Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 76 papers

Right isomerism of the brain in inversus viscerum mutant mice.

  • Ryosuke Kawakami‎ et al.
  • PloS one‎
  • 2008‎

Left-right (L-R) asymmetry is a fundamental feature of higher-order neural function. However, the molecular basis of brain asymmetry remains unclear. We recently reported L-R asymmetry of hippocampal circuitry caused by differential allocation of N-methyl-D-aspartate receptor (NMDAR) subunit GluRepsilon2 (NR2B) in hippocampal synapses. Using electrophysiology and immunocytochemistry, here we analyzed the hippocampal circuitry of the inversus viscerum (iv) mouse that has a randomized laterality of internal organs. The iv mouse hippocampus lacks L-R asymmetry, it exhibits right isomerism in the synaptic distribution of the epsilon2 subunit, irrespective of the laterality of visceral organs. This independent right isomerism of the hippocampus is the first evidence that a distinct mechanism downstream of the iv mutation generates brain asymmetry.


Isomerism in double-pillared-layer coordination polymers - structures and photoreactivity.

  • In-Hyeok Park‎ et al.
  • IUCrJ‎
  • 2018‎

The existence of isomerism in coordination polymeric structures offers opportunities to understand structure-function relationships. Herein the serendipitous isolation is reported of two isomeric double-pillared-layer coordination polymeric structures arising from two different types of carboxyl-ate bonding of benzene-1,4-di-carboxyl-ate ligands to zinc(II), which constitutes a new type of structural isomerism. The different bonding modes not only alter the shape and size of the pores, but also the nature of interpenetration and photoreactivity. Although two trans,cis,trans-bpeb ligands with conjugated olefin bonds are aligned in close proximity in both of the structures, one isomer undergoes a double [2 + 2] cyclo-addition reaction and the second isomer only offers an incomplete single cyclo-addition product. This work demonstrates how small changes in the structural connectivity can have an impact on the overall structural, physical and chemical properties of such materials.


cis-trans-Amide isomerism of the 3,4-dehydroproline residue, the 'unpuckered' proline.

  • Vladimir Kubyshkin‎ et al.
  • Beilstein journal of organic chemistry‎
  • 2016‎

Proline (Pro) is an outstanding amino acid in various biochemical and physicochemical perspectives, especially when considering the cis-trans isomerism of the peptidyl-Pro amide bond. Elucidation of the roles of Pro in chemical or biological systems and engineering of its features can be addressed with various Pro analogues. Here we report an experimental work investigating the basic physicochemical properties of two Pro analogues which possess a 3,4-double bond: 3,4-dehydroproline and 4-trifluoromethyl-3,4-dehydroproline. Both indicate a flat pyrroline ring in their crystal structures, in agreement with previous theoretical calculations. In solution, the peptide mimics exhibit an almost unchanged equilibrium of the trans/cis ratios compared to that of Pro and 4-trifluoromethylproline derivatives. Finally we demonstrate that the 3,4-double bond in the investigated structures leads to an increase of the amide rotational barriers, presumably due to an interplay with the transition state.


Nitrite binding to globins: linkage isomerism, EPR silence and reductive chemistry.

  • Radu Silaghi-Dumitrescu‎ et al.
  • Nitric oxide : biology and chemistry‎
  • 2014‎

The nitrite adducts of globins can potentially bind via O- or N- linkage to the heme iron. We have used EPR (electron paramagnetic resonance) and DFT (density functional theory) to explore these binding modes to myoglobin and hemoglobin. We demonstrate that the nitrite adducts of both globins have detectable EPR signals; we provide an explanation for the difficulty in detecting these EPR features, based on uniaxial state considerations. The EPR and DFT data show that both nitrite linkage isomers can be present at the same time and that the two isomers are readily interconvertible in solution. The millisecond-scale process of nitrite reduction by Hb is investigated in search of the elusive Fe(II)-nitrite adduct.


An effect of positional isomerism of benzoic acid derivatives on antibacterial activity against Escherichia coli.

  • Alicja Synowiec‎ et al.
  • Open life sciences‎
  • 2021‎

This study demonstrated the effect of positional isomerism of benzoic acid derivatives against E. coli ATCC 700728 with the serotype O157. The addition of hydroxyl and methoxyl substituents weakened the effect of acids against E. coli with respect to benzoic acid (except 2-hydroxybenzoic). The connection of the hydroxyl group at the second carbon atom in the benzoic ring reduced the time needed to kill bacterial cells. Phenolic acids with methoxyl substitutes limited the biofilm formation by E. coli to a greater extent than hydroxyl derivatives. The most significant influence on the antibacterial activity of phenolic acids has the type of substituent attached to the benzoic ring, their number, and finally the number of carbon atoms at which the functional group is located.


Comparison of NMR and crystal structures highlights conformational isomerism in protein active sites.

  • Pedro Serrano‎ et al.
  • Acta crystallographica. Section F, Structural biology and crystallization communications‎
  • 2010‎

The JCSG has recently developed a protocol for systematic comparisons of high-quality crystal and NMR structures of proteins. In this paper, the extent to which this approach can provide function-related information on the two functionally annotated proteins TM1081, a Thermotoga maritima anti-σ factor antagonist, and A2LD1 (gi:13879369), a mouse γ-glutamylamine cyclotransferase, is explored. The NMR structures of the two proteins have been determined in solution at 313 and 298 K, respectively, using the current JCSG protocol based on the software package UNIO for extensive automation. The corresponding crystal structures were solved by the JCSG at 100 K and 1.6 Å resolution and at 100 K and 1.9 Å resolution, respectively. The NMR and crystal structures of the two proteins share the same overall molecular architectures. However, the precision of the structure determination along the amino-acid sequence varies over a significantly wider range in the NMR structures than in the crystal structures. Thereby, in each of the two NMR structures about 65% of the residues have displacements below the average and in both proteins the less well ordered residues include large parts of the active sites, in addition to some highly solvent-exposed surface areas. Whereas the latter show increased disorder in the crystal and in solution, the active-site regions display increased displacements only in the NMR structures, where they undergo local conformational exchange on the millisecond time scale that appears to be frozen in the crystals. These observations suggest that a search for molecular regions showing increased structural disorder and slow dynamic processes in solution while being well ordered in the corresponding crystal structure might be a valid initial step in the challenge of identifying putative active sites in functionally unannotated proteins with known three-dimensional structure.


Rotational Isomerism of an Amide Substituted Squaraine Dye: A Combined Spectroscopic and Computational Study.

  • Andreas T Rösch‎ et al.
  • The Journal of organic chemistry‎
  • 2021‎

The conformational analysis of a 2,4-bis(4-dialkylamino-2-amido)phenyl squaraine dye revealed the presence of two rotational isomers at room temperature. Combination of spectroscopic and computational techniques showed that the rotational barrier is influenced by hydrogen bonds between the amido substituents and the oxygen atoms at the quadratic core. Even small amounts of trifluoroacetic acid interfered with the intramolecular hydrogen bond formation and accelerated the interconversion of the conformers.


Structural Insights into Influence of Isomerism on Properties of Open Shell Cobalt Coordination System.

  • Marcin Swiatkowski‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2019‎

The two coordination compounds of cobalt were designed and synthesized. The substrates were carefully selected to allow gentle tuning of the molecular structure of the designed compounds. The crystal, molecular and supramolecular structure of studied compounds has been determined and discussed. The spectroscopic and thermal properties of designed coordination compounds have been studied and their application as precursors for the synthesis of cobalt oxide nanoparticles has been demonstrated. It was proven that not only are parameters of conversion of the precursor to nanoparticles important, but also small changes in molecular structure can considerably affect the size of formed particles. For unambiguous determination of the influence of compounds structure on their UV-Vis radiation absorption, density functional theory and time-dependent density functions theory calculations have been performed. The complexity of the correct ab-initio reflection of the open shell molecular system was outlined and discussed. The results obtained from density functional theory (DFT) calculations have been also employed for discussion of the bonding properties.


Cis-isomerism and other chemical requirements of steroidal agonists and partial agonists acting at TRPM3 channels.

  • Y Majeed‎ et al.
  • British journal of pharmacology‎
  • 2010‎

The transient receptor potential melastatin-3 (TRPM3) channel forms calcium-permeable, non-selective, cationic channels that are stimulated by pregnenolone sulphate (PregS). Here, we aimed to define chemical requirements of this acute steroid action and potentially reveal novel stimulators with physiological relevance.


Cluster Core Isomerism Induced by Crystal Packing Effects in the [HCo15Pd9C3(CO)38]2- Molecular Nanocluster.

  • Beatrice Berti‎ et al.
  • ACS omega‎
  • 2018‎

This article describes a rare case of cluster core isomerism in a large molecular organometallic nanocluster. In particular, two isomers of the [HCo15Pd9C3(CO)38]2- nanocluster, referred as TP-Pd9 and Oh-Pd9, have been structurally characterized by single-crystal X-ray crystallography as their [NMe3(CH2Ph)]2[HCo15Pd9C3(CO)38]·CH2Cl2 (ca. 1:1 TP-Pd9 and Oh-Pd9 mixture), [NMe3(CH2Ph)]2[HCo15Pd9C3(CO)38]·2CH2Cl2 (mainly TP-Pd9), [NEt3(CH2Ph)]2[HCo15Pd9C3(CO)38]·CH2Cl2 (mainly TP-Pd9), [MePPh3]2[HCo15Pd9C3(CO)38]·2.5CH2Cl2 (mainly TP-Pd9), and [MePPh3]2[HCo15Pd9C3(CO)38] (Oh-Pd9) salts. The cluster core of TP-Pd9 is a tricapped trigonal prism, whereas this is a tricapped octahedron in Oh-Pd9. The presence in the solid state of the Oh-Pd9 or TP-Pd9 isomers depends on the cation employed and/or the number and type of co-crystallized solvent molecules. Often, mixtures of the two isomers, within the same single crystal or as mixtures of different crystals within the same crystallization batch, are obtained. Structural isomerism in organometallic nanoclusters is discussed and compared to that in Au-thiolate nanoclusters.


Positional isomerism markedly affects the growth inhibition of colon cancer cells by NOSH-aspirin: COX inhibition and modeling.

  • Federica Vannini‎ et al.
  • Redox biology‎
  • 2015‎

We recently reported the synthesis of NOSH-aspirin, a novel hybrid that releases both nitric oxide (NO) and hydrogen sulfide (H2S). In NOSH-aspirin, the two moieties that release NO and H2S are covalently linked at the 1, 2 positions of acetyl salicylic acid, i.e. ortho-NOSH-aspirin (o-NOSH-aspirin). In the present study, we compared the effects of the positional isomers of NOSH-ASA (o-NOSH-aspirin, m-NOSH-aspirin and p-NOSH-aspirin) to that of aspirin on growth of HT-29 and HCT 15 colon cancer cells, belonging to the same histological subtype, but with different expression of cyclooxygenase (COX) enzymes; HT-29 express both COX-1 and COX-2, whereas HCT 15 is COX-null. We also analyzed the effect of these compounds on proliferation and apoptosis in HT-29 cells. Since the parent compound aspirin, inhibits both COX-1 and COX-2, we also evaluated the effects of these compounds on COX-1 and COX-2 enzyme activities and also performed modeling of the interactions between the positional isomers of NOSH-aspirin and COX-1 and COX-2 enzymes. We observed that the three positional isomers of NOSH aspirin inhibited the growth of both colon cancer cell lines with IC50s in the nano-molar range. In particular in HT-29 cells the IC50s for growth inhibition were: o-NOSH-ASA, 0.04±0.011 µM; m-NOSH-ASA, 0.24±0.11 µM; p-NOSH-ASA, 0.46±0.17 µM; and in HCT 15 cells the IC50s for o-NOSH-ASA, m-NOSH-ASA, and p-NOSH-ASA were 0.062 ±0.006 µM, 0.092±0.004 µM, and 0.37±0.04 µM, respectively. The IC50 for aspirin in both cell lines was >5mM at 24h. The reduction of cell growth appeared to be mediated through inhibition of proliferation, and induction of apoptosis. All 3 positional isomers of NOSH-aspirin preferentially inhibited COX-1 over COX-2. These results suggest that the three positional isomers of NOSH-aspirin have the same biological actions, but that o-NOSH-ASA displayed the strongest anti-neoplastic potential.


Redox Isomerism in the S3 State of the Oxygen-Evolving Complex Resolved by Coupled Cluster Theory.

  • Maria Drosou‎ et al.
  • Chemistry (Weinheim an der Bergstrasse, Germany)‎
  • 2021‎

The electronic and geometric structures of the water-oxidizing complex of photosystem II in the steps of the catalytic cycle that precede dioxygen evolution remain hotly debated. Recent structural and spectroscopic investigations support contradictory redox formulations for the active-site Mn4 CaOx cofactor in the final metastable S3 state. These range from the widely accepted MnIV 4 oxo-hydroxo model, which presumes that O-O bond formation occurs in the ultimate transient intermediate (S4 ) of the catalytic cycle, to a MnIII 2 MnIV 2 peroxo model representative of the contrasting "early-onset" O-O bond formation hypothesis. Density functional theory energetics of suggested S3 redox isomers are inconclusive because of extreme functional dependence. Here, we use the power of the domain-based local pair natural orbital approach to coupled cluster theory, DLPNO-CCSD(T), to present the first correlated wave function theory calculations of relative stabilities for distinct redox-isomeric forms of the S3 state. Our results enabled us to evaluate conflicting models for the S3 state of the oxygen-evolving complex (OEC) and to quantify the accuracy of lower-level theoretical approaches. Our assessment of the relevance of distinct redox-isomeric forms for the mechanism of biological water oxidation strongly disfavors the scenario of early-onset O-O formation advanced by literal interpretations of certain crystallographic models. This work serves as a case study in the application of modern coupled cluster implementations to redox isomerism problems in oligonuclear transition metal systems.


Flexibility Enhances Reactivity: Redox Isomerism and Jahn-Teller Effects in a Bioinspired Mn4O4 Cubane Water Oxidation Catalyst.

  • Ludwig Schwiedrzik‎ et al.
  • ACS catalysis‎
  • 2021‎

Understanding how water oxidation to molecular oxygen proceeds in molecular metal-oxo catalysts is a challenging endeavor due to their structural complexity. In this report, we unravel the water oxidation mechanism of the highly active water oxidation catalyst [Mn4V4O17(OAc)3]3-, a polyoxometalate catalyst with a [Mn4O4]6+ cubane core reminiscent of the natural oxygen-evolving complex. Starting from the activated species [Mn4 4+V4O17(OAc)2(H2O)(OH)]1-, we scrutinized multiple pathways to find that water oxidation proceeds via a sequential proton-coupled electron transfer (PCET), O-O bond formation, another PCET, an intramolecular electron transfer, and another PCET resulting in O2 evolution, with a predicted thermodynamic overpotential of 0.71 V. An in-depth investigation of the O-O bond formation process revealed an essential interplay between redox isomerism and Jahn-Teller effects, responsible for enhancing reactivity in the catalytic cycle. This is achieved by redistributing electrons between metal centers and weakening relevant bonds through Jahn-Teller distortions, introducing flexibility to the otherwise rigid cubane core of the catalyst. These mechanistic insights are expected to advance the design of efficient bioinspired Mn cubane water-splitting catalysts.


X-ray Crystal Structure, Geometric Isomerism, and Antimicrobial Activity of New Copper(II) Carboxylate Complexes with Imidazole Derivatives.

  • Ioana Dorina Vlaicu‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2018‎

Five new copper(II) acrylate complexes (acr is the acrylate anion: C₃H₃O₂) with imidazole derivatives (2-methylimidazole/2-MeIm, 5-methylimidazole/5-MeIm, 2-ethylimidazole/2-EtIm) of type: cis-[Cu(2-RIm)₂(acr)₂]·xH₂O ((1): R = ⁻CH₃, x = 2; (4): R = ⁻CH₂⁻CH₃, x = 0), trans-[Cu(2-RIm)₂(acr)₂] ((2): R = ⁻CH₃; (5): R = ⁻CH₂⁻CH₃) and trans-[Cu(5-RIm)₂(acr)₂] ((3): R = ⁻CH₃) have been prepared and characterized by elemental analysis, Fourier Transform Infrared spectrometry (FTIR), Electron Paramagnetic Resonance (EPR), electronic reflectance spectroscopy, scanning electron microscopy, and mass spectrometry. The single crystal X-ray diffraction study of complexes (2) and (5) reveals that the copper(II) ion is located on an inversion center and show elongated octahedral geometry completed by two coplanar bidentate acrylates and two unidentate imidazole derivatives displayed in trans positions. For complex (4) the single crystal X-ray diffraction shows that the copper(II) ion is in a distorted octahedral environment which can be easily confused with a trigonal prism completed by two bidentate acrylates and two unidentate imidazole derivatives displayed in cis positions. These results indicate the fact that complexes (4) and (5) are the geometric isomers of the same compound bis(acrylate)-bis(2-ethylimidazole)-copper(II). Complexes (1) and (2), as well as (4) and (5), were produced simultaneously in the reaction of the corresponding copper(II) acrylate with imidazole derivatives in methanol solution. Furthermore, in order to be able to formulate potential applications of the obtained compounds, our next goal was to investigate the in vitro antimicrobial activity of the synthesized complexes against Gram-positive and Gram-negative bacteria, as well as fungal strains, of both clinical and ecological importance (biodeterioration of historical buildings). The trans isomers (2) and (5), followed by (4) have shown the broadest range of antimicrobial activity. In case of (1) and (2) isomers, the trans isomer (2) was significantly more active than cis (1), while the cis isomer (4) proved to be more active than trans (5). Taken together, the biological evaluation results indicate that the trans (2) was the most active complex, demonstrating its potential for the development of novel antimicrobial agents, with potential applications in the biomedical and restoration of architectural monuments fields.


Structural Isomerism and Enhanced Lipophilicity of Pyrithione Ligands of Organoruthenium(II) Complexes Increase Inhibition on AChE and BuChE.

  • Jerneja Kladnik‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

The increasing number of Alzheimer's disease (AD) cases requires the development of new improved drug candidates, possessing the ability of more efficient treatment as well as less unwanted side effects. Cholinesterase enzymes are highly associated with the development of AD and thus represent important druggable targets. Therefore, we have synthesized eight organoruthenium(II) chlorido complexes 1a-h with pyrithione-type ligands (pyrithione = 1-hydroxypyridine-2(1H)-thione, a), bearing either pyrithione a, its methyl (b-e) or bicyclic aromatic analogues (f-h) and tested them for their inhibition towards electric eel acetylcholinesterase (eeAChE) and horse serum butyrylcholinesterase (hsBuChE). The experimental results have shown that the novel complex 1g with the ligand 1-hydroxyquinoline-2-(1H)-thione (g) improves the inhibition towards eeAChE (IC50 = 4.9 μM) and even more potently towards hsBuChE (IC50 = 0.2 μM) in comparison with the referenced 1a. Moreover, computational studies on Torpedo californica AChE have supported the experimental outcomes for 1g, possessing the lowest energy value among all tested complexes and have also predicted several interactions of 1g with the target protein. Consequently, we have shown that the aromatic ring extension of the ligand a, though only at the appropriate position, is a viable strategy to enhance the activity against cholinesterases.


Highly efficient color-tunable organic co-crystals unveiling polymorphism, isomerism, delayed fluorescence for optical waveguides and cell-imaging.

  • Debasish Barman‎ et al.
  • Nature communications‎
  • 2023‎

Photofunctional co-crystal engineering strategies based on donor-acceptor π-conjugated system facilitates expedient molecular packing, consistent morphology, and switchable optical properties, conferring synergic 'structure-property relationship' for optoelectronic and biological functions. In this work, a series of organic co-crystals were formulated using a twisted aromatic hydrocarbon (TAH) donor and three diverse planar acceptors, resulting in color-tunable solid and aggregated state emission via variable packing and through-space charge-transfer interactions. While, adjusting the strength of acceptors, a structural transformation into hybrid stacking modes ultimately results in color-specific polymorphs, a configurational cis-isomer with very high photoluminescence quantum yield. The cis-isomeric co-crystal exhibits triplet-harvesting thermally activated delayed fluorescence (TADF) characteristics, presenting a key discovery in hydrocarbon-based multicomponent systems. Further, 1D-microrod-shaped co-crystal acts as an efficient photon-transducing optical waveguides, and their excellent dispersibility in water endows efficient cellular internalization with bright cell imaging performances. These salient approaches may open more avenues for the design and applications of TAH based co-crystals.


The influence of positional isomerism on G-quadruplex binding and anti-proliferative activity of tetra-substituted naphthalene diimide compounds.

  • Sheila Mpima‎ et al.
  • Bioorganic & medicinal chemistry‎
  • 2013‎

The synthesis together with biophysical and biological evaluation of a series of tetra-substituted naphthalene diimide (ND) compounds, are presented. These compounds are positional isomers of a recently-described series of quadruplex-binding ND derivatives, in which the two N-methyl-piperidine-alkyl side-chains have now been interchanged with the positions of side-chains bearing a range of end-groups. Molecular dynamics simulations of a pair of positional isomers are in accord with the quadruplex stabilization and biological data for these compounds. Analysis of structure-activity data indicates that for compounds where the side-chains are not of equivalent length then the positional isomers described here tend to have improved cell proliferation potency and in some instances, superior quadruplex stabilization ability.


Plant-Unique cis/trans Isomerism of Long-Chain Base Unsaturation is Selectively Required for Aluminum Tolerance Resulting from Glucosylceramide-Dependent Plasma Membrane Fluidity.

  • Masaya Sato‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2019‎

Cis/trans isomerism of the Δ8 unsaturation of long-chain base (LCB) is found only in plant sphingolipids. This unique geometry is generated by sphingolipid LCB Δ8 desaturase SLD which produces both isomers at various ratios, resulting in diverse cis/trans ratios in plants. However, the biological significance of this isomeric diversity remains controversial. Here, we show that the plant-specific cis unsaturation of LCB selectively contributes to glucosylceramide (GlcCer)-dependent tolerance to aluminum toxicity. We established three transgenic rice lines with altered LCB unsaturation profiles. Overexpression of SLD from rice (OsSLD-OX), which preferentially exhibits cis-activity, or Arabidopsis (AtSLD-OX), showing preference for trans-activity, facilitated Δ8 unsaturation in different manners: a slight increase of cis-unsaturated glycosylinositolphosphoceramide (GIPC) in OsSLD-OX, and a drastic increase of trans-unsaturated GlcCer and GIPC in AtSLD-OX. Disruption of LCB Δ4 desaturase (des) significantly decreased the content of GlcCer. Fluorescence imaging analysis revealed that OsSLD-OX and AtSLD-OX showed increased plasma membrane fluidity, whereas des had less fluidity, demonstrating that the isomers universally contributed to increasing membrane fluidity. However, the results of a hydroponic assay showed decreased aluminum tolerance in AtSLD-OX and des compared to OsSLD-OX and the control plants, which did not correlate with membrane fluidity. These results suggest that cis-unsaturated GlcCer, not GIPC, selectively serves to maintain the membrane fluidity specifically associated with aluminum tolerance.


DNA Sequence Modulates Geometrical Isomerism of the trans-8,9- Dihydro-8-(2,6-diamino-4-oxo-3,4-dihydropyrimid-5-yl-formamido)- 9-hydroxy Aflatoxin B1 Adduct.

  • Liang Li‎ et al.
  • Chemical research in toxicology‎
  • 2015‎

Aflatoxin B(1) (AFB(1)), a mycotoxin produced by Aspergillus flavus, is oxidized by cytochrome P450 enzymes to aflatoxin B(1)-8,9-epoxide, which alkylates DNA at N7-dG. Under basic conditions, this N7-dG adduct rearranges to yield the trans-8,9-dihydro-8-(2,6-diamino-4-oxo-3,4-dihydropyrimid-5-yl-formamido)-9-hydroxy aflatoxin B(1) (AFB(1)−FAPY) adduct. The AFB(1)−FAPY adduct exhibits geometrical isomerism involving the formamide moiety. NMR analyses of duplex oligodeoxynucleotides containing the 5′-XA-3′, 5′-XC-3′, 5′-XT-3′, and 5′-XY-3′ sequences (X = AFB(1)−FAPY; Y = 7-deaza-dG)demonstrate that the equilibrium between E and Z isomers is controlled by major groove hydrogen bonding interactions.Structural analysis of the adduct in the 5′-XA-3′ sequence indicates the preference of the E isomer of the formamide group,attributed to formation of a hydrogen bond between the formyl oxygen and the N(6) exocyclic amino group of the 3′-neighboradenine. While the 5′-XA-3′ sequence exhibits the E isomer, the 5′-XC-3′ sequence exhibits a 7:3 E:Z ratio at equilibrium at 283K. The E isomer is favored by a hydrogen bond between the formyl oxygen and the N(4)-dC exocyclic amino group of the 3′-neighbor cytosine. The 5′-XT-3′ and 5′-XY-3′ sequences cannot form such a hydrogen bond between the formyl oxygen and the 3′-neighbor T or Y, respectively, and in these sequence contexts the Z isomer is favored. Additional equilibria between α and β anomers and the potential to exhibit atropisomers about the C5−N(5) bond do not depend upon sequence. In each of the four DNA sequences, the AFB(1)−FAPY adduct maintains the β deoxyribose configuration. Each of these four sequences feature the atropisomer of the AFB(1) moiety that is intercalated above the 5′-face of the damaged guanine. This enforces the Ra axialc onformation for the C5−N(5) bond.


Poly(butylene 2,4-furanoate), an Added Member to the Class of Smart Furan-Based Polyesters for Sustainable Packaging: Structural Isomerism as a Key to Tune the Final Properties.

  • Enrico Bianchi‎ et al.
  • ACS sustainable chemistry & engineering‎
  • 2021‎

High-molecular-weight poly(butylene 2,4-furanoate) (2,4-PBF), an isomer of well-known poly(butylene 2,5-furanoate) (2,5-PBF), was synthesized through an eco-friendly solvent-free polycondensation process and processed in the form of an amorphous film by compression molding. Molecular characterization was carried out by NMR spectroscopy and GPC analysis, confirming the chemical structure and high polymerization degree. Thermal analyses evidenced a reduction of both glass-to-rubber transition and melting temperatures, as well as a detriment of crystallization capability, for 2,4-PBF with respect to 2,5-PBF. Nevertheless, it was possible to induce crystal phase formation by annealing treatment. Wide-angle X-ray scattering revealed that the crystal lattices developed in the two isomers are distinct from each other. The different isomerism affects also the thermal stability, being 2,4-PBF more thermally inert than 2,5-PBF. Functional properties, such as wettability, mechanical response, and gas barrier capability, were tested on both amorphous and semicrystalline 2,4-PBF films and compared with those of 2,5-PBF. Reduced hydrophilicity was determined for 2,4-isomer, in line with its lower average dipole moment, suggesting better chemical resistance to hydrolysis. Stress-strain tests have evidenced the higher flexibility and toughness of 2,4-PBF with respect to those of 2,5-PBF and the possibility of improving its mechanical resistance by annealing. Finally, the different isomerism deeply affects the gas barrier performance, being the O2- and CO2-transmission rates of 2,4-PBF 50 and 110 times lower, respectively, than those of 2,5-PBF. The gas barrier properties turned out to be outstanding under a dry atmosphere as well as in humid conditions, suggesting the presence of interchain hydrogen bonds. The gas blocking capability decreases after annealing because of the presence of disclination associated with the formation of crystals.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: