolites have application in treating human cardiovascular diseases, cancers, diabetes, and heart disease, induce sleeping and have nutritive value. In plants, they are related to osmotic adjustment, alleviating cell damage, adjusting membrane lipid action and avoiding toxins. To the best of our knowledge, this is the first metabolomics-based report to overview the metabolite compounds in H. glomeratus and provide a reference for future development and utilization of H. glomeratus.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: