Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,885 papers

CYP3A in horse intestines.

  • Eva Tydén‎ et al.
  • Toxicology and applied pharmacology‎
  • 2004‎

The intestinal enterocytes provide the initial site for cytochrome P450 (CYP)-mediated metabolism of orally absorbed xenobiotics. In man and some animal species, the CYP3A subfamily is highly expressed in the intestines and considered to be important in the first-pass metabolism of drugs and other xenobiotics. The aim of the present study was to investigate the mRNA expression, immunohistochemical localization and catalytic activity of CYP3A in the intestines of horse. Real-time RT-PCR analyses showed that the highest CYP3A mRNA expression was present in the duodenum with a decreasing level towards jejunum, ileum, cecum, and colon. The CYP3A mRNA expression in the liver was similar as in the anterior part of the jejunum, but about 4.5 times lower than in the anterior part of the duodenum. Immunohistochemistry showed CYP3A immunoreactivity in the cytoplasm of the enterocytes, which decreased distally along the intestinal tract. CYP3A-dependent metabolic activity rose slightly from the anterior to the distal part of the duodenum and the anterior part of the jejunum and then declined to the middle and distal parts of the jejunum and the ileum, cecum, and colon. Our results suggest that CYP3A in the small intestine plays a major role in first-pass metabolism and may affect bioavailability and therapeutic efficiency of some orally administrated drugs in horse.


Transcriptional landscape in rat intestines under hypobaric hypoxia.

  • Liuyang Tian‎ et al.
  • PeerJ‎
  • 2021‎

Oxygen metabolism is closely related to the intestinal homeostasis environment, and the occurrence of many intestinal diseases is as a result of the destruction of oxygen gradients. The hypobaric hypoxic environment of the plateau can cause dysfunction of the intestine for humans, such as inflammation. The compensatory response of the small intestine cells to the harsh environment definitely changes their gene expression. How the small intestine cells response the hypobaric hypoxic environment is still unclear. We studied the rat small intestine under hypobaric hypoxic conditions to explore the transcriptional changes in rats under acute/chronic hypobaric hypoxic conditions. We randomly divided rats into three groups: normal control group (S), acute hypobaric hypoxia group, exposing to hypobaric hypoxic condition for 2 weeks (W2S) and chronic hypobaric hypoxia group, exposing to hypobaric hypoxic condition for 4 weeks (W4S). The RNA sequencing was performed on the small intestine tissues of the three groups of rats. The results of principal component analysis showed that the W4S and W2S groups were quite different from the control group. We identified a total of 636 differentially expressed genes, such as ATP binding cassette, Ace2 and Fabp. KEGG pathway analysis identified several metabolic and digestive pathways, such as PPAR signaling pathway, glycerolipid metabolism, fat metabolism, mineral absorption and vitamin metabolism. Cogena analysis found that up-regulation of digestive and metabolic functions began from the second week of high altitude exposure. Our study highlights the critical role of metabolic and digestive pathways of the intestine in response to the hypobaric hypoxic environment, provides new aspects for the molecular effects of hypobaric hypoxic environment on intestine, and raises further questions about between the lipid metabolism disorders and inflammation.


Intestinal Preservation Injury: A Comparison Between Rat, Porcine and Human Intestines.

  • John Mackay Søfteland‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

Advanced preservation injury (PI) after intestinal transplantation has deleterious short- and long-term effects and constitutes a major research topic. Logistics and costs favor rodent studies, whereas clinical translation mandates studies in larger animals or using human material. Despite diverging reports, no direct comparison between the development of intestinal PI in rats, pigs, and humans is available. We compared the development of PI in rat, porcine, and human intestines. Intestinal procurement and cold storage (CS) using histidine-tryptophan-ketoglutarate solution was performed in rats, pigs, and humans. Tissue samples were obtained after 8, 14, and 24 h of CS), and PI was assessed morphologically and at the molecular level (cleaved caspase-3, zonula occludens, claudin-3 and 4, tricellulin, occludin, cytokeratin-8) using immunohistochemistry and Western blot. Intestinal PI developed slower in pigs compared to rats and humans. Tissue injury and apoptosis were significantly higher in rats. Tight junction proteins showed quantitative and qualitative changes differing between species. Significant interspecies differences exist between rats, pigs, and humans regarding intestinal PI progression at tissue and molecular levels. These differences should be taken into account both with regards to study design and the interpretation of findings when relating them to the clinical setting.


Isolation and analyses of lamina propria lymphocytes from mouse intestines.

  • Eunha Kim‎ et al.
  • STAR protocols‎
  • 2022‎

Investigating intestinal immune responses is critical to understanding local and systemic immunity. However, obtaining resident intestinal immune cells with high cell viability can be challenging. Here, we provide an optimized protocol to isolate lamina propria lymphocytes from the small and large intestines, including lymphocyte activation for cytokine expression analysis and techniques for surface and intracellular antibody staining and flow cytometry. This protocol can be used for isolating and analyzing tissue-resident immune cells from other tissues with specified modifications. For complete details on the use and execution of this protocol, please refer to Kim et al. (2022).


A sequential assessment of the preservation injury in porcine intestines.

  • Mihai Oltean‎ et al.
  • The Journal of surgical research‎
  • 2017‎

Clinical and experimental evidence strongly suggest that ischemia-reperfusion injury after intestinal transplantation has deleterious short- and long-term effects and finding means to reduce ischemia-reperfusion injury is a major research area. The anatomical and physiological similarities between the human and porcine digestive tract favor its use as a preclinical model for translational research. Intriguingly, no systematic appraisal of the development of the intestinal preservation injury in pigs is available.


Alphacoronavirus Detection in Lungs, Liver, and Intestines of Bats from Brazil.

  • Cíntia Bittar‎ et al.
  • Microbial ecology‎
  • 2020‎

Bats are flying mammals distributed worldwide known to host several types of Coronavirus (CoV). Since they were reported as the probable source of spillover of highly pathogenic CoV into the human population, investigating the circulation of this virus in bats around the world became of great importance. We analyzed samples from 103 bats from two distinct regions in Brazil. Coronavirus from the Alphacoronavirus genus was detected in 12 animals, 11 from São José do Rio Preto-SP region and 1 from Barreiras-BA region, resulting in a prevalence of 17.18% and 2.56% respectively. The virus was detected not only in intestines but also in lungs and liver. Phylogenetic analysis based on nsP12 genomic region suggests that the sequences group according to host family and sampling location. Studies on the circulation of these viruses in bats remain important to understand the ecology and evolutionary relationship of these pathogens.


Development of extrinsic innervation in the abdominal intestines of human embryos.

  • Nutmethee Kruepunga‎ et al.
  • Journal of anatomy‎
  • 2020‎

Compared to the intrinsic enteric nervous system (ENS), development of the extrinsic ENS is poorly documented, even though its presence is easily detectable with histological techniques. We visualised its development in human embryos and foetuses of 4-9.5 weeks post-fertilisation using Amira 3D-reconstruction and Cinema 4D-remodelling software. The extrinsic ENS originated from small, basophilic neural crest cells (NCCs) that migrated to the para-aortic region and then continued ventrally to the pre-aortic region, where they formed autonomic pre-aortic plexuses. From here, nerve fibres extended along the ventral abdominal arteries and finally connected to the intrinsic system. Schwann cell precursors (SCPs), a subgroup of NCCs that migrate on nerve fibres, showed region-specific differences in differentiation. SCPs developed into scattered chromaffin cells of the adrenal medulla dorsolateral to the coeliac artery (CA) and into more tightly packed chromaffin cells of the para-aortic bodies ventrolateral to the inferior mesenteric artery (IMA), with reciprocal topographic gradients between both fates. The extrinsic ENS first extended along the CA and then along the superior mesenteric artery (SMA) and IMA 5 days later. Apart from the branch to the caecum, extrinsic nerves did not extend along SMA branches in the herniated parts of the midgut until the gut loops had returned in the abdominal cavity, suggesting a permissive role of the intraperitoneal environment. Accordingly, extrinsic innervation had not yet reached the distal (colonic) loop of the midgut at 9.5 weeks development. Based on intrinsic ENS-dependent architectural remodelling of the gut layers, extrinsic innervation followed intrinsic innervation 3-4 Carnegie stages later.


Bacterial community assembly and turnover within the intestines of developing zebrafish.

  • Qingyun Yan‎ et al.
  • PloS one‎
  • 2012‎

The majority of animal associated microorganisms are present in digestive tract communities. These intestinal communities arise from selective pressures of the gut habitats as well as host's genotype are regarded as an extra 'organ' regulate functions that have not evolved wholly on the host. They are functionally essential in providing nourishment, regulating epithelial development, and influencing immunity in the vertebrate host. As vertebrates are born free of microorganisms, what is poorly understood is how intestinal bacterial communities assemble and develop in conjunction with the development of the host.


Ontogeny of alkaline phosphatase activity in infant intestines and breast milk.

  • Ye Yang‎ et al.
  • BMC pediatrics‎
  • 2019‎

Necrotizing enterocolitis (NEC) is a devastating disease of intestinal inflammation that primarily affects premature infants. A potential risk factor for necrotizing enterocolitis is exposure of the premature neonatal intestine to environmental bacteria and their proinflammatory products such as lipopolysaccharide. The metalloenzyme alkaline phosphatase (ALP) has been shown to reduce lipopolysaccharide-mediated inflammation. Additionally, premature rat pups have reduced alkaline phosphatase activity and expression as compared to full term pups. To explore the possibility that the human premature neonatal intestine has a paucity of alkaline phosphatase activity, we measured endogenously produced intestinal alkaline phosphatase activity in meconium as a function of gestational age. To test whether breast milk could serve as a source of exogenous alkaline phosphatase to the neonatal intestine through ingestion, we measured alkaline phosphatase activity in breast milk across a range of time points post-birth.


Staphylococci in poultry intestines: a comparison between farmed and household chickens.

  • Muhammad Ali Syed‎ et al.
  • Poultry science‎
  • 2020‎

Both pathogenic as well as nonpathogenic species of staphylococci have been reported in poultry, but these studies have not compared staphylococcal flora of both farmed and household broiler chickens. Staphylococci from farmed (n = 51) and household chicken intestines (n = 43) were isolated and tested for resistance to antimicrobials, presence of resistance genes, and inhibitory activity against other bacteria; correlation of resistance phenotype and genotype was also evaluated. At least 12 staphylococcal species were identified; Staphylococcus carnosus subspecies carnosus was the predominant species from both sources. Most farmed chicken staphylococci were resistant to tigecycline (38/51; 74.8%) while the highest level of resistance among the household chicken staphylococci was to clindamycin (31/43; 72.1%). The mecA gene was only detected in staphylococci from household chickens, whereas ermC and tetK or tetM were found in staphylococci from both groups of birds. Multidrug resistance (resistance ≥ 2 antimicrobial classes) was observed in 88% of resistant staphylococci ranging from 2 to 8 classes and up to 10 antimicrobials. Isolates produced inhibitory activity against 7 clinical bacterial strains primarily Enterococcus faecalis (25/88; 28.4%) and Escherichia coli (22/88; 25%). This study demonstrated that the staphylococcal population among farmed and household chickens varies by species and resistance to antimicrobials. These results may reflect the influence of the environment or habitat of each bird type on the intestinal microflora. As resistance in the staphylococci to antimicrobials used to treat human infections was detected, further study is warranted to determine strategies to prevent transfer of these resistant populations to humans via contamination of the poultry meat.


Temporal progression of Alzheimer's disease in brains and intestines of transgenic mice.

  • Gunjan D Manocha‎ et al.
  • Neurobiology of aging‎
  • 2019‎

The amyloid beta (Aβ) peptide is associated with the neurodegenerative and inflammatory changes in brains affected by Alzheimer's disease (AD). We hypothesized that the enteric nervous system also produces Aβ in an intestinal component of disease. To test this idea, we compared C57BL/6 wild-type (WT) male and female mice to two models of Alzheimer's disease, amyloid precursor protein (APP)/presenilin 1 (PS1) mice and amyloid precursor protein NL-G-F (AppNL-G-F) mice, at 3, 6, and 12 months of age. Brain Aβ plaque deposition in AppNL-G-F mice preceded that in the APP/PS1 mice, observable by 3 months. Three-month-old female AppNL-G-F mice had decreased intestinal motility compared with WT and APP/PS1 mice. However, 3-month-old female APP/PS1 mice demonstrated increased intestinal permeability compared with WT and AppNL-G-F mice. Both sexes of APP/PS1 and AppNL-G-F mice demonstrated increased colon lipocalin 2 mRNA and insoluble Aβ 1-42 levels at 3 months. These data demonstrate an unrecognized enteric aspect of disease in 2 different mouse models correlating with the earliest brain changes.


Mass isolation of staged Drosophila pupal intestines for analysis of protein ubiquitylation.

  • Ruoxi Wang‎ et al.
  • STAR protocols‎
  • 2023‎

Large quantities of developmentally synchronized pupal intestines are required for biochemistry experiments. Here, we present a protocol for the mass isolation of staged pupal intestines during Drosophila melanogaster development based on buoyancy in sucrose for biochemical evaluation of protein ubiquitylation. We describe steps for crossing flies, preparation of samples, immunoprecipitation of proteins from staged isolated tissues, and analysis of samples by western blot. This protocol can be extended to investigate biochemical changes in other tissues. For complete details on the use and execution of this protocol, please refer to Wang et al. (2023).1.


Micro-RNA expression profile of chicken small intestines during Eimeria necatrix infection.

  • Ting-Li Liu‎ et al.
  • Poultry science‎
  • 2020‎

Eimeria necatrix is a high pathogenic pathogen second to Eimeria tenella causing chicken coccidiosis. However, the precise underlying molecular mechanisms of interaction between E. necatrix and chickens are not fully understood. Accumulating evidences suggest that micro-RNAs (miRNAs) play pivotal regulatory roles in various diseases, including parasitic diseases. In the present study, the expression profile of miRNAs in Hy-line variety white chicken small intestines infected with E. necatrix was studied by using deep sequencing. A total of 35 miRNAs (including 16 significantly upregulated and 19 significantly downregulated miRNAs) were significantly differentially expressed (DE) in infected tissues at 108 h post-infection (pi). Real-time polymerase chain of 10 miRNAs (including 5 upregulated and 5 downregulated) randomly selected successfully confirmed the effectiveness of deep sequencing. Target prediction showed that 4,568 mRNAs could be regulated by 21 (including 12 upregulated and 9 downregulated) of 35 differentially expressed miRNAs. Functional analysis indicated that target genes of these differentially expressed miRNAs would be involved in pathways related to infection of E. necatrix, including cell differentiation, adhesion, proliferation, and apoptosis (e.g., MAPK signaling pathway and PPAR signaling pathway). To our best knowledge, this is the first study on the miRNA expression profile of small intestines during E. necatrix infection, and the findings in the present study suggested that these DE miRNAs would play important regulatory role in the interaction between E. necatrix and chicken intestines.


Autophagy induction in tumor surrounding cells promotes tumor growth in adult Drosophila intestines.

  • Hang Zhao‎ et al.
  • Developmental biology‎
  • 2021‎

During tumorigenesis, tumor cells interact intimately with their surrounding cells (microenvironment) for their growth and progression. However, the roles of tumor microenvironment in tumor development and progression are not fully understood. Here, using an established benign tumor model in adult Drosophila intestines, we find that non-cell autonomous autophagy (NAA) is induced in tumor surrounding neighbor cells. Tumor growth can be significantly suppressed by genetic ablation of autophagy induction in tumor neighboring cells, indicating that tumor neighboring cells act as tumor microenvironment to promote tumor growth. Autophagy in tumor neighboring cells is induced downstream of elevated ROS and activated JNK signaling in tumor cells. Interestingly, we find that active transport of nutrients, such as amino acids, from tumor neighboring cells sustains tumor growth, and increasing nutrient availability could significantly restore tumor growth. Together, these data demonstrate that tumor cells take advantage of their surrounding normal neighbor cells as nutrient sources through NAA to meet their high metabolic demand for growth and progression. Thus we provide insights into our understanding of the mechanisms underlying the interaction between tumor cells and their microenvironment in tumor development.


In vivo imaging reveals unique neutrophil transendothelial migration patterns in inflamed intestines.

  • David P Sullivan‎ et al.
  • Mucosal immunology‎
  • 2018‎

Neutrophil (PMN) infiltration of the intestinal mucosa is a hallmark of gastrointestinal inflammation, with significant implications for host defense, injury and repair. However, phenotypic and mechanistic aspects of PMN recruitment in inflamed intestines have not been explored in vivo. Using novel epithelial/PMN fluorescence reporter mice, advanced intravital imaging and 3D reconstruction analysis, we mapped the microvasculature architecture across the intestinal layers and determined that in response to Salmonella/endotoxin-induced inflammation, PMN transendothelial migration (TEM) was restricted to submucosal vessels. PMN TEM was not observed in villus or crypt vessels, proximal to the epithelium that underlies the intestinal lumen, and was partially dependent on (C-X-C motif) ligands 1 (CXCL1) and 2 (CXCL2) expression, which was found to be elevated in the submucosa layer. Restricted PMN extravasation at the submucosa and subsequent PMN interstitial migration may serve as a novel regulatory step of PMN effector function and recruitment to the luminal space in inflamed intestines.


Oral Spermine Supplementation in Gestated Rabbit: A Study on Villi Height of Immature Intestines.

  • Riana Pauline Tamba‎ et al.
  • Frontiers in surgery‎
  • 2021‎

Introduction: Immature intestines are the major problem in prematurity. Postnatal oral spermine has been shown in studies to improve intestinal maturation in rats and piglets. This study aimed to find out the efficacy of spermine in rabbits during gestation. Method: An experimental study was done in an unblinded, randomized manner on those treated with and without spermine administration. A morphological examination of hematoxylin-eosin-stained villi was performed under a light microscope with a focus on villi height. Data were subjected to analysis. Results: The median of the spermine-treated group was found to be higher at 24, 26, and 28 days than the non-spermine group, but was not significantly different. Conclusion: Oral spermine supplementation during gestation might improve intestinal villi height in immature rabbit intestines.


Asymmetric mucosal structure, mesenteric versus antimesenteric, in mouse, rat, and human small intestines.

  • Anna Casselbrant‎ et al.
  • Physiological reports‎
  • 2022‎

The morphology of the small intestinal mucosa is reflected by the degree of stimuli. Previous studies have come to different conclusion about whether the mucosa is equally symmetrical. The aim of the study is to investigate whether there are structural differences in the mesenteric versus antimesenteric mucosa in mice, rats, and humans. Jejunal biopsies from mice and rats were saved. Samples from human small intestine were obtained from patients undergoing Roux-en-Y gastric bypass surgery. Fixed samples were used to morphologically evaluate villus height and enlargement factor due to villi. The number of goblet cells, mast cells, enteroendocrine cells, and Paneth cells were histologically analyzed in the villus structure. Cell turnover was analyzed by Ki-67 staining. There was a significant increased villi height and villus enlargement factor antimesenterically in mice, rats, and human small intestines. The distribution of goblet cells, mast cells, and Paneth cells were equal while the number of enteroendocrine cells was increased antimesenteric in the human samples. The crypt mitotic activity was almost 20% higher in the antimesenteric part of jejunum. In summary we found longer villi, greater surface enlargement, and increased number of enteroendocrine cells as well as increased cell turnover antimesenterically. These differences may be of importance in understanding normal gastrointestinal physiology in health and disease.


Transcriptome analysis of Macrobrachium rosenbergii intestines under the white spot syndrome virus and poly (I:C) challenges.

  • Zhengfeng Ding‎ et al.
  • PloS one‎
  • 2018‎

Intestine is a primary site of the white spot syndrome virus (WSSV) infection in most crustaceans. To date, little is known about its role in the anti-viral immune response in the freshwater prawn Macrobrachium rosenbergii. In this study, next-generation sequencing was employed to investigate the M. rosenbergii intestine transcriptomes following WSSV or poly I:C challenges. A total of 41.06 M, 39.58 M and 47.00 M clean reads were generated and assembled into 65,340, 71,241 and 70,614 transcripts from the negative control group (NG), WSSV challenge group (WG) and poly I:C treatment group (PG) respectively. Based on homology searches, functional annotation with 7 databases (NR, NT, GO, COG, KEGG, Swissprot and Interpro) for 88,412 transcripts was performed. After WSSV or poly (I:C) challenge, the numbers of up-regulated differentially expressed genes (DEGs) were greater than the down-regulated DEGs. Gene Ontology (GO) classification of the DEGs also distributed similarly, with the same top 10 annotations and were all assigned to the signaling pathways, including spliceosome, Rap1 signaling pathway, proteoglycans, PI3K-Akt signaling pathway, ECM receptor interaction. Results could contribute to a better understanding of the intestinal immune response to viral pathogens.


Identification of Key Pathways and Genes in SARS-CoV-2 Infecting Human Intestines by Bioinformatics Analysis.

  • Ji-Chun Chen‎ et al.
  • Biochemical genetics‎
  • 2022‎

COVID-19 is a serious infectious disease that has recently swept the world, and research on its causative virus, SARS-CoV-2, remains insufficient. Therefore, this study uses bioinformatics analysis techniques to explore the human digestive tract diseases that may be caused by SARS-CoV-2 infection. The gene expression profile data set, numbered GSE149312, is from the Gene Expression Omnibus (GEO) database and is divided into a 24-h group and a 60-h group. R software is used to analyze and screen out differentially expressed genes (DEGs) and then gene ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses are performed. In KEGG, the pathway of non-alcoholic fatty liver disease exists in both the 24-h group and 60-h group. STRING is used to establish a protein-protein interaction (PPI) network, and Cytoscape is then used to visualize the PPI and define the top 12 genes of the node as the hub genes. Through verification, nine statistically significant hub genes are identified: AKT1, TIMP1, NOTCH, CCNA2, RRM2, TTK, BUB1B, KIF20A, and PLK1. In conclusion, the results of this study can provide a certain direction and basis for follow-up studies of SARS-CoV-2 infection of the human digestive tract and provide new insights for the prevention and treatment of diseases caused by SARS-CoV-2.


Enterobacter hormaechei in the intestines of housefly larvae promotes host growth by inhibiting harmful intestinal bacteria.

  • Qian Zhang‎ et al.
  • Parasites & vectors‎
  • 2021‎

As a pervasive insect that transmits a variety of pathogens to humans and animals, the housefly has abundant and diverse microbial communities in its intestines. These gut microbes play an important role in the biology of insects and form a symbiotic relationship with the host insect. Alterations in the structure of the gut microbial community would affect larval development. Therefore, it is important to understand the mechanism regulating the influence of specific bacteria on the development of housefly larvae.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: