Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 2,729 papers

IPC - Isoelectric Point Calculator.

  • Lukasz P Kozlowski‎
  • Biology direct‎
  • 2016‎

Accurate estimation of the isoelectric point (pI) based on the amino acid sequence is useful for many analytical biochemistry and proteomics techniques such as 2-D polyacrylamide gel electrophoresis, or capillary isoelectric focusing used in combination with high-throughput mass spectrometry. Additionally, pI estimation can be helpful during protein crystallization trials.


Proteome-pI: proteome isoelectric point database.

  • Lukasz P Kozlowski‎
  • Nucleic acids research‎
  • 2017‎

Proteome-pI is an online database containing information about predicted isoelectric points for 5029 proteomes calculated using 18 methods. The isoelectric point, the pH at which a particular molecule carries no net electrical charge, is an important parameter for many analytical biochemistry and proteomics techniques, especially for 2D gel electrophoresis (2D-PAGE), capillary isoelectric focusing, liquid chromatography-mass spectrometry and X-ray protein crystallography. The database, available at http://isoelectricpointdb.org allows the retrieval of virtual 2D-PAGE plots and the development of customised fractions of proteome based on isoelectric point and molecular weight. Moreover, Proteome-pI facilitates statistical comparisons of the various prediction methods as well as biological investigation of protein isoelectric point space in all kingdoms of life. For instance, using Proteome-pI data, it is clear that Eukaryotes, which evolved tight control of homeostasis, encode proteins with pI values near the cell pH. In contrast, Archaea living frequently in extreme environments can possess proteins with a wide range of isoelectric points. The database includes various statistics and tools for interactive browsing, searching and sorting. Apart from data for individual proteomes, datasets corresponding to major protein databases such as UniProtKB/TrEMBL and the NCBI non-redundant (nr) database have also been precalculated and made available in CSV format.


Isoelectric Point of Proteins at Hydrophobic Interfaces.

  • Vanessa Lautenbach‎ et al.
  • Frontiers in chemistry‎
  • 2021‎

Structural and colloidal stability of proteins at different surfaces and interfaces is of great importance in many fields including medical, pharmaceutical, or material science. Due to their flexibility, proteins tend to respond to their environmental conditions and can undergo structural and conformational changes. For instance, alterations in physiological factors such as temperature, ions concentration, or pH as well as the adsorption to an interface can initiate protein aggregation. Therefore, at different surfaces and interfaces the characterization of the structural and colloidal stability of proteins, which is mainly influenced by their electrostatic and hydrophobic interactions, is of fundamental importance. In this study, we utilized sum frequency generation (SFG) spectroscopy to assess the role of solution pH on the polarity and magnitude of the electric field within the hydration shell of selected model proteins adsorbed to a hydrophobic surface. We used polystyrene (PS) as a model hydrophobic surface and determined the isoelectric point (IEP) of four structurally different model proteins. Comparing the measured IEP of proteins at the PS/solution or air/solution interface with that determined in the bulk solution via zeta potential measurement, we found significant similarities between the IEP of surface adsorbed proteins and those in the bulk aqueous phase. The pH dependence behavior of proteins was correlated to their amino acid composition and degree of hydrophobicity.


Proteome-pI 2.0: proteome isoelectric point database update.

  • Lukasz Pawel Kozlowski‎
  • Nucleic acids research‎
  • 2022‎

Proteome-pI 2.0 is an update of an online database containing predicted isoelectric points and pKa dissociation constants of proteins and peptides. The isoelectric point-the pH at which a particular molecule carries no net electrical charge-is an important parameter for many analytical biochemistry and proteomics techniques. Additionally, it can be obtained directly from the pKa values of individual charged residues of the protein. The Proteome-pI 2.0 database includes data for over 61 million protein sequences from 20 115 proteomes (three to four times more than the previous release). The isoelectric point for proteins is predicted by 21 methods, whereas pKa values are inferred by one method. To facilitate bottom-up proteomics analysis, individual proteomes were digested in silico with the five most commonly used proteases (trypsin, chymotrypsin, trypsin + LysC, LysN, ArgC), and the peptides' isoelectric point and molecular weights were calculated. The database enables the retrieval of virtual 2D-PAGE plots and customized fractions of a proteome based on the isoelectric point and molecular weight. In addition, isoelectric points for proteins in NCBI non-redundant (nr), UniProt, SwissProt, and Protein Data Bank are available in both CSV and FASTA formats. The database can be accessed at http://isoelectricpointdb2.org.


Tuning the isoelectric point of graphene by electrochemical functionalization.

  • Laura Zuccaro‎ et al.
  • Scientific reports‎
  • 2015‎

The ability to control the charge-potential landscape at solid-liquid interfaces is pivotal to engineer novel devices for applications in sensing, catalysis and energy conversion. The isoelectric point (pI)/point of zero charge (pzc) of graphene plays a key role in a number of physico-chemical phenomena occurring at the graphene-liquid interface. Supported by theory, we present here a methodology to identify the pI/pzc of (functionalized) graphene, which also allows for estimating the nature and extent of ion adsorption. The pI of bare graphene (as-prepared, chemical vapor deposition (CVD)-grown) is found to be less than 3.3, which we can continuously modify up to 7.5 by non-covalent electrochemical attachment of aromatic amino groups, preserving the favorable electronic properties of graphene throughout. Modelling all the observed results with detailed theory, we also show that specific adsorption of ions and the substrate play only an ancillary role in our capability to tune the pI of graphene.


IPC 2.0: prediction of isoelectric point and pKa dissociation constants.

  • Lukasz Pawel Kozlowski‎
  • Nucleic acids research‎
  • 2021‎

The isoelectric point is the pH at which a particular molecule is electrically neutral due to the equilibrium of positive and negative charges. In proteins and peptides, this depends on the dissociation constant (pKa) of charged groups of seven amino acids and NH+ and COO- groups at polypeptide termini. Information regarding isoelectric point and pKa is extensively used in two-dimensional gel electrophoresis (2D-PAGE), capillary isoelectric focusing (cIEF), crystallisation, and mass spectrometry. Therefore, there is a strong need for the in silico prediction of isoelectric point and pKa values. In this paper, I present Isoelectric Point Calculator 2.0 (IPC 2.0), a web server for the prediction of isoelectric points and pKa values using a mixture of deep learning and support vector regression models. The prediction accuracy (RMSD) of IPC 2.0 for proteins and peptides outperforms previous algorithms: 0.848 versus 0.868 and 0.222 versus 0.405, respectively. Moreover, the IPC 2.0 prediction of pKa using sequence information alone was better than the prediction from structure-based methods (0.576 versus 0.826) and a few folds faster. The IPC 2.0 webserver is freely available at www.ipc2-isoelectric-point.org.


Using isoelectric point to determine the pH for initial protein crystallization trials.

  • Jobie Kirkwood‎ et al.
  • Bioinformatics (Oxford, England)‎
  • 2015‎

The identification of suitable conditions for crystallization is a rate-limiting step in protein structure determination. The pH of an experiment is an important parameter and has the potential to be used in data-mining studies to help reduce the number of crystallization trials required. However, the pH is usually recorded as that of the buffer solution, which can be highly inaccurate.


Cytochrome c aggregation: A dataset at and far from the isoelectric point.

  • Marilena Carbone‎ et al.
  • Data in brief‎
  • 2020‎

We present SEM, ThT fluorescence and circular dichroism (CD) data of amyloidogenic aggregates of cytochrome c (cyt c).This protein is of outmost relevance in many biochemical processes, such as respiratory chain in mitochondria and cells apoptosis. The present data focus on polymorphism of the protein aggregates obtained at the isoelectric point (IP) and by changing the environmental pH above and below the IP, the protein concentration and the base. The SEM images provide evidence for a large variety of structures, depending on the pH and on protein concentration: mature amyloid fibrils and overstructured platelets are distinguishable in the aggregates below IP, and relatively high cyt c concentration, whereas inhomogeneous amyloid formations are observed above it. At pH 10, i.e. close to IP, only characteristic protein particulates at the micrometric scale are observed. SEM and Fluorescence data have been acquired in dried drops of protein solution, prepared in different bases: TRIS-HCl, at the different pH values, or NaOH (pH 13). Along with this, at relatively low cyt c concentration compact layered structures are visible below the IP, though still made of a thin fibrils reticulate, whereas above the IP, also at low cyt c concentration, granulates structures are present, merging into compact layer, alongside with platelets and mature fibers. These areas are characterized by diffuse ThT-fluorescence and typical fibrils. The loss of the predominant alpha helix secondary structure was verified by CD spectra. Besides the intrinsic scientific relevance, this data collection provides a set of images useful for spectroscopists to discriminate among different morphologic protein formations and suggests pathways for the achievement of different kinds of cytochrome c aggregates. These data are add-ons of the paper published in the International Journal of Biomacromolecules, 138 (2019) 106-115, https://doi.org/10.1016/j.ijbiomac.2019.07.060.


Structure-based charge calculations for predicting isoelectric point, viscosity, clearance, and profiling antibody therapeutics.

  • Nels Thorsteinson‎ et al.
  • mAbs‎
  • 2021‎

The effect of hydrophobicity on antibody aggregation is well understood, and it has been shown that charge calculations can be useful for high-concentration viscosity and pharmacokinetic (PK) clearance predictions. In this work, structure-based charge descriptors are evaluated for their predictive performance on recently published antibody pI, viscosity, and clearance data. From this, we devised four rules for therapeutic antibody profiling which address developability issues arising from hydrophobicity and charged-based solution behavior, PK, and the ability to enrich for those that are approved by the U.S. Food and Drug Administration. Differences in strategy for optimizing the solution behavior of human IgG1 antibodies versus the IgG2 and IgG4 isotypes and the impact of pH alterations in formulation are discussed.


The relationships between the isoelectric point and: length of proteins, taxonomy and ecology of organisms.

  • Joanna Kiraga‎ et al.
  • BMC genomics‎
  • 2007‎

The distribution of isoelectric point (pI) of proteins in a proteome is universal for all organisms. It is bimodal dividing the proteome into two sets of acidic and basic proteins. Different species however have different abundance of acidic and basic proteins that may be correlated with taxonomy, subcellular localization, ecological niche of organisms and proteome size.


Improving emulsion stability based on ovalbumin-carboxymethyl cellulose complexes with thermal treatment near ovalbumin isoelectric point.

  • Zhenshun Li‎ et al.
  • Scientific reports‎
  • 2020‎

Ovalbumin (OVA) is an important protein emulsifier. However, it is unstable near the isoelectric point pH, which limits its applications in the food industry. Polysaccharides may be explored to tackle this challenge by improving its pH-dependent instability. In this work, carboxymethyl cellulose (CMC) was used as a model polysaccharide to mix with OVA near its isoelectric point (pH 4.7) with subsequent mild heating at 60 °C for 30 min. The molecular interactions between OVA and CMC were comprehensively studied via a series of characterizations, including turbidity, zeta potential, intrinsic fluorescence, surface hydrophobicity, circular dichroism (CD) spectra and Fourier transform infrared spectroscopy (FTIR). The droplet sizes of the emulsions prepared by OVA-CMC were measured to analyze emulsifying property and stability. The results indicated that free OVA was easily aggregated due to loss of surface charges, while complexing with CMC significantly inhibited OVA aggregation before and after heating owing to the strong electrostatic repulsion. In addition, OVA exposed more hydrophobic clusters after heating, which resulted in the growth of surface hydrophobicity. Altogether, the heated OVA-CMC complexes presented the best emulsifying property and stability. Our study demonstrated that complexing OVA with CMC not only greatly improved its physicochemical properties but also significantly enhanced its functionality as a food-grade emulsifying agent, expanding its applications in the food industry, as development of emulsion-based acidic food products.


A novel scalable, robust downstream process for oncolytic rat parvovirus: isoelectric point-based elimination of empty particles.

  • Barbara Leuchs‎ et al.
  • Applied microbiology and biotechnology‎
  • 2017‎

The rodent protoparvovirus H-1PV, with its oncolytic and oncosuppressive properties, is a promising anticancer agent currently under testing in clinical trials. This explains the current demand for a scalable, good manufacturing practice-compatible virus purification process yielding high-grade pure infectious particles and overcoming the limitations of the current system based on density gradient centrifugation. We describe here a scalable process offering high purity and recovery. Taking advantage of the isoelectric point difference between full and empty particles, it eliminates most empty particles. Full particles have a significantly higher cationic charge than empty ones, with an isoelectric point of 5.8-6.2 versus 6.3 (as determined by isoelectric focusing and chromatofocusing). Thanks to this difference, infectious full particles can be separated from empty particles and most protein impurities by Convective interaction media® diethylaminoethyl (DEAE) anion exchange chromatography: applying unpurified H-1PV to the column in 0.15 M NaCl leaves, the former on the column and the latter in the flow through. The full particles are then recovered by elution with 0.25 M NaCl. The whole large-scale purification process involves filtration, single-step DEAE anion exchange chromatography, buffer exchange by cross-flow filtration, and final formulation in Visipaque/Ringer solution. It results in 98% contaminating protein removal and 96% empty particle elimination. The final infectious particle concentration reaches 3.5E10 plaque forming units (PFU)/ml, with a specific activity of 6.8E11 PFU/mg protein. Overall recovery is over 40%. The newly established method is suitable for use in commercial production.


Virtual 2D mapping of the viral proteome reveals host-specific modality distribution of molecular weight and isoelectric point.

  • Tapan Kumar Mohanta‎ et al.
  • Scientific reports‎
  • 2021‎

A proteome-wide study of the virus kingdom based on 1.713 million protein sequences from 19,128 virus proteomes was conducted to construct an overall proteome map of the virus kingdom. Viral proteomes encode an average of 386.214 amino acids per protein with the variation in the number of protein-coding sequences being host-specific. The proteomes of viruses of fungi hosts (882.464) encoded the greatest number of amino acids, while the viral proteome of bacterial host (210.912) encoded the smallest number of amino acids. Viral proteomes were found to have a host-specific amino acid composition. Leu (8.556%) was the most abundant and Trp (1.274%) the least abundant amino acid in the collective proteome of viruses. Viruses were found to exhibit a host-dependent molecular weight and isoelectric point of encoded proteins. The isoelectric point (pI) of viral proteins was found in the acidic range, having an average pI of 6.89. However, the pI of viral proteins of algal (pI 7.08) and vertebrate (pI 7.09) hosts was in the basic range. The virtual 2D map of the viral proteome from different hosts exhibited host-dependent modalities. The virus proteome from algal hosts and archaea exhibited a bimodal distribution of molecular weight and pI, while the virus proteome of bacterial host exhibited a trimodal distribution, and the virus proteome of fungal, human, land plants, invertebrate, protozoa, and vertebrate hosts exhibited a unimodal distribution.


Global expression study in colorectal cancer on proteins with alkaline isoelectric point by two-dimensional difference gel electrophoresis.

  • Taika Muto‎ et al.
  • Journal of proteomics‎
  • 2011‎

Colorectal cancer is one of the leading causes of cancer death worldwide. To identify candidates for biomarkers and therapeutic targets, we investigated the proteome of colorectal cancer tissues. Using 2D-DIGE in combination with our original large format electrophoresis apparatus, we compared surgically resected normal and tumor tissues from 53 patients with colorectal cancer. We focused on proteins with an alkaline pI using IPG gels for the alkaline range. We observed 1687 protein spots, and found 100 spots with statistical (p<0.01) and significant (>2-fold) differences between the normal and the tumor tissue groups. Among these 100 protein spots, five showed a different intensity between tumor tissues from the stage-II and the stage-III patients. MS experiments revealed that these 100 protein spots corresponded to 58 unique proteins. These included six proteins which had not been previously reported to be associated with colorectal cancer. Among these proteins, five were not reported in any type of malignancy. IEF/western blotting confirmed the differences in protein expression between the normal and the tumor tissues. These results may provide an insight for biomarker development and drug target discovery in colorectal cancer.


Isoelectric point-based fractionation by HiRIEF coupled to LC-MS allows for in-depth quantitative analysis of the phosphoproteome.

  • Elena Panizza‎ et al.
  • Scientific reports‎
  • 2017‎

Protein phosphorylation is involved in the regulation of most eukaryotic cells functions and mass spectrometry-based analysis has made major contributions to our understanding of this regulation. However, low abundance of phosphorylated species presents a major challenge in achieving comprehensive phosphoproteome coverage and robust quantification. In this study, we developed a workflow employing titanium dioxide phospho-enrichment coupled with isobaric labeling by Tandem Mass Tags (TMT) and high-resolution isoelectric focusing (HiRIEF) fractionation to perform in-depth quantitative phosphoproteomics starting with a low sample quantity. To benchmark the workflow, we analyzed HeLa cells upon pervanadate treatment or cell cycle arrest in mitosis. Analyzing 300 µg of peptides per sample, we identified 22,712 phosphorylation sites, of which 19,075 were localized with high confidence and 1,203 are phosphorylated tyrosine residues, representing 6.3% of all detected phospho-sites. HiRIEF fractions with the most acidic isoelectric points are enriched in multiply phosphorylated peptides, which represent 18% of all the phospho-peptides detected in the pH range 2.5-3.7. Cross-referencing with the PhosphoSitePlus database reveals 1,264 phosphorylation sites that have not been previously reported and kinase association analysis suggests that a subset of these may be functional during the mitotic phase.


Shift in the isoelectric-point of milk proteins as a consequence of adaptive divergence between the milks of mammalian species.

  • Nora Khaldi‎ et al.
  • Biology direct‎
  • 2011‎

Milk proteins are required to proceed through a variety of conditions of radically varying pH, which are not identical across mammalian digestive systems. We wished to investigate if the shifts in these requirements have resulted in marked changes in the isoelectric point and charge of milk proteins during evolution.


Structural organization and functional divergence of high isoelectric point α-amylase genes in bread wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.).

  • Liangliang Ju‎ et al.
  • BMC genetics‎
  • 2019‎

High isoelectric point α-amylase genes (Amy1) play major roles during cereal seed germination, and are associated with unacceptable high residual α-amylase activities in ripe wheat grains. However, in wheat and barley, due to extremely high homology of duplicated copies, and large and complex genome background, the knowledge on this multigene family is limited.


Cost for sickle cell disease screening using isoelectric focusing with dried blood spot samples and estimation of price thresholds for a point-of-care test in Uganda.

  • Mercy Mvundura‎ et al.
  • Journal of blood medicine‎
  • 2019‎

Early identification through newborn screening is the first step in active management of sickle cell disease (SCD). Uganda currently screens newborns and infants under 2 years for SCD in high HIV-burden districts using isoelectric focusing with dried blood spot samples. Our analysis sought to estimate the costs per child screened for SCD using this method in Uganda and then to use those data to estimate the price threshold for screening with a point-of-care (POC) test.


RNA-dependent proteome solubility maintenance in Escherichia coli lysates analysed by quantitative mass spectrometry: Proteomic characterization in terms of isoelectric point, structural disorder, functional hub, and chaperone network.

  • Chan Park‎ et al.
  • RNA biology‎
  • 2024‎

Protein aggregation, a consequence of misfolding and impaired proteostasis, can lead to cellular malfunctions such as various proteinopathies. The mechanisms protecting proteins from aggregation in complex cellular environments have long been investigated, often from a protein-centric viewpoint. However, our study provides insights into a crucial, yet overlooked actor: RNA. We found that depleting RNAs from Escherichia coli lysates induces global protein aggregation. Our quantitative mass spectrometry analysis identified over 900 statistically significant proteins from the Escherichia coli proteome whose solubility depends on RNAs. Proteome-wide characterization showed that the RNA dependency is particularly enriched among acidic proteins, intrinsically disordered proteins, and structural hub proteins. Moreover, we observed distinct differences in RNA-binding mode and Gene Ontology categories between RNA-dependent acidic and basic proteins. Notably, the solubility of key molecular chaperones [Trigger factor, DnaJ, and GroES] is largely dependent on RNAs, suggesting a yet-to-be-explored hierarchical relationship between RNA-based chaperone (termed as chaperna) and protein-based chaperones, both of which constitute the whole chaperone network. These findings provide new insights into the RNA-centric role in maintaining healthy proteome solubility in vivo, where proteins associate with a variety of RNAs, either stably or transiently.


Glycoproteomics: identifying the glycosylation of prostate specific antigen at normal and high isoelectric points by LC-MS/MS.

  • Ehwang Song‎ et al.
  • Journal of proteome research‎
  • 2014‎

Prostate specific antigen (PSA) is currently used as a biomarker to diagnose prostate cancer. PSA testing has been widely used to detect and screen prostate cancer. However, in the diagnostic gray zone, the PSA test does not clearly distinguish between benign prostate hypertrophy and prostate cancer due to their overlap. To develop more specific and sensitive candidate biomarkers for prostate cancer, an in-depth understanding of the biochemical characteristics of PSA (such as glycosylation) is needed. PSA has a single glycosylation site at Asn69, with glycans constituting approximately 8% of the protein by weight. Here, we report the comprehensive identification and quantitation of N-glycans from two PSA isoforms using LC-MS/MS. There were 56 N-glycans associated with PSA, whereas 57 N-glycans were observed in the case of the PSA-high isoelectric point (pI) isoform (PSAH). Three sulfated/phosphorylated glycopeptides were detected, the identification of which was supported by tandem MS data. One of these sulfated/phosphorylated N-glycans, HexNAc5Hex4dHex1s/p1 was identified in both PSA and PSAH at relative intensities of 0.52 and 0.28%, respectively. Quantitatively, the variations were monitored between these two isoforms. Because we were one of the laboratories participating in the 2012 ABRF Glycoprotein Research Group (gPRG) study, those results were compared to that presented in this study. Our qualitative and quantitative results summarized here were comparable to those that were summarized in the interlaboratory study.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: