Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,923 papers

Interleukin-2/anti-interleukin-2 monoclonal antibody immune complex suppresses collagen-induced arthritis in mice by fortifying interleukin-2/STAT5 signalling pathways.

  • Seon-Yeong Lee‎ et al.
  • Immunology‎
  • 2012‎

In this study, we investigated the effects of administration of interleukin-2 (IL-2)/JES6-1 (anti-IL-2 monoclonal antibody) immune complexes on the expansion and activation of regulatory T (Treg) cells, the down-regulation of T helper type 17 (Th17) cells, and the control of the severity of collagen-induced arthritis (CIA). Wild-type and CIA-induced wild-type mice were injected intraperitoneally (i.p.) with IL-2 or IL-2/JES6-1 complex three times at 2-day intervals. Treg cell surface markers were analysed by flow cytometry. After injecting IL-2 or IL-2/JES6-1, the time kinetics of IL-2 signalling molecules was examined by FACS and Western blotting. Concentrations of IL-17 and IL-10 were measured by ELISA. Injection of IL-2/JES6-1 increased the proportion of Foxp3+ Treg cells among splenic CD4+ T cells, which reached the highest level on day 4 after injection. Up-regulation of CTLA4, GITR and glycoprotein-A repetitions predominant (GARP) was observed. Activation of p-signal transducer and activator of transcription 5 (STAT5) was apparent within 3 hr after injection of IL-2/JES6-1 complexes. Expression of IL-2 signalling molecules, including p-AKT and p-p38/mitogen-activated protein kinase, was also higher in splenocytes treated with IL-2/JES6-1 complexes. Injection of IL-2/JES6-1 complexes suppressed the induction of CIA and the production of IL-17 and inflammatory responses while increasing the level of IL-10 in the spleen. The expansion of Treg cells (via STAT5) and the concomitant increase in IL-2 signalling pathways by IL-2/JES6-1 complexes suggests their potential use as a novel therapeutic agent for the treatment of autoimmune arthritis.


Effects of stimulating interleukin -2/anti- interleukin -2 antibody complexes on renal cell carcinoma.

  • Kyu-Hyun Han‎ et al.
  • BMC urology‎
  • 2016‎

Current therapies for advanced renal cell carcinoma (RCC) have low cure rates or significant side effects. It has been reported that complexes composed of interleukin (IL)-2 and stimulating anti-IL-2 antibody (IL-2C) suppress malignant melanoma growth. We investigated whether it could have similar effects on RCC.


Soluble interleukin-2 receptor α and interleukin-2 serum levels in patients with basal cell carcinoma.

  • Michal Sobjanek‎ et al.
  • Postepy dermatologii i alergologii‎
  • 2016‎

Basal cell carcinoma (BCC) is an immunogenic neoplasm and the imbalance in Th1/Th2 cytokines expression seems to play the major role in pathogenesis and clinical behaviour of the tumour.


Interleukin-2 superkines by computational design.

  • Junming Ren‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2022‎

Affinity maturation of protein–protein interactions is an important approach in the development of therapeutic proteins such as cytokines. Typical experimental strategies involve targeting the cytokine-receptor interface with combinatorial libraries and then selecting for higher-affinity variants. Mutations to the binding scaffold are usually not considered main drivers for improved affinity. Here we demonstrate that computational design can provide affinity-enhanced variants of interleukin-2 (IL-2) “out of the box” without any requirement for interface engineering. Using a strategy of global IL-2 structural stabilization targeting metastable regions of the three-dimensional structure, rather than the receptor binding interfaces, we computationally designed thermostable IL-2 variants with up to 40-fold higher affinity for IL-2Rβ without any library-based optimization. These IL-2 analogs exhibited CD25-independent activities on T and natural killer (NK) cells both in vitro and in vivo, mimicking the properties of the IL-2 superkine “super-2” that was engineered through yeast surface display [A. M. Levin et al., Nature, 484, 529–533 (2012)]. Structure-guided stabilization of cytokines is a powerful approach to affinity maturation with applications to many cytokine and protein–protein interactions.


Interleukin-2 receptors and interleukin-2-mediated signaling in myelin: activation of diacylglycerol kinase and phosphatidylinositol 3-kinase.

  • G Chakraborty‎ et al.
  • Neuroscience‎
  • 2003‎

Myelin was previously shown to possess neurotransmitter and cytokine receptors that trigger well-defined signaling mechanisms within the multilamellar structure. The present study reveals the presence of an interleukin-2 (IL-2) receptor in isolated mouse CNS myelin that responds to recombinant mouse IL-2 by activating diacylglycerol kinase (DAGK) and phosphoinositide 3-kinase (PI3K); additional evidence suggests participation by protein tyrosine kinase. Activation of myelin DAGK by IL-2 occurred in brain stem tissue mince and was blocked by chelerythrin chloride, indicating an essential role for myelin-localized protein kinase C. Two inhibitors of PI3K, wortmannin and LY294002, blocked endogenous PI3K as well as that enhanced by IL-2. Activation of PI3K by IL-2 was also blocked by tyrphostin A25, a selective inhibitor of PTK, suggesting activation of the latter by IL-2 is upstream to PI3K activation. This reaction resulted in tyrosine phosphorylation of a protein tentatively identified as the p85 subunit of PI3K. Developmental changes were noted in that receptor density and signaling activity were robust during the period of rapid myelination and declined rapidly thereafter.


Interleukin-2/Anti-Interleukin-2 Immune Complex Expands Regulatory T Cells and Reduces Angiotensin II-Induced Aortic Stiffening.

  • Beenish Majeed‎ et al.
  • International journal of hypertension‎
  • 2014‎

Adaptive immune function is implicated in the pathogenesis of vascular disease. Inhibition of T-lymphocyte function has been shown to reduce hypertension, target-organ damage, and vascular stiffness. To study the role of immune inhibitory cells, CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs), on vascular stiffness, we stimulated the proliferation of Treg lymphocytes in vivo using a novel cytokine immune complex of Interleukin-2 (IL-2) and anti-IL-2 monoclonal antibody clone JES6-1 (mAbCD25). Three-month-old male C57BL/6J mice were treated with IL-2/mAbCD25 concomitantly with continuous infusion of angiotensin type 1 receptor agonist, [Val(5)]angiotensin II. Our results indicate that the IL-2/mAbCD25 complex effectively induced Treg phenotype expansion by 5-fold in the spleens with minimal effects on total CD4(+) and CD8(+) T-lymphocyte numbers. The IL-2/mAbCD25 complex inhibited angiotensin II-mediated aortic collagen remodeling and the resulting stiffening, analyzed with in vivo pulse wave velocity and effective Young's modulus. Furthermore, the IL-2/mAbCD25 complex suppressed angiotensin II-mediated Th17 responses in the lymphoid organs and reduced gene expression of IL-17 as well as T cell and macrophage infiltrates in the aortic tissue. This study provides data that support the protective roles of Tregs in vascular stiffening and highlights the use of the IL-2/mAbCD25 complex as a new potential therapy in angiotensin II-related vascular diseases.


Variations of nucleus accumbens dopamine and serotonin following systemic interleukin-1, interleukin-2 or interleukin-6 treatment.

  • C Song‎ et al.
  • Neuroscience‎
  • 1999‎

The effects of systemically administered interleukin-1beta (1.0 microg), interleukin-6 (1.0 microg) and interleukin-2 (1.0 microg) on in vivo variations of monoamines were assessed in the nucleus accumbens. Administration of interleukin-1beta did not affect extracellular accumbal dopamine, provoked a modest rise of homovanillic acid, and prevented the decline of dihydroxyphenylacetic acid ordinarily seen in saline treated rats. Also, interleukin-1 provoked a modest increase of extracellular 5-hydroxyindoleacetic acid from the nucleus accumbens. Following exposure to the stress of a series of air-puffs, a still greater increase of accumbal 5-hydroxyindoleacetic acid was evident. In contrast to interleukin-1, systemic administration of interleukin-6 and interleukin-2 both induced marked reductions of interstitial dopamine levels. The air-puff exposure further enhanced these effects in rats that had received the cytokine treatment. As well, interleukin-6 and interleukin-2 were both found to reduce the homovanillic acid response associated with the stress, and interleukin-2 promoted a decline of homovanillic acid levels. Treatment with interleukin-6, like that of interleukin-1, prevented the decline of dihydroxyphenylacetic acid ordinarily observed over time, while interleukin-2 was without effect in this respect. Finally, interleukin-6 provoked a modest rise of 5-hydroxyindoleacetic acid, which was most apparent following air-puff exposure, while administration of interleukin-2 did not affect accumbal 5-hydroxyindoleacetic acid. It is suggested that the cytokines may influence the release of biogenic amines in the nucleus accumbens, but the profile of changes were cytokine-specific. As well, it appeared that the cytokines, particularly interleukin-1 and interleukin-6, may act synergistically with the stressor in promoting the amine variations. Systemic administration of cytokines clearly influenced monoamine activity at the nucleus accumbens, a region associated with both rewarding and aversive events. Thus, it may be expected that cytokine treatments may affect behavior. Moreover, it seems that the effects of interleukin-1 and interleukin-6 may be influenced by the presence of stressful stimuli. It ought to be underscored that although cytokines share features with the effects of stressors, most notably the variations of hypothalamic-pituitary-adrenal hormones, the pattern of central neurochemical changes elicited by the cytokines could be distinguished from the amine variations ordinarily associated with stressors.


Interleukin-2/Anti-Interleukin-2 Immune Complex Attenuates Cardiac Remodeling after Myocardial Infarction through Expansion of Regulatory T Cells.

  • Zhipeng Zeng‎ et al.
  • Journal of immunology research‎
  • 2016‎

CD4+CD25+Foxp3+ regulatory T cells (Treg cells) have protective effects in wound healing and adverse ventricular remodeling after myocardial infarction (MI). We hypothesize that the interleukin- (IL-) 2 complex comprising the recombinant mouse IL-2/anti-IL-2 mAb (JES6-1) attenuates cardiac remodeling after MI through the expansion of Treg. Mice were subjected to surgical left anterior descending coronary artery ligation and treated with either PBS or IL-2 complex. The IL-2 complex significantly attenuates ventricular remodeling, as demonstrated by reduced infarct size, improved left ventricular (LV) function, and attenuated cardiomyocyte apoptosis. The IL-2 complex increased the percentage of CD4+CD25+Foxp3+ Treg cells, which may be recruited to the infarcted heart, and decreased the frequencies of IFN-γ- and IL-17-producing CD4+ T helper (Th) cells among the CD4+Foxp3- T cells in the spleen. Furthermore, the IL-2 complex inhibited the gene expression of proinflammatory cytokines as well as macrophage infiltrates in the infarcted myocardium and induced the differentiation of macrophages from M1 to M2 phenotype in border zone of infarcted myocardium. Our studies indicate that the IL-2 complex may serve as a promising therapeutic approach to attenuate adverse remodeling after MI through expanding Treg cells specifically.


Interleukin-2 gene methylation levels and interleukin-2 levels associated with environmental exposure as risk biomarkers for preterm birth.

  • Aleksandra Fučić‎ et al.
  • Croatian medical journal‎
  • 2023‎

To compare interleukin-2 levels (IL-2) and IL-2 gene site 1 methylation levels between preterm newborns (PN) and full-term newborns (FN) and investigate their association with the environmental exposure of their mothers during pregnancy.


Structural and functional characterisation of ferret interleukin-2.

  • Bin Ren‎ et al.
  • Developmental and comparative immunology‎
  • 2016‎

While the ferret is a valuable animal model for a number of human viral infections, such as influenza, Hendra and Nipah, evaluating the cellular immune response following infection has been hampered by the lack of a number of species-specific immunological reagents. Interleukin 2 (IL-2) is one such key cytokine. Ferret recombinant IL-2 incorporating a C-terminal histidine tag was expressed and purified and the three-dimensional structure solved and refined at 1.89 Å by X-ray crystallography, which represents the highest resolution and first non-human IL-2 structure. While ferret IL-2 displays the classic cytokine fold of the four-helix bundle structure, conformational flexibility was observed at the second helix and its neighbouring region in the bundle, which may result in the disruption of the spatial arrangement of residues involved in receptor binding interactions, implicating subtle differences between ferret and human IL-2 when initiating biological functions. Ferret recombinant IL-2 stimulated the proliferation of ferret lymph node cells and induced the expression of mRNA for IFN-γ and Granzyme A.


Effects of interleukin-2 in immunostimulation and immunosuppression.

  • Jonathan G Pol‎ et al.
  • The Journal of experimental medicine‎
  • 2020‎

Historically, interleukin-2 (IL-2) was first described as an immunostimulatory factor that supports the expansion of activated effector T cells. A layer of sophistication arose when regulatory CD4+ T lymphocytes (Tregs) were shown to require IL-2 for their development, homeostasis, and immunosuppressive functions. Fundamental distinctions in the nature and spatiotemporal expression patterns of IL-2 receptor subunits on naive/memory/effector T cells versus Tregs are now being exploited to manipulate the immunomodulatory effects of IL-2 for therapeutic purposes. Although high-dose IL-2 administration has yielded discrete clinical responses, low-dose IL-2 as well as innovative strategies based on IL-2 derivatives, including "muteins," immunocomplexes, and immunocytokines, are being explored to therapeutically enhance or inhibit the immune response.


Neurochemical basis of interleukin 2-modified discrimination behaviour.

  • B T Ho‎ et al.
  • Cytokine‎
  • 1994‎

We trained one group of rats to discriminate 0.8 mg/kg intraperitoneal (i.p.) d-amphetamine from 1 ml/kg saline and the other to discriminate 0.3 mg/kg i.p. (+/-)-ethylketocyclazocine (EKC) from saline. Recombinant human interleukin 2 (rIL-2), 2 x 10(6) U/kg (or 8.2 nmol/kg) given i.p. 1 h prior to tests, potentiated responses elicited by 0.4 mg/kg d-amphetamine. This potentiation of d-amphetamine responses was suppressed by the opioid receptor antagonist naloxone (1 mg/kg) when administered i.p. together with IL-2. IL-2 (4 x 10(6) U/kg) alone produced EKC-like responses in the EKC-trained animals. The cytokine also potentiated 0.1 mg/kg EKC responses at 2 x 10(6) U/kg, an action that was suppressed by 1 mg/kg naloxone. Data from the present study show that IL-2 exerts the same neurochemical action as that previously observed with IFN-alpha for both d-amphetamine and EKC discrimination in rats.


Expression levels and genetic polymorphisms of interleukin-2 and interleukin-10 as biomarkers of Graves' disease.

  • Cuige Liang‎ et al.
  • Experimental and therapeutic medicine‎
  • 2015‎

The aim of the present study was to determine whether the expression levels of interleukin (IL)-2 and IL-10 may be used as biological markers in Graves' disease (GD) patients. A total of 256 individuals, including 118 GD patients and 138 healthy individuals, were enrolled into the study. Blood samples were collected from each patient and healthy individual, which were then subjected to enzyme-linked immunosorbent assay (ELISA). Total RNA and total proteins were determined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis, respectively. In addition, restriction fragment length polymorphism (RFLP) analysis was performed to detect the presence of genetic polymorphisms. The ELISA results indicated that the IL-2 and IL-10 serum levels in the GD patients were increased by ~5.2 and ~7-fold when compared with the levels in the healthy controls. The results of RT-qPCR indicated that the mRNA expression levels of IL-2 and IL-10 were upregulated in the GD patients when compared with the healthy controls. Furthermore, the western blot analysis results revealed that the protein expression levels of IL-2 and IL-10 were significantly increased in the GD patients. RFLP analysis indicated that the increased number of GG single nucleotide polymorphisms (SNPs) in the GD group were detected in the -330 locus of the IL-2 promoter and the -1082 locus of the IL-10 promoter. In addition, the results indicated that the relatively high rates of homozygous GG SNPs (IL-2 -330T/G and IL-10 -1082A/G polymorphisms) on the alleles may be associated with the incidence of GD. The serum, mRNA and protein expression levels of IL-2 and IL-10 were significantly increased in GD patients when compared with the levels in the healthy controls. In conclusion, the expression levels and genetic polymorphisms of IL-2 and IL-10 may be potential biomarkers for the incidence of Graves' disease in the population studied.


Interleukin-7 optimizes FOXP3+CD4+ regulatory T cells reactivity to interleukin-2 by modulating CD25 expression.

  • Federico Simonetta‎ et al.
  • PloS one‎
  • 2014‎

The vast majority of Foxp3 regulatory T cells (Treg) exhibits constitutive expression of CD25 (IL-2Rα), which allows the constitution of the high affinity IL-2Rαβγ receptor, ensuring efficient IL-2 binding by Treg. Maintenance of CD25 expression at Treg surface depends on both cell intrinsic factors and environmental stimuli such as IL-2 itself. Whether other factors can participate to maintenance of CD25 expression in vivo is at present unknown. In the present work we demonstrated that IL-7, a gamma-chain cytokine exerting a crucial role in T cell development and homeostasis, is able and necessary to sustain the expression of high levels of CD25 at Treg surface. We demonstrated that, during in vitro cultures performed in the absence of IL-2, IL-7 is able to sustain CD25 expression at Treg surface through a transcriptional mechanism. By studying mice in which IL-7 signaling is either genetically impaired or increased and by employing adoptive transfer murine models, we demonstrated that IL-7 is necessary for sustained expression of CD25 at Treg surface in vivo. To ascertain the biological impact of IL-7 mediated modulation of CD25 expression, we demonstrated that IL-7 modulation of CD25 expression at Treg surface affected their ability to efficiently bind IL-2 and transduce IL-2 signaling. Finally, we demonstrated that IL-7 dependent modulation of CD25 associated with potentiated IL-2 induced expansion of Treg in vivo. Collectively, our results identify IL-7 as a necessary factor contributing to sustained CD25 expression at Treg surface in vivo thereby affecting their ability to efficiently react to IL-2.


Short- and long-term effects of interleukin-2 treatment on the sensitivity of periadolescent female mice to interleukin-2 and dopamine uptake inhibitor.

  • James S Rankin‎ et al.
  • PloS one‎
  • 2013‎

Interleukin (IL)-2, a T-helper 1 (Th1) cell-derived cytokine, which potently modulates dopamine activity and neuronal excitability in mesolimbic structures, is linked with pathological outcomes (e.g., schizophrenia, depression, etc.) that at least partly reflect alterations in central dopaminergic processes. It has been suggested that dopamine neurons undergo pruning during adolescence and abnormalities in pruning predispose individuals to behavioral disorders. Since IL-2 is known as a neurodevelopmental factor affecting associated behavioral processes, the present study tested whether IL-2 can modulate stereotypic behaviors in both the periadolescent and adult periods. This study determined whether IL-2 treatment would produce long-lasting changes in sensitivity to a later challenge with IL-2 or GBR 12909, a highly selective dopamine uptake inhibitor. Four experiments were conducted. Firstly, a decrease in novelty-induced stereotypic behavior was observed in BALB/c periadolescent mice (38 days of age) following IL-2 administration (0.4 µg/2 ml) relative to vehicle control. In the second experiment, an initial dose of IL-2 was given in the periadolescent period, but did not affect rearing responses. A second dose of IL-2 given to the animals 30 days later as adults, resulted in a significant increase in rearing behaviors relative to control animals. In the third experiment, separate groups of experimental and control mice were administered GBR 12909, a highly selective dopamine reuptake inhibitor, 30 days following treatment with either IL-2 or vehicle. It was noted that this experimental group, which initially received IL-2, exhibited stereotypy, as evidenced by increased sniffing behavior. A fourth experiment revealed that IL-2 administered in periadolesecence and adulthood had no effect on other motor responses, indicating that IL-2 selectively modulates selective stereotypic behaviors. The results provide evidence, for the first time, that long-term changes in stereotypy in periadolescent mice are linked to an IL-2 mechanism, possibly utilizing dopamine.


Interleukin-2 dependent culture of cytolytic T cell lines.

  • S Gillis‎ et al.
  • Immunological reviews‎
  • 1981‎

No abstract available


Anti-tumor effect of human lymphocytes and interleukin-2.

  • F Anwer‎ et al.
  • JPMA. The Journal of the Pakistan Medical Association‎
  • 1993‎

We studied the anti-tumor effect of control human lymphocytes and interleukin-2 (IL-2) activated lymphocytes (lymphokine activated killer cells, LAK-cells), on two different cell lines: SW742 human colon adenocarcinoma and K562 human myeloid leukaemia cell line. Our results indicate that IL-2 augment the anti-tumor activity of human lymphocytes and these LAK-cells lyse the tumor cells very efficiently. Furthermore, we treated the target cells (SW742 and K562) with different cytokines in order to establish whether these cytokines have any effect on susceptibility to lysis by LAK-cells. Anti-tumor activity of human lymphocytes and IL-2 is discussed in this study.


Central role for interleukin-2 in type 1 diabetes.

  • Maigan A Hulme‎ et al.
  • Diabetes‎
  • 2012‎

Type 1 diabetes presents clinically with overt hyperglycemia resulting from progressive immune-mediated destruction of pancreatic β-cells and associated metabolic dysfunction. Combined genetic and immunological studies now highlight deficiencies in both the interleukin-2 (IL-2) receptor and its downstream signaling pathway as a central defect in the pathogenesis of type 1 diabetes. Prior intervention studies in animal models indicate that augmenting IL-2 signaling can prevent and reverse disease, with protection conferred primarily by restoration of regulatory T-cell (Treg) function. In this article, we will focus on studies of type 1 diabetes noting deficient IL-2 signaling and build what we believe forms the molecular framework for their contribution to the disease. This activity results in the identification of a series of potentially novel therapeutic targets that could restore proper immune regulation in type 1 diabetes by augmenting the IL-2 pathway.


Soluble interleukin 2 receptors abrogate IL-2 induced activation of peripheral mononuclear cells.

  • U Zorn‎ et al.
  • Cytokine‎
  • 1994‎

Soluble interleukin 2 receptors (sIL-2R) exert a potential role in immunoregulation. We investigated the in vitro effects of sIL-2R on several interleukin 2 (IL-2)-dependent cellular events. Cytotoxicity of human rIL-2-stimulated PBMC against K562 and Daudi was correlated inversely to the concentration of sIL-2R in the culture medium during rIL-2 stimulation. sIL-2R concentrations higher than 4.0 pM produced a significant loss of cytotoxicity (P < 0.01). The effect of different sIL-2R concentrations added to cultured human PBMC on secondary sIL-2R production was tested by ELISA. Secondary sIL-2R production was abrogated by high initial sIL-2R dosages whereas low initial dosages were followed by a continuing production of secondary sIL-2R after five days of culture. Proliferation of the IL-2-dependent mouse cell line CTLL-2-was suppressed by sIL-2R added to the culture medium in a dose-dependent way. The neutralizing capacity of sIL-2R strongly depended on the initial number of CTLL set in per proliferation assay. In contrast, variation of rIL-2-concentration had no significant effect on reduction of proliferation by sIL-2R. Furthermore, preincubation of sIL-2R with rIL-2 did not enhance growth suppression. These last findings indicate that there is at least no functional interaction between sIL-2R and free IL-2, whereas an interaction of sIL-2R with the membrane-bound receptor for IL-2 seems possible.


Measurement of pyruvate dehydrogenase complex (PDHC) in interleukin-2 (IL-2) stimulated lymphocytes.

  • H D Vallance‎ et al.
  • Journal of inherited metabolic disease‎
  • 1994‎

No abstract available


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: