Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 110 papers

Unique synaptic topography of crest-type synapses in the interpeduncular nucleus.

  • Laxmi Kumar Parajuli‎ et al.
  • Biochemical and biophysical research communications‎
  • 2020‎

Neurons in the central nervous system display a great diversity of synaptic architecture. While much of our knowledge on the excitatory synapse morphology derives from the prototypical asymmetric synapses, little has been studied about the atypical crest-type synapse that exists in the restricted brain regions. Here, we used focused ion beam scanning electron microscopy (FIB/SEM) to image a neuropil volume of interpeduncular nucleus (IPN) and manually reconstructed several dendrites to obtain an insight about the topography and quantitative features of crest synapses. Three-dimensional reconstruction showed numerous U-shaped structures protruding from the IPN dendrites. On either faces of the U-shaped structure, a pair of crest synapses are aligned in parallel such that there exists a positive correlation between the postsynaptic density (PSD) area of synapses that participate in pair formation. Interestingly, mitochondria are excluded from the site of crest synapses. Several presynaptic axons run through the hollow, cylindrical space of the U-shape grooves such that the plasma membrane of the axon and the dendrite are organized in a tight opposition without any intervening glial membrane. Unlike the peculiar dendritic morphology, IPN neurons possess typical somatic morphology with an oval, centrally located nucleus. In conclusion, our data reveals a hitherto unknown unique topographical feature of crest synapses in the IPN.


Genetic dissection of medial habenula-interpeduncular nucleus pathway function in mice.

  • Yuki Kobayashi‎ et al.
  • Frontiers in behavioral neuroscience‎
  • 2013‎

The habenular complex linking forebrain and midbrain structures is subdivided into the medial (mHb) and the lateral nuclei (lHb). The mHb is characterized by the expression of specific nicotinic acetylcholine receptor isoforms and the release of acetylcholine to the interpeduncular nucleus (IPN), the sole output region of the mHb. The specific function of this circuit, however, is poorly understood. Here we generated transgenic mice in which mHb cells were selectively ablated postnatally. These lesions led to large reductions in acetylcholine levels within the IPN. The mutant mice exhibited abnormalities in a wide range of behavioral domains. They tended to be hyperactive during the early night period and were maladapted when repeatedly exposed to new environments. Mutant mice also showed a high rate of premature responses in the 5-choice serial reaction time task (5-CSRTT), indicating impulsive and compulsive behavior. Additionally, mice also exhibited delay and effort aversion in a decision-making test, deficits in spatial memory, a subtle increase in anxiety levels, and attenuated sensorimotor gating. IntelliCage studies under social housing conditions confirmed hyperactivity, environmental maladaptation, and impulsive/compulsive behavior, delay discounting, deficits in long-term spatial memory, and reduced flexibility in complex learning paradigms. In 5-CSRTT and adaptation tasks, systemic administration of nicotine slowed down nose-poke reaction and enhanced adaptation in control but not mutant mice. These findings demonstrate that the mHb-IPN pathway plays a crucial role in inhibitory control and cognition-dependent executive functions.


Nicotine aversion is mediated by GABAergic interpeduncular nucleus inputs to laterodorsal tegmentum.

  • Shannon L Wolfman‎ et al.
  • Nature communications‎
  • 2018‎

Nicotine use can lead to dependence through complex processes that are regulated by both its rewarding and aversive effects. Recent studies show that aversive nicotine doses activate excitatory inputs to the interpeduncular nucleus (IPN) from the medial habenula (MHb), but the downstream targets of the IPN that mediate aversion are unknown. Here we show that IPN projections to the laterodorsal tegmentum (LDTg) are GABAergic using optogenetics in tissue slices from mouse brain. Selective stimulation of these IPN axon terminals in LDTg in vivo elicits avoidance behavior, suggesting that these projections contribute to aversion. Nicotine modulates these synapses in a concentration-dependent manner, with strong enhancement only seen at higher concentrations that elicit aversive responses in behavioral tests. Optogenetic inhibition of the IPN-LDTg connection blocks nicotine conditioned place aversion, suggesting that the IPN-LDTg connection is a critical part of the circuitry that mediates the aversive effects of nicotine.


Connections of the laterodorsal tegmental nucleus with the habenular-interpeduncular-raphe system.

  • Debora Bueno‎ et al.
  • The Journal of comparative neurology‎
  • 2019‎

The laterodorsal tegmental nucleus (LDTg) is a hindbrain cholinergic cell group thought to be involved in mechanisms of arousal and the control of midbrain dopamine cells. Nowadays, there is increasing evidence that LDTg is also engaged in mechanisms of anxiety/fear and promotion of emotional arousal under adverse conditions. Interestingly, LDTg appears to be connected with other regulators of aversive motivational states, including the lateral habenula (LHb), medial habenula (MHb), interpeduncular nucleus (IP), and median raphe nucleus (MnR). However, the circuitry between these structures has hitherto not been systematically investigated. Here, we placed injections of retrograde or anterograde tracers into LDTg, LHb, IP, and MnR. We also examined the transmitter phenotype of LDTg afferents to IP by combining retrograde tracing with immunofluorescence and in situ hybridization techniques. We found LHb inputs to LDTg mainly emerging from the medial division of the LHb (LHbM), which also receives axonal input from LDTg. The bidirectional connections between IP and LDTg displayed a lateralized organization, with LDTg inputs to IP being predominantly GABAergic or cholinergic and mainly directed to the contralateral IP. Moreover, we disclosed reciprocal LDTg connections with structures involved in the modulation of hippocampal theta rhythm including MnR, nucleus incertus, and supramammillary nucleus. Our findings indicate that the habenula is linked with LDTg either by direct reciprocal projections from/to LHbM or indirectly via the MHb-IP axis, supporting a functional role of LDTg in the regulation of aversive behaviors, and further characterizing LHb as a master controller of ascending brainstem state-setting modulatory projection systems.


Midbrain Dopamine Controls Anxiety-like Behavior by Engaging Unique Interpeduncular Nucleus Microcircuitry.

  • Steven R DeGroot‎ et al.
  • Biological psychiatry‎
  • 2020‎

Dopamine (DA) is hypothesized to modulate anxiety-like behavior, although the precise role of DA in anxiety behaviors and the complete anxiety network in the brain have yet to be elucidated. Recent data indicate that dopaminergic projections from the ventral tegmental area (VTA) innervate the interpeduncular nucleus (IPN), but how the IPN responds to DA and what role this circuit plays in anxiety-like behavior are unknown.


Median raphe serotonergic neurons projecting to the interpeduncular nucleus control preference and aversion.

  • Hiroyuki Kawai‎ et al.
  • Nature communications‎
  • 2022‎

Appropriate processing of reward and aversive information is essential for survival. Although a critical role of serotonergic neurons in the dorsal raphe nucleus (DRN) in reward processing has been shown, the lack of rewarding effects with selective serotonin reuptake inhibitors (SSRIs) implies the presence of a discrete serotonergic system playing an opposite role to the DRN in the processing of reward and aversive stimuli. Here, we demonstrated that serotonergic neurons in the median raphe nucleus (MRN) of mice process reward and aversive information in opposite directions to DRN serotonergic neurons. We further identified MRN serotonergic neurons, including those projecting to the interpeduncular nucleus (5-HTMRN→IPN), as a key mediator of reward and aversive stimuli. Moreover, 5-HT receptors, including 5-HT2A receptors in the interpeduncular nucleus, are involved in the aversive properties of MRN serotonergic neural activity. Our findings revealed an essential function of MRN serotonergic neurons, including 5-HTMRN→IPN, in the processing of reward and aversive stimuli.


Serotonin-immunoreactive projections to the hippocampus from the interpeduncular nucleus in the rat.

  • D Wirtshafter‎ et al.
  • Neuroscience letters‎
  • 1986‎

The possibility of a serotonergic projection from the interpeduncular nucleus (IPN) to the hippocampus was examined using a combined immunohistochemical-fluorescence retrograde tracing technique. About one third of the cells in the apical subnucleus of the IPN which projected to the hippocampus could be shown to contain serotonin immunoreactivity, whereas double-labeled cells were only rarely encountered in the lateral subnuclei. These findings suggest that the IPN sends both serotonergic and non-serotonergic projections to the hippocampus and that the serotonergic projections arise primarily from the apical subnucleus.


Sex differences in cholinergic systems in the interpeduncular nucleus following nicotine exposure and withdrawal.

  • Victor L Correa‎ et al.
  • Neuropharmacology‎
  • 2019‎

The medial habenula-interpeduncular nucleus (MHb-IPN) pathway modulates negative affective states produced by nicotine withdrawal. Sex differences in the contribution of acetylcholine (ACh) systems in this pathway have not been explored. Thus, this study assessed ACh levels and gene expression of α- and β-containing nicotinic acetylcholine receptor (nAChR) subunits in the IPN of female and male rats following nicotine treatment and withdrawal. Rats were prepared with a pump that delivered nicotine for 14 days, and naïve controls received a sham surgery. In Study 1, rats were prepared with a probe in the IPN, and ACh levels were measured following saline and then mecamylamine administration. In Study 2, separate groups of naïve control or nicotine-treated rats received saline or mecamylamine and physical signs and anxiety-like behavior were assessed using elevated plus maze (EPM) procedures. The IPN was then dissected and mRNA levels were assessed using RT-qPCR methods. Nicotine treatment increased ACh levels to a larger extent in females than males. Nicotine withdrawal produced a similar increase in physical signs; however, females displayed greater anxiety-like behavior than males. In females, gene expression of α5 increased following nicotine treatment and withdrawal. In males, α7 increased following nicotine treatment and α2 and α3 increased during nicotine withdrawal. Both females and males displayed an increase in β3 and β4 during nicotine withdrawal. In females, anxiety-like behavior was correlated with α4, α5, and β2 gene expression in the IPN. These results suggest that sex differences in withdrawal are modulated via cholinergic systems in the IPN.


Multiple origins, migratory paths and molecular profiles of cells populating the avian interpeduncular nucleus.

  • Beatriz Lorente-Cánovas‎ et al.
  • Developmental biology‎
  • 2012‎

The interpeduncular nucleus (IP) is a key limbic structure, highly conserved evolutionarily among vertebrates. The IP receives indirect input from limbic areas of the telencephalon, relayed by the habenula via the fasciculus retroflexus. The function of the habenulo-IP complex is poorly understood, although there is evidence that in rodents it modulates behaviors such as learning and memory, avoidance, reward and affective states. The IP has been an important subject of interest for neuroscientists, and there are multiple studies about the adult structure, chemoarchitecture and its connectivity, with complex results, due to the presence of multiple cell types across a variety of subnuclei. However, the ontogenetic origins of these populations have not been examined, and there is some controversy about its location in the midbrain-anterior hindbrain area. To address these issues, we first investigated the anteroposterior (AP) origin of the IP complex by fate-mapping its neuromeric origin in the chick, discovering that the IP develops strictly within isthmus and rhombomere 1. Next, we studied the dorsoventral (DV) positional identity of subpopulations of the IP complex. Our results indicate that there are at least four IP progenitor domains along the DV axis. These specific domains give rise to distinct subtypes of cell populations that target the IP with variable subnuclear specificity. Interestingly, these populations can be characterized by differential expression of the transcription factors Pax7, Nkx6.1, Otp, and Otx2. Each of these subpopulations follows a specific route of migration from its source, and all reach the IP roughly at the same stage. Remarkably, IP progenitor domains were found both in the alar and basal plates. Some IP populations showed rostrocaudal restriction in their origins (isthmus versus anterior or posterior r1 regions). A tentative developmental model of the structure of the avian IP is proposed. The IP emerges as a plurisegmental and developmentally heterogeneous formation that forms ventromedially within the isthmus and r1. These findings are relevant since they help to understand the highly complex chemoarchitecture, hodology and functions of this important brainstem structure.


Opposing effects of an atypical glycinergic and substance P transmission on interpeduncular nucleus plasticity.

  • Riccardo Melani‎ et al.
  • Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology‎
  • 2019‎

The medial habenula-interpeduncular nucleus (MHb-IPN) pathway has recently been implicated in the suppression of fear memory. A notable feature of this pathway is the corelease of neurotransmitters and neuropeptides from MHb neurons. Our studies in mice reveal that an activation of substance P-positive dorsomedial habenula (dMHb) neurons results in simultaneous release of glutamate and glycine in the lateral interpeduncular nucleus (LIPN). This glycine receptor activity inhibits an activity-dependent long-lasting potentiation of glutamatergic synapses in LIPN neurons, while substance P enhances this plasticity. An endocannabinoid CB1 receptor-mediated suppression of GABAB receptor activity allows substance P to induce a long-lasting increase in glutamate release in LIPN neurons. Consistent with the substance P-dependent synaptic potentiation in the LIPN, the NK1R in the IPN is involved in fear extinction but not fear conditioning. Thus, our study describes a novel plasticity mechanism in the LIPN and a region-specific role of substance P in fear extinction.


Chrna5-Expressing Neurons in the Interpeduncular Nucleus Mediate Aversion Primed by Prior Stimulation or Nicotine Exposure.

  • Glenn Morton‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2018‎

Genetic studies have shown an association between smoking and variation at the CHRNA5/A3/B4 gene locus encoding the α5, α3, and β4 nicotinic receptor subunits. The α5 receptor has been specifically implicated because smoking-associated haplotypes contain a coding variant in the CHRNA5 gene. The Chrna5/a3/b4 locus is conserved in rodents and the restricted expression of these subunits suggests neural pathways through which the reinforcing and aversive properties of nicotine may be mediated. Here, we show that, in the interpeduncular nucleus (IP), the site of the highest Chrna5 mRNA expression in rodents, electrophysiological responses to nicotinic acetylcholine receptor stimulation are markedly reduced in α5-null mice. IP neurons differ markedly from their upstream ventral medial habenula cholinergic partners, which appear unaltered by loss of α5. To probe the functional role of α5-containing IP neurons, we used BAC recombineering to generate transgenic mice expressing Cre-recombinase from the Chrna5 locus. Reporter expression driven by Chrna5Cre demonstrates that transcription of Chrna5 is regulated independently from the Chrna3/b4 genes transcribed on the opposite strand. Chrna5-expressing IP neurons are GABAergic and project to distant targets in the mesopontine raphe and tegmentum rather than forming local circuits. Optogenetic stimulation of Chrna5-expressing IP neurons failed to elicit physical manifestations of withdrawal. However, after recent prior stimulation or exposure to nicotine, IP stimulation becomes aversive. These results using mice of both sexes support the idea that the risk allele of CHRNA5 may increase the drive to smoke via loss of IP-mediated nicotine aversion.SIGNIFICANCE STATEMENT Understanding the receptors and neural pathways underlying the reinforcing and aversive effects of nicotine may suggest new treatments for tobacco addiction. Part of the individual variability in smoking is associated with specific forms of the α5 nicotinic receptor subunit gene. Here, we show that deletion of the α5 subunit in mice markedly reduces the cellular response to nicotine and acetylcholine in the interpeduncular nucleus (IP). Stimulation of α5-expressing IP neurons using optogenetics is aversive, but this effect requires priming by recent prior stimulation or exposure to nicotine. These results support the idea that the smoking-associated variant of the α5 gene may increase the drive to smoke via loss of IP-mediated nicotine aversion.


Ovarian cycle-related changes of glial fibrillary acidic protein (GFAP) immunoreactivity in the rat interpeduncular nucleus.

  • F Hajós‎ et al.
  • Brain research‎
  • 2000‎

The interpeduncular nucleus (IPN) of female rats was studied across the estrous cycle to observe whether the expression of the astroglial marker, glial fibrillary acidic protein (GFAP) reacts to hormonal changes in an area not belonging to the 'endocrine brain'. A marked reduction of immunoreactive GFAP was observed in estrus as compared to the immunoreactivities in met- and proestrus. This finding is consistent with earlier observations in the endocrine hypothalamus, but also proves that gonadal steroids influence astroglia in brain regions not involved in neuroendocrine regulation. Since cyclic fluctuations of synaptic numbers in the female have been described only for the endocrine hypothalamus, decrease of immunoreactive GFAP in the IPN during estrus may reflect a down-regulation of GFAP synthesis.


Female rats display greater nicotine withdrawal-induced cellular activation of a central portion of the interpeduncular nucleus versus males: A study of Fos immunoreactivity within provisionally assigned interpeduncular subnuclei.

  • Felix Matos-Ocasio‎ et al.
  • Drug and alcohol dependence‎
  • 2021‎

The interpeduncular nucleus (>1840) (IPN) has been shown to modulate the behavioral effects of nicotine withdrawal in male rodents. To date, the contribution of this brain structure to sex differences in withdrawal is largely unexplored.


Acetylcholine potentiates glutamate transmission from the habenula to the interpeduncular nucleus in losers of social conflict.

  • Masae Kinoshita‎ et al.
  • Current biology : CB‎
  • 2023‎

Switching behaviors from aggression to submission in losers at the end of conspecific social fighting is essential to avoid serious injury or death. We have previously shown that the experience of defeat induces a loser-specific potentiation in the habenula (Hb)-interpeduncular nucleus (IPN) and show here that this is induced by acetylcholine. Calcium imaging and electrophysiological recording using acute brain slices from winners and losers of fighting behavior in zebrafish revealed that the ventral IPN (vIPN) dominates over the dorsal IPN in the neural response to Hb stimulation in losers. We also show that GluA1 α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits on the postsynaptic membrane increased in the vIPN of losers. Furthermore, these loser-specific neural properties disappeared in the presence of an α7 nicotinic acetylcholine receptor (nAChR) antagonist and, conversely, were induced in brain slices of winners treated with α7 nAChR agonists. These data suggest that acetylcholine released from Hb terminals in the vIPN induces activation of α7 nAChR followed by an increase in postsynaptic membrane GluA1. This results in an increase in active synapses on postsynaptic neurons, resulting in the potentiation of neurotransmissions to the vIPN. This acetylcholine-induced neuromodulation could be the neural foundation for behavioral switching in losers. Our results could increase our understanding of the mechanisms of various mood disorders such as social anxiety disorder and social withdrawal.


Amino acid systems in the interpeduncular nucleus are altered in a sex-dependent manner during nicotine withdrawal.

  • Luis M Carcoba‎ et al.
  • Journal of neuroscience research‎
  • 2022‎

Prior work in male rodents established that the medial habenula-interpeduncular nucleus (MHb-IPN) pathway modulates nicotine withdrawal. Specifically, withdrawal severity has been closely associated with inhibitory tone in the IPN via interneurons that release γ-aminobutyric acid (GABA). Inhibitory tone in the IPN is regulated by projections from the MHb that co-release glutamate and acetylcholine. Within the IPN, inhibitory tone is also regulated via corticotropin-releasing factor type 1 (CRF1) receptors that control GABA release from local interneurons. This study extends previous work by comparing sex differences in GABA, glutamate, as well serotonin levels in the IPN during precipitated nicotine withdrawal. Sex differences in withdrawal-induced neurochemical effects were also compared following systemic administration of a CRF1 receptor antagonist. The results revealed that there were no group differences in serotonin levels in the IPN. A major finding was that females displayed a larger withdrawal-induced increases in GABA levels in the IPN than males. Also, withdrawal increased IPN glutamate levels in a similar manner in females and males. Blockade of CRF1 receptors produced a larger suppression of the withdrawal-induced increases in GABA levels in the IPN of females versus males, an effect that was likely related to the robust increase in glutamate following administration of the CRF1 receptor antagonist in females. These data suggest that amino acid systems in the IPN modulate sex differences in the behavioral effects of nicotine withdrawal. Furthermore, our data imply that medications that target stress-induced activation of the IPN may reduce withdrawal severity, particularly in females.


Medial Habenula-Interpeduncular Nucleus Circuit Contributes to Anhedonia-Like Behavior in a Rat Model of Depression.

  • Chunpeng Xu‎ et al.
  • Frontiers in behavioral neuroscience‎
  • 2018‎

The habenula is a nuclear complex composed of the lateral habenula (LHb) and medial habenula (MHb), two distinct structures. Much progress has been made to emphasize the role of the LHb in the pathogenesis of depression. In contrast, relatively less research has focused on the MHb. However, in recent years, the role of the MHb has begun to gain increasing attention. The MHb connects to the interpeduncular nucleus (IPN) both morphologically and functionally. The MHb-IPN pathway plays an important role in regulating higher brain functions, including cognition, reward, and decision making. It indicates a role of the MHb in the pathogenesis of depression. Thus, we investigated the role of the MHb-IPN pathway in depression. MHb metabolic activity was increased in the chronic unpredictable mild stress (CUMS)-exposed rat model of depression. MHb lesions in the CUMS-exposed rats reversed anhedonia-like behavior, as observed in the sucrose preference test, and significantly downregulated the elevated metabolic activity of the IPN. Substance P (SP)-containing neurons of the MHb were found to innervate the IPN and to be the main source of SP in the IPN. SP content of IPN tissue of the CUMS-exposed rats was increased and MHb lesions reversed this change. In the in vitro experiment, firing rate recordings showed that SP perfusion increased the activity of IPN neurons. Our results suggest that hyperactivity of the MHb-IPN circuit is involved in the anhedonia-like behavior of depression, and that SP mediates the effect of the MHb on IPN neurons.


The Dorsal Lateral Habenula-Interpeduncular Nucleus Pathway Is Essential for Left-Right-Dependent Decision Making in Zebrafish.

  • Bor-Wei Cherng‎ et al.
  • Cell reports‎
  • 2020‎

How animals behave using suitable information to adapt to the environment is not well known. We address this issue by devising an automated system to let zebrafish exploit either internal (choice of left or right turn) or external (choice of cue color) navigation information to achieve operant behavior by reward reinforcement learning. The results of behavioral task with repeated rule shift indicate that zebrafish can learn operant behavior using both internal-directional and external-cued information. The learning time is reduced as rule shifts are repeated, revealing the capacity of zebrafish to adaptively retrieve the suitable rule memory after training. Zebrafish with an impairment in the neural pathway from the lateral subregion of the dorsal habenula to the interpeduncular nucleus, known to be potentiated in the winners of social conflicts, show specific defects in the application of the internal-directional rule, suggesting the dual roles of this pathway.


Genetically Targeted Connectivity Tracing Excludes Dopaminergic Inputs to the Interpeduncular Nucleus from the Ventral Tegmentum and Substantia Nigra.

  • Nailyam Nasirova‎ et al.
  • eNeuro‎
  • 2021‎

The "habenulopeduncular system" consists of the medial habenula (MHb) and its principal target of innervation, the interpeduncular nucleus (IP). Neurons in the ventral MHb (MHbV) express acetylcholine along with glutamate, and both the MHb and IP are rich in nicotinic acetylcholine receptors. Much of the work on this system has focused on nicotinic mechanisms and their clinical implications for nicotine use, particularly because the IP expresses the α5 nicotinic receptor subunit, encoded by the CHRNA5 gene, which is genetically linked to smoking risk. A working model has emerged in which nicotine use may be determined by the balance of reinforcement mediated in part by nicotine effects on dopamine reward pathways, and an aversive "brake" on nicotine consumption encoded in the MHb-IP pathway. However, recent work has proposed that the IP also receives direct dopaminergic input from the ventral tegmental area (VTA). If correct, this would significantly impact the prevailing model of IP function. Here, we have used Chrna5Cre mice to perform rabies virus-mediated retrograde tracing of global inputs to the IP. We have also used Cre-dependent adeno-associated virus (AAV) anterograde tracing using Slc6a3Cre (DATCre ) mice to map VTA dopaminergic efferents, and we have examined tract-tracing data using other transgenic models for dopaminergic neurons available in a public database. Consistent with the existing literature using non-genetic tracing methods, none of these experiments show a significant anatomic connection from the VTA or substantia nigra (SN) to the IP, and thus do not support a model of direct dopaminergic input to the habenulopeduncular system.


Increased CRF signalling in a ventral tegmental area-interpeduncular nucleus-medial habenula circuit induces anxiety during nicotine withdrawal.

  • Rubing Zhao-Shea‎ et al.
  • Nature communications‎
  • 2015‎

Increased anxiety is a prominent withdrawal symptom in abstinent smokers, yet the neuroanatomical and molecular bases underlying it are unclear. Here we show that withdrawal-induced anxiety increases activity of neurons in the interpeduncular intermediate (IPI), a subregion of the interpeduncular nucleus (IPN). IPI activation during nicotine withdrawal was mediated by increased corticotropin releasing factor (CRF) receptor-1 expression and signalling, which modulated glutamatergic input from the medial habenula (MHb). Pharmacological blockade of IPN CRF1 receptors or optogenetic silencing of MHb input reduced IPI activation and alleviated withdrawal-induced anxiety; whereas IPN CRF infusion in mice increased anxiety. We identified a mesointerpeduncular circuit, consisting of ventral tegmental area (VTA) dopaminergic neurons projecting to the IPN, as a potential source of CRF. Knockdown of CRF synthesis in the VTA prevented IPI activation and anxiety during nicotine withdrawal. These data indicate that increased CRF receptor signalling within a VTA-IPN-MHb circuit triggers anxiety during nicotine withdrawal.


A Cooperative Mechanism Involving Ca2+-Permeable AMPA Receptors and Retrograde Activation of GABAB Receptors in Interpeduncular Nucleus Plasticity.

  • Peter Koppensteiner‎ et al.
  • Cell reports‎
  • 2017‎

The medial habenula-interpeduncular nucleus (MHb-IPN) pathway, which connects the limbic forebrain to the midbrain, has recently been implicated in aversive behaviors. The MHb-IPN circuit is characterized by a unique topographical organization, an excitatory role of GABA, and a prominent co-release of neurotransmitters and neuropeptides. However, little is known about synaptic plasticity in this pathway. An application of a high-frequency stimulation resulted in a long-lasting potentiation of glutamate release in IPN neurons. Our experiments reveal that a Ca2+-permeable AMPA receptor (CPAR)-dependent release of GABA from IPN neurons and a retrograde activation of GABAB receptors on MHb terminals result in a long-lasting enhancement of glutamate release. Strikingly, adolescent IPN neurons lacked CPARs and exhibited an inability to undergo plasticity. In addition, fear conditioning suppressed an activity-dependent potentiation of MHb-IPN synapses, whereas fear extinction reversed this plasticity deficit, suggesting a role of the MHb-IPN synaptic plasticity in the regulation of aversive behaviors.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: