Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,697 papers

Interferon regulatory factors: critical mediators of human lupus.

  • Mark A Jensen‎ et al.
  • Translational research : the journal of laboratory and clinical medicine‎
  • 2015‎

The pathogenesis of systemic lupus erythematosus (SLE) is multifactorial, and the interferon regulatory factors (IRFs) play an important role. Autoantibodies formed in SLE target nuclear antigens, and immune complexes formed by these antibodies contain nucleic acid. These immune complexes can activate antiviral pattern recognition receptors (PRRs), resulting in the downstream activation of IRFs, which can induce type I interferon (IFN-I) and other inflammatory mediators. Genetic variations in IRFs have been associated with susceptibility to SLE, and current evidence supports the idea that these polymorphisms are gain of function in humans. Recent studies suggest that these genetic variations contribute to the break in humoral tolerance that allows for nucleic acid binding autoantibodies, and that the same polymorphisms also augment IFN-I production in the presence of these autoantibody immune complexes, forming a feed-forward loop. In this review, we will outline major features of the PRR/IRF systems and describe the role of the IRFs in human SLE pathogenesis.


The viral interferon regulatory factors of KSHV: immunosuppressors or oncogenes?

  • Sarah R Jacobs‎ et al.
  • Frontiers in immunology‎
  • 2011‎

Kaposi's sarcoma-associated herpesvirus (KSHV) is a large double-stranded DNA gammaherpesvirus, and the etiological agent for three human malignancies: Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. To establish and maintain infection, KSHV has evolved unique mechanisms to evade the host immune response. Cellular interferon regulatory factors (IRFs) are a critical part of the host anti-viral immune response. KSHV encodes four homologs of IRFs, vIRF1-4, which inhibit the activity of their cellular counterparts. vIRF1, 2, and 3 have been shown to interact directly with cellular IRFs. Additionally, the vIRFs have other functions such as modulation of Myc, p53, Notch, transforming growth factor-β, and NF-κB signaling. These activities of vIRFs may contribute to KSHV tumorigenesis. KSHV vIRF1 and vIRF3 have been implicated as oncogenes, making the understanding of KSHV vIRF function vital to understanding KSHV pathogenesis.


Modulation of human immunodeficiency virus 1 replication by interferon regulatory factors.

  • Marco Sgarbanti‎ et al.
  • The Journal of experimental medicine‎
  • 2002‎

Transcription of the human immunodeficiency virus (HIV)-1 is controlled by the cooperation of virally encoded and host regulatory proteins. The Tat protein is essential for viral replication, however, expression of Tat after virus entry requires HIV-1 promoter activation. A sequence in the 5' HIV-1 LTR, containing a binding site for transcription factors of the interferon regulatory factors (IRF) family has been suggested to be critical for HIV-1 transcription and replication. Here we show that IRF-1 activates HIV-1 LTR transcription in a dose-dependent fashion and in the absence of Tat. This has biological significance since IRF-1 is produced early upon virus entry, both in cell lines and in primary CD4+ T cells, and before expression of Tat. IRF-1 also cooperates with Tat in amplifying virus gene transcription and replication. This cooperation depends upon a physical interaction that is blocked by overexpression of IRF-8, the natural repressor of IRF-1, and, in turn is released by overexpression of IRF-1. These data suggest a key role of IRF-1 in the early phase of viral replication and/or during viral reactivation from latency, when viral transactivators are absent or present at very low levels, and suggest that the interplay between IRF-1 and IRF-8 may play a key role in virus latency.


HIF-1α is a negative regulator of interferon regulatory factors: Implications for interferon production by hypoxic monocytes.

  • Travis Peng‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2021‎

Patients with severe COVID-19 infection exhibit a low level of oxygen in affected tissue and blood. To understand the pathophysiology of COVID-19 infection, it is therefore necessary to understand cell function during hypoxia. We investigated aspects of human monocyte activation under hypoxic conditions. HMGB1 is an alarmin released by stressed cells. Under normoxic conditions, HMGB1 activates interferon regulatory factor (IRF)5 and nuclear factor-κB in monocytes, leading to expression of type I interferon (IFN) and inflammatory cytokines including tumor necrosis factor α, and interleukin 1β, respectively. When hypoxic monocytes are activated by HMGB1, they produce proinflammatory cytokines but fail to produce type I IFN. Hypoxia-inducible factor-1α, induced by hypoxia, functions as a direct transcriptional repressor of IRF5 and IRF3. As hypoxia is a stressor that induces secretion of HMGB1 by epithelial cells, hypoxia establishes a microenvironment that favors monocyte production of inflammatory cytokines but not IFN. These findings have implications for the pathogenesis of COVID-19.


The interferon regulatory factors as novel potential targets in the treatment of cardiovascular diseases.

  • Xiao-Jing Zhang‎ et al.
  • British journal of pharmacology‎
  • 2015‎

The family of interferon regulatory factors (IRFs) consists of nine members (IRF1-IRF9) in mammals. They act as transcription factors for the interferons and thus exert essential regulatory functions in the immune system and in oncogenesis. Recent clinical and experimental studies have identified critically important roles of the IRFs in cardiovascular diseases, arising from their participation in divergent and overlapping molecular programmes beyond the immune response. Here we review the current knowledge of the regulatory effects and mechanisms of IRFs on the immune system. The role of IRFs and their potential molecular mechanisms as novel stress sensors and mediators of cardiovascular diseases are highlighted.


Structural and functional analysis of interferon regulatory factors (IRFs) reveals a novel regulatory model in an invertebrate, Crassostrea gigas.

  • Fan Mao‎ et al.
  • Developmental and comparative immunology‎
  • 2018‎

Interferon regulatory factors (IRF), a family of transcription factors, are involved in the regulation of interferon to response the pathogen infection. Here, three IRF-like genes including CgIRF1a, CgIRF1b and CgIRF8 were identified in the genome of the oyster C. gigas. Among these genes, CgIRF1a and CgIRF1b, which are tandemly located in adjacent loci of scaffold 4, share the same domains. Phylogenetic analysis indicated that CgIRF1a and CgIRF1b were two paralogs that may originate from duplication of the same ancestral IRF gene. Subcellular localization analysis confirmed the nuclear distribution of CgIRF1a and CgIRF1b. Dual-luciferase reporter assay showed that CgIRF1a significantly activated the ISRE reporter gene, whereas CgIRF1b did not. Additionally, overexpression of CgIRF1b could significantly suppress the activation effect of CgIRF1a, which strongly suggests that CgIRF1b may serve as a regulator of the IRF signaling pathway. Furthermore, the result of native page revealed that CgIRF1a would form homologous dimers, and CgIRF1b would interact with CgIRF1a to inhibit the activity of the latter. Taken together, one novel regulatory model of IRF signaling pathways has been raised one paralog of IRF has evolved and appears to be a regulator of IRF.


Comprehensive analysis of expression profile and prognostic significance of interferon regulatory factors in pancreatic cancer.

  • Ke Zhang‎ et al.
  • BMC genomic data‎
  • 2022‎

Pancreatic cancer (PC) is a highly lethal disease and an increasing cause of cancer-associated mortality worldwide. Interferon regulatory factors (IRFs) play vital roles in immune response and tumor cellular biological processes. However, the specific functions of IRFs in PC and tumor immune response are far from systematically clarified. This study aimed to explorer the expression profile, prognostic significance, and biological function of IRFs in PC.


Identification of the Prognostic Value and Clinical Significance of Interferon Regulatory Factors (IRFs) in Colon Adenocarcinoma.

  • Munire Yuemaier‎ et al.
  • Medical science monitor : international medical journal of experimental and clinical research‎
  • 2020‎

BACKGROUND Colon adenocarcinoma (COAD) is one of the most common malignant tumors and has high incidence and mortality rates. The interferon regulatory factor (IRF) family is known as a key transcription factor in the IFN signaling pathway and cellular immunity. This research explored the relationship between the IRF family and COAD through use of bioinformatics technology. MATERIAL AND METHODS Using the UALCAN and GEPIA databases, we analyzed the transcription and prognostic value of IRFs in COAD, and GSCALite was used in cancer genomics analysis. TIMER, LinkedOmics, and Metascape were used to assess the potential function of IRFs in COAD. RESULTS The transcription levels of IRF3 were elevated in COAD tissues, while IRF2/4/6 were downregulated compared with normal patients in subgroup analyses of race, age, weight, sex, nodal metastasis, individual cancer stages, TP53 mutation status, and histological subtypes. IRF3 and IRF7 in COAD were significantly associated with a poor prognosis. Drug sensitivity analysis revealed that the expression level of IRF2/4/8 was negatively associated with drug resistance. A significant correlation was found between the IRF family and immune cell infiltration. Moreover, enrichment analysis revealed that the IRFs were associated with response to tumor necrosis factor, transcription misregulation in cancer, and JAK-STAT signaling pathway. We also identified several kinase and miRNA targets of the IRF family in COAD. CONCLUSIONS We identified IRF3 and IRF7 as prognostic biomarkers in COAD, and the IRF family was associated with immune cell infiltration and gene regulation networks, providing additional evidence showing the significant role of the IRF family in COAD.


Interferon Regulatory Factors IRF1 and IRF7 Directly Regulate Gene Expression in Bats in Response to Viral Infection.

  • Aaron T Irving‎ et al.
  • Cell reports‎
  • 2020‎

Bat cells and tissue have elevated basal expression levels of antiviral genes commonly associated with interferon alpha (IFNα) signaling. Here, we show Interferon Regulatory Factor 1 (IRF1), 3, and 7 levels are elevated in most bat tissues and that, basally, IRFs contribute to the expression of type I IFN ligands and high expression of interferon regulated genes (IRGs). CRISPR knockout (KO) of IRF 1/3/7 in cells reveals distinct subsets of genes affected by each IRF in an IFN-ligand signaling-dependent and largely independent manner. As the master regulators of innate immunity, the IRFs control the kinetics and maintenance of the IRG response and play essential roles in response to influenza A virus (IAV), herpes simplex virus 1 (HSV-1), Melaka virus/Pteropine orthoreovirus 3 Melaka (PRV3M), and Middle East respiratory syndrome-related coronavirus (MERS-CoV) infection. With its differential expression in bats compared to that in humans, this highlights a critical role for basal IRF expression in viral responses and potentially immune cell development in bats with relevance for IRF function in human biology.


Comparative analysis of the viral interferon regulatory factors of KSHV for their requisite for virus production and inhibition of the type I interferon pathway.

  • Gavin Golas‎ et al.
  • Virology‎
  • 2020‎

Unique among human viruses, Kaposi's sarcoma-associated herpesvirus (KSHV) encodes several homologs of cellular interferon regulatory factors (vIRFs). Since KSHV expresses multiple factors that can inhibit interferon (IFN) signaling to promote virus production, it is still unclear to what extent vIRFs contribute to these specific processes during KSHV infection. To study the function of vIRFs during viral infection, we engineered 3xFLAG-tagged-vIRF and vIRF-knockout recombinant KSHV clones, which were utilized to test vIRF expression, as well as their requirement for viral replication, virus production, and inhibition of the type I IFN pathway in different models of lytic KSHV infection. Our data show that all vIRFs can be expressed as lytic viral proteins, yet were dispensable for KSHV production and inhibition of type I IFN. Nevertheless, as vIRFs were able to suppress IFN-stimulated antiviral genes, vIRFs may still promote the KSHV lytic cycle in the presence of an ongoing antiviral response.


The EBV Latent Antigen 3C Inhibits Apoptosis through Targeted Regulation of Interferon Regulatory Factors 4 and 8.

  • Shuvomoy Banerjee‎ et al.
  • PLoS pathogens‎
  • 2013‎

Epstein-Barr virus (EBV) is linked to a broad spectrum of B-cell malignancies. EBV nuclear antigen 3C (EBNA3C) is an encoded latent antigen required for growth transformation of primary human B-lymphocytes. Interferon regulatory factor 4 (IRF4) and 8 (IRF8) are transcription factors of the IRF family that regulate diverse functions in B cell development. IRF4 is an oncoprotein with anti-apoptotic properties and IRF8 functions as a regulator of apoptosis and tumor suppressor in many hematopoietic malignancies. We now demonstrate that EBNA3C can contribute to B-cell transformation by modulating the molecular interplay between cellular IRF4 and IRF8. We show that EBNA3C physically interacts with IRF4 and IRF8 with its N-terminal domain in vitro and forms a molecular complex in cells. We identified the Spi-1/B motif of IRF4 as critical for EBNA3C interaction. We also demonstrated that EBNA3C can stabilize IRF4, which leads to downregulation of IRF8 by enhancing its proteasome-mediated degradation. Further, si-RNA mediated knock-down of endogenous IRF4 results in a substantial reduction in proliferation of EBV-transformed lymphoblastoid cell lines (LCLs), as well as augmentation of DNA damage-induced apoptosis. IRF4 knockdown also showed reduced expression of its targeted downstream signalling proteins which include CDK6, Cyclin B1 and c-Myc all critical for cell proliferation. These studies provide novel insights into the contribution of EBNA3C to EBV-mediated B-cell transformation through regulation of IRF4 and IRF8 and add another molecular link to the mechanisms by which EBV dysregulates cellular activities, increasing the potential for therapeutic intervention against EBV-associated cancers.


Dual functions of interferon regulatory factors 7C in Epstein-Barr virus-mediated transformation of human B lymphocytes.

  • Yong Zhao‎ et al.
  • PloS one‎
  • 2010‎

Epstein-Barr virus (EBV) infection is associated with several human malignancies. Interferon (IFN) regulatory factor 7 (IRF-7) has several splicing variants, and at least the major splicing variant (IRF-7A) has oncogenic potential and is associated with EBV transformation processes. IRF-7C is an alternative splicing variant with only the DNA-binding domain of IRF-7. Whether IRF-7C is present under physiological conditions and its functions in viral transformation are unknown. In this report, we prove the existence of IRF-7C protein and RNA in certain cells under physiological conditions, and find that high levels of IRF-7C are associated with EBV transformation of human primary B cells in vitro as well as EBV type III latency. EBV latent membrane protein 1 (LMP-1) stimulates IRF-7C expression in B lymphocytes. IRF-7C has oncogenic potential in rodent cells and partially restores the growth properties of EBV-transformed cells under a growth-inhibition condition. A tumor array experiment has identified six primary tumor specimens with high levels of IRF-7C protein--all of them are lymphomas. Furthermore, we show that the expression of IRF-7C is apparently closely associated with other IRF-7 splicing variants. IRF-7C inhibits the function of IRF-7 in transcriptional regulation of IFN genes. These data suggest that EBV may use splicing variants of IRF-7 for its transformation process in two strategies: to use oncogenic properties of various IRF-7 splicing variants, but use one of its splicing variants (IRF-7C) to block the IFN-induction function of IRF-7 that is detrimental for viral transformation. The work provides a novel relation of host/virus interactions, and has expanded our knowledge about IRFs in EBV transformation.


mRNA Expression of Interferon Regulatory Factors during Acute Rejection of Liver Transplants in Patients with Autoimmune Hepatitis.

  • M Nasiri‎ et al.
  • International journal of organ transplantation medicine‎
  • 2018‎

Interferon regulatory factors (IRFs) can play a critical role in the regulation of many facets of innate and adaptive immune responses through transcriptional activation of type I interferons, other proinflammatory cytokines, and chemokines. However, their roles in transplantation immunity still remain to be elucidated.


Expression and functional characterization of interferon regulatory factors 4, 8, and 9 in large yellow croaker (Larimichthys crocea).

  • Jingteng Tang‎ et al.
  • Developmental and comparative immunology‎
  • 2018‎

Interferon regulatory factor (IRF)-4, 8, and 9 are essential in host defense against pathogens. Here, the full-length coding sequence (CDS), protein structure, and immune response of IRF4/8/9 (lc IRF4/8/9) were characterized in large yellow croaker (Larimichthys crocea). The open reading frame of lcIRF4, lcIRF8 and lcIRF9 encoded putative proteins of 463,422 and 406 amino acids, respectively. These IRFs share high sequence homology with other vertebrate IRFs and were constitutively expressed in all examined tissues. IRFs were upregulated following stimulation with Vibrio anguillarum in the liver, spleen, and kidney. These results suggest that IRF4/8/9 are vital in the defense of L. crocea against bacterial infection and further increase our understanding of IRFs function in innate immunity in teleosts.


Targeting interferon regulatory factors to inhibit activation of the type I IFN response: implications for treatment of autoimmune disorders.

  • Susan E Sweeney‎
  • Cellular immunology‎
  • 2011‎

The type I interferon (IFN) response plays a critical role in autoimmunity and is induced by innate receptor ligation and activation of IFN-regulatory factors (IRF). The present study investigated the roles and functional hierarchy of IRF3, IRF5, and IRF7 in expression of cytokines, chemokines, and matrix metalloproteinases in human THP1 monocytic cells. Targeted IRF knockdown was followed by evaluation of gene expression, promoter activation, and mRNA stability to determine the role of IRF as potential targets for modulating IFN responses in patients with autoimmune diseases. IRF played a distinct role in regulation of type I IFN gene expression in human monocytic cells and specifically regulated gene expression through the IFN-stimulated response element, with no contribution to transcription of traditionally AP-1 or NF-kB regulated genes. IRF7 regulated IL-6 gene expression by increasing IL-6 mRNA stability. IRF regulation of inflammation and induction of the IFN signature might contribute to the pathogenesis of autoimmune diseases and therefore represent novel therapeutic targets.


The hypnotic bromovalerylurea ameliorates 6-hydroxydopamine-induced dopaminergic neuron loss while suppressing expression of interferon regulatory factors by microglia.

  • Hiromi Higaki‎ et al.
  • Neurochemistry international‎
  • 2016‎

The low molecular weight organic compound bromovalerylurea (BU) has long been used as a hypnotic/sedative. In the present study, we found that BU suppressed mRNA expression of proinflammatory factors and nitric oxide release in lipopolysaccharide (LPS)-treated rat primary microglial cell cultures. BU prevented neuronal degeneration in LPS-treated neuron-microglia cocultures. The anti-inflammatory effects of BU were as strong as those of a synthetic glucocorticoid, dexamethasone. A rat hemi-Parkinsonian model was prepared by injecting 6-hydroxydopamine into the right striatum. BU was orally administered to these rats for 7 days, which ameliorated the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and alleviated motor deficits. BU suppressed the expression of mRNAs for interferon regulatory factors (IRFs) 1, 7 and 8 in the right (lesioned) ventral midbrain as well as those for proinflammatory mediators. BU increased mRNA expression of various neuroprotective factors, including platelet-derived growth factor and hepatocyte growth factor, but it did not increase expression of alternative activation (M2) markers. In microglial culture, BU suppressed the LPS-induced increase in expression of IRFs 1 and 8, and it reduced LPS-induced phosphorylation of JAK1 and STATs 1 and 3. Knockdown of IRFs 1 and 8 suppressed LPS-induced NO release by microglial cells. These results suggest that suppression of microglial IRF expression by BU prevents neuronal cell death in the injured brain region, where microglial activation occurs. Because many Parkinsonian patients suffer from sleep disorders, BU administration before sleep may effectively ameliorate neurological symptoms and alleviate sleep dysfunction.


Role of cellular caspases, nuclear factor-kappa B and interferon regulatory factors in Bluetongue virus infection and cell fate.

  • Meredith E Stewart‎ et al.
  • Virology journal‎
  • 2010‎

Bluetongue virus (BTV) infection causes haemorrhagic disease in ruminants and induces cell death. The pathogenesis in animals and in cell culture has been linked to BTV-induced apoptosis.


Type I interferons and interferon regulatory factors regulate TNF-related apoptosis-inducing ligand (TRAIL) in HIV-1-infected macrophages.

  • Yunlong Huang‎ et al.
  • PloS one‎
  • 2009‎

TNF-related apoptosis-inducing ligand (TRAIL) is a member of the TNF family that participates in HIV-1 pathogenesis through the depletion of CD4+ T cells. TRAIL is expressed on the cell membrane of peripheral immune cells and can be cleaved into a soluble, secreted form. The regulation of TRAIL in macrophages during HIV-1 infection is not completely understood. In this study, we investigated the mechanism(s) of TRAIL expression in HIV-1-infected macrophages, an important cell type in HIV-1 pathogenesis. A human monocyte-derived macrophage (MDM) culture system was infected with macrophage-tropic HIV-1(ADA), HIV-1(JR-FL), or HIV-1(BAL) strains. TRAIL, predominantly the membrane-bound form, increased following HIV-1 infection. We found that HIV-1 infection also induced interferon regulatory factor (IRF)-1, IRF-7 gene expression and signal transducers and activators of transcription 1 (STAT1) activation. Small interfering RNA knockdown of IRF-1 or IRF-7, but not IRF-3, reduced STAT1 activation and TRAIL expression. Furthermore, the upregulation of IRF-1, IRF-7, TRAIL, and the activation of STAT1 by HIV-1 infection was reduced by the treatment of type I interferon (IFN)-neutralizing antibodies. In addition, inhibition of STAT1 by fludarabine abolished IRF-1, IRF-7, and TRAIL upregulation. We conclude that IRF-1, IRF-7, type I IFNs, and STAT1 form a signaling feedback loop that is critical in regulating TRAIL expression in HIV-1-infected macrophages.


Expression and functional characterization of interferon regulatory factors (irf2, irf7 and irf9) in the blunt snout bream (Megalobrama amblycephala).

  • Fan-Bin Zhan‎ et al.
  • Developmental and comparative immunology‎
  • 2017‎

Interferon regulatory factors (irfs) are a family of genes that encode transcription factors with important roles in regulating the expression of Type I interferons (IFNs) and other genes associated with related pathways. irfs have multitudinous functions in growth, development and regulation of oncogenesis. In this study, three irf family members (irf2, irf7, irf9) were identified and characterized in Megalobrama amblycephala at the mRNA and amino acid levels. M. amblycephala irfs share a high sequence homology with other vertebrate irfs. Constitutive expression levels of the three genes were detected (using qPCR) in all studied tissues: low to medium in kidney, gills, heart and muscle, and high in liver, spleen, intestine and blood. qPCR was also used to analyze the dynamic expression patterns of irfs in different embryonic development stages: irf2 is not activated during the embryonic development, whereas irf9 appears to play important roles around hatching and during the larval development. Transcripts of all three studied irfs were upregulated after stimulation by Aeromonas hydrophila bacterium in liver, spleen, head kidney and trunk kidney, whereas downregulation was observed in intestine and gills. The results show that these three irfs are likely to be important factors in the blunt snout bream immune system. They also provide a foundation for studying the origin and evolution of the innate immune system in the blunt snout bream.


Composition and transcription of all interferon regulatory factors (IRFs), IRF1‒11 in a perciform fish, the mandarin fish, Siniperca chuatsi.

  • Zubair Ahmed Laghari‎ et al.
  • Developmental and comparative immunology‎
  • 2018‎

Interferon regulatory factors (IRFs) are a family of mediators in various biological processes including immune modulation of interferon (IFN) and proinflammatory cytokine expression. However, the data on the complete composition of IRFs is rather limited in teleost fish. In the present study, all IRF members, i.e. IRF1‒11 with two IRF4, IRF4a and IRF4b have been characterised in an aquaculture species of fish, the mandarin fish, Siniperca chuatsi, in addition to the previous report of IRF1, IRF2, IRF3 and IRF7 from the fish. These IRFs are constitutively expressed in various organs/tissues of the fish, and their expression can be induced following the stimulation of polyinosinic:polycytidylic acid (poly(I:C)) and the infection of infectious spleen and kidney necrosis virus (ISKNV), a viral pathogen of mandarin fish in aquaculture. The ISKNV infection induced the significant increase in the expression of some IRF genes, i.e. IRF2, IRF4a, IRF7, IRF9, IRF10 at 24 or 36 h post-infection (hpi) in spleen and head-kidney, and the significant increase of some other IRF genes, e.g. IRF1, IRF3, IRF4b, IRF5, IRF6, IRF8 at later stage of infection from 72, or 96, or even 120 hpi, which may imply the inhibitory effect of ISKNV on fish immune response. It is considered that the present study provides the first detailed analysis on all IRF members in an aquaculture species of fish, and can be served as the base for further investigation on the role of IRFs in teleost fish.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: