Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,192 papers

Interferon-regulatory factor-1 (IRF1) regulates bevacizumab induced autophagy.

  • Ji Liang‎ et al.
  • Oncotarget‎
  • 2015‎

Antiangiogenic therapy is commonly being used for the treatment of glioblastoma. However, the benefits of angiogenesis inhibitors are typically transient and resistance often develops. Determining the mechanism of treatment failure of the VEGF monoclonal antibody bevacizumab for malignant glioma would provide insight into approaches to overcome therapeutic resistance.


Interferon-γ exerts dual functions on human erythropoiesis via interferon regulatory factor 1 signal pathway.

  • Wentian Wang‎ et al.
  • Biochemical and biophysical research communications‎
  • 2020‎

Hematopoiesis is systematically regulated by microenvironmental factors. The positive and negative factors coordinated together to yield a complicated blood system. Interferon-γ (IFNγ) has been identified as a common cause of various hematopoietic abnormalities, such as aplastic anemia. However, its impact on monolineage development, especially erythropoiesis, has not been fully elucidated from the cellular angle. In this study, we investigated the behavior of IFNγ and found that IFNγ plays dual functions on erythropoiesis; it not only blocks the erythroid lineage commitment but also accelerates the erythroid differentiation process, ultimately leading to the erythropoietic window clearance. IFNγ can even powerfully initiate early differentiation without the existence of erythropoietin (EPO). Interferon regulatory factor 1 (IRF1) was confirmed as the essential downstream effector, and its ectopic overexpression can also have the same effect as that of IFNγ. These results reveal that the IFNγ-IRF1 axis plays a bidirectional role on erythropoiesis, impeding the access to erythroid lineage and driving the coming cells toward the differentiation endpoint. This model may place an innovative implication for IFNγ-IRF1 axis to understand its in-depth mechanism on normal hematopoiesis and abnormal blood disorders, especially aplastic anemia.


Interferon regulatory factor 1 (IRF1) and anti-pathogen innate immune responses.

  • Hui Feng‎ et al.
  • PLoS pathogens‎
  • 2021‎

The eponymous member of the interferon regulatory factor (IRF) family, IRF1, was originally identified as a nuclear factor that binds and activates the promoters of type I interferon genes. However, subsequent studies using genetic knockouts or RNAi-mediated depletion of IRF1 provide a much broader view, linking IRF1 to a wide range of functions in protection against invading pathogens. Conserved throughout vertebrate evolution, IRF1 has been shown in recent years to mediate constitutive as well as inducible host defenses against a variety of viruses. Fine-tuning of these ancient IRF1-mediated host defenses, and countering strategies by pathogens to disarm IRF1, play crucial roles in pathogenesis and determining the outcome of infection.


Interferon-γ upregulates expression of IFP35 gene in HeLa cells via interferon regulatory factor-1.

  • Wei Yang‎ et al.
  • PloS one‎
  • 2012‎

Interferon-induced 35-kDa protein (IFP35) plays important roles in antiviral defense and the progression of some skin cancer diseases. It can be induced by interferon-γ (IFN-γ) in multiple human cells. However, the mechanisms by which IFN-γ contributes to IFP35 induction remain to be elucidated.


Molecular characterization and antiviral effects of canine interferon regulatory factor 1 (CaIRF1).

  • Xiangqi Hao‎ et al.
  • BMC veterinary research‎
  • 2022‎

Interferon regulatory factor 1 (IRF1) is an important transcription factor that activates the type I interferon (IFN-I) response and plays a vital role in the antiviral immune response. Although IRF1 has been identified in several mammals, little information related to its function in canines has been described.


Tumor suppressor Interferon Regulatory Factor 1 selectively blocks expression of endogenous retrovirus.

  • K P Stoltz‎ et al.
  • Virology‎
  • 2019‎

Endogenous retroviruses (ERVs) comprise 10% of the genome, with many of these transcriptionally silenced post early embryogenesis. Several stimuli, including exogenous virus infection and cellular transformation can reactivate ERV expression via a poorly understood mechanism. We identified Interferon Regulatory Factor 1 (IRF-1), a tumor suppressor and an antiviral host factor, as a suppressor of ERV expression. IRF-1 decreased expression of a specific mouse ERV in vitro and in vivo. IRF-3, but not IRF-7, also decreased expression of distinct ERV families, suggesting that suppression of ERVs is a relevant biological function of the IRF family. Given the emerging appreciation of the physiological relevance of ERV expression in cancer, IRF-1-mediated suppression of specific ERVs may contribute to the overall tumor suppressor activity of this host factor.


Molecular characterization and subcellular localization of Carassius auratus interferon regulatory factor-1.

  • Yan Shi‎ et al.
  • Developmental and comparative immunology‎
  • 2008‎

Interferon (IFN)-regulatory transcription factor-1 (IRF-1) has been studied in mammals and fish, but little is known about the relationship between its gene structure and nuclear localization of IRF-1 protein. In this study, a cDNA encoding Carassius auratus IRF-1 (CaIRF-1) was isolated from an interferon-producing cell line, C. auratus blastulae embryonic (CAB) cells, exposed to UV-inactivated grass carp hemorrhagic virus (GCHV). The CaIRF-1 genomic locus exhibits exon-intron arrangements similar to those of other vertebrate IRF-1 loci, with nine exons and eight introns, although together with pufferfish IRF-1, CaIRF-1 distinguishes itself from other vertebrate IRF-1 genes by a relatively compact genomic size. Similar to the known IRF-1 genes, CaIRF-1 is ubiquitously expressed, and is upregulated in vitro and in vivo in response to virus, Poly I:C, or CAB IFN-containing supernatant (ICS). Subcellular localization analysis confirms the nuclear distribution of CaIRF-1 protein, and reveals two nuclear localization signals (NLS), any one of which is sufficient for nuclear translocation of CaIRF-1. One NLS locates to amino acids 117-146, and appears to be the structural and functional equivalent of the NLS in mammalian IRF-1. The second NLS (amino acids 73-115) is found within the DNA-binding domain (DBD) of CaIRF-1, and contains two regions rich in basic amino acids ("95 KDKSINK 101" and "75 KTWKANFR 82"). In comparison with mammalian IRF-1, in which the corresponding amino acid stretch does not seem to drive nuclear translocation, five conserved basic amino acids (K75, K78, R82, K95, and K101) and one non-conserved basic amino acid (K97) are present in this NLS from CaIRF-1. This observation suggests that K97 of CaIRF-1 might be essential for the function of its second NLS, wherein the six basic amino acids might cooperate to drive CaIRF-1 to the nucleus. Therefore, the current study has revealed a new nuclear localization motif in the DBD of a vertebrate IRF-1.


Aberrant alternative splicing of interferon regulatory factor-1 (IRF-1) in myelodysplastic hematopoietic progenitor cells.

  • Christos I Maratheftis‎ et al.
  • Leukemia research‎
  • 2006‎

Interferon regulatory factor-1 (IRF-1) mRNA expression was examined in specific cell populations (BMMC, CD34+ and CD71+) derived from 45 MDS patients and 20 controls. All the MDS cell populations, presented an identical IRF-1 mRNA expression pattern, characterized by the absence of full-length IRF-1 mRNA and presence of multiple alternative transcripts. The most common deletions involved exons 2 and 3. Two novel truncated IRF-1 protein forms were detected in MDS BMMC. IRF-1-induced iNOS mRNA expression was exclusively detected in BMMC having full-length transcript. The expression of IRF-1 truncated mRNA and protein forms might be a critical event in the development of MDS.


Sp1 is required for prolactin activation of the interferon regulatory factor-1 gene.

  • M Book McAlexander‎ et al.
  • Molecular and cellular endocrinology‎
  • 2001‎

Transcription of the interferon regulatory factor-1 gene (IRF-1) is induced in a biphasic manner (G1 and G1/S phase) in Nb2 T cells in response to prolactin (PRL) stimulation. Signal transducer and activator of transcription 1 (Stat1) is required for PRL activation of the IRF-1 promoter. Mutation of a -200 bp Sp1 site in the IRF-1 promoter results in a loss of G1 but not G1/S IRF-1 transcriptional activity in response to PRL. These studies illustrate that the temporal transcription of the IRF-1 gene is mediated by not only Stat1 but also Sp1 in response to PRL stimulation.


The lipopolysaccharide-triggered mesangial transcriptome: Evaluating the role of interferon regulatory factor-1.

  • Yuyang Fu‎ et al.
  • Kidney international‎
  • 2005‎

Presently, we do not have a clear picture of how the mesangial transcriptome evolves following stimulation. The present study was designed to address this, using an innate trigger to stimulate murine mesangial cells.


Inactivation of Interferon Regulatory Factor 1 Causes Susceptibility to Colitis-Associated Colorectal Cancer.

  • Thiviya Jeyakumar‎ et al.
  • Scientific reports‎
  • 2019‎

The mechanisms linking chronic inflammation of the gut (IBD) and increased colorectal cancer susceptibility are poorly understood. IBD risk is influenced by genetic factors, including the IBD5 locus (human 5q31), that harbors the IRF1 gene. A cause-to-effect relationship between chronic inflammation and colorectal cancer, and a possible role of IRF1 were studied in Irf1-/- mice in a model of colitis-associated colorectal cancer (CA-CRC) induced by azoxymethane and dextran sulfate. Loss of Irf1 causes hyper-susceptibility to CA-CRC, with early onset and increased number of tumors leading to rapid lethality. Transcript profiling (RNA-seq) and immunostaining of colons shows heightened inflammation and enhanced enterocyte proliferation in Irf1-/- mutants, prior to appearance of tumors. Considerable infiltration of leukocytes is seen in Irf1-/- colons at this early stage, and is composed primarily of proinflammatory Gr1+ Cd11b+ myeloid cells and other granulocytes, as well as CD4+ lymphoid cells. Differential susceptibility to CA-CRC of Irf1-/- vs. B6 controls is fully transferable through hematopoietic cells as observed in bone marrow chimera studies. Transcript signatures seen in Irf1-/- mice in response to AOM/DSS are enriched in clinical specimens from patients with IBD and with colorectal cancer. In addition, IRF1 expression in the colon is significantly decreased in late stage colorectal cancer (stages 3, 4) and is associated with poorer prognosis. This suggests that partial or complete loss of IRF1 expression alters the type, number, and function of immune cells in situ during chronic inflammation, possibly via the creation of a tumor-promoting environment.


Immune evasion strategy involving propionylation by the KSHV interferon regulatory factor 1 (vIRF1).

  • Jiale Shi‎ et al.
  • PLoS pathogens‎
  • 2023‎

Post-translational modifications (PTMs) are essential for host antiviral immune response and viral immune evasion. Among a set of novel acylations, lysine propionylation (Kpr) has been detected in both histone and non-histone proteins. However, whether protein propionylation occurs in any viral proteins and whether such modifications regulate viral immune evasion remain elusive. Here, we show that Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded viral interferon regulatory factor 1 (vIRF1) can be propionylated in lysine residues, which is required for effective inhibition of IFN-β production and antiviral signaling. Mechanistically, vIRF1 promotes its own propionylation by blocking SIRT6's interaction with ubiquitin-specific peptidase 10 (USP10) leading to its degradation via a ubiquitin-proteasome pathway. Furthermore, vIRF1 propionylation is required for its function to block IRF3-CBP/p300 recruitment and repress the STING DNA sensing pathway. A SIRT6-specific activator, UBCS039, rescues propionylated vIRF1-mediated repression of IFN-β signaling. These results reveal a novel mechanism of viral evasion of innate immunity through propionylation of a viral protein. The findings suggest that enzymes involved in viral propionylation could be potential targets for preventing viral infections.


MiR-23a facilitates the replication of HSV-1 through the suppression of interferon regulatory factor 1.

  • Jing Ru‎ et al.
  • PloS one‎
  • 2014‎

MicroRNAs (miRNAs) are small, non-coding RNAs that negatively regulate gene expression. It has been reported that miRNAs are involved in host-virus interaction, but evidence that cellular miRNAs promote virus replication has been limited. Here, we found that miR-23a promoted the replication of human herpes simplex virus type 1 (HSV-1) in HeLa cells, as demonstrated by a plaque-formation assay and quantitative real-time PCR. Furthermore, interferon regulatory factor 1 (IRF1), an innate antiviral molecule, is targeted by miR-23a to facilitate viral replication. MiR-23a binds to the 3'UTR of IRF1 and down-regulates its expression. Suppression of IRF1 expression reduced RSAD2 gene expression, augmenting HSV-1 replication. Ectopic expression of IRF1 abrogated the promotion of HSV-1 replication induced by miR-23a. Notably, IRF1 contributes to innate antiviral immunity by binding to IRF-response elements to regulate the expression of interferon-stimulated genes (ISGs) and apoptosis, revealing a complex interaction between miR-23a and HSV-1. MiR-23a thus contributes to HSV-1 replication through the regulation of the IRF1-mediated antiviral signal pathway, which suggests that miR-23a may represent a promising target for antiviral treatments.


Interferon regulatory factor 1 priming of tumour-derived exosomes enhances the antitumour immune response.

  • Mu-Qing Yang‎ et al.
  • British journal of cancer‎
  • 2018‎

Tumour-derived exosomes (TEXs) have a potential for application in cancer vaccines. Whether TEXs after induction by interferon regulatory factor 1 (IRF-1) are capable of enhancing the antitumour response remains to be determined.


The Role of Interferon Regulatory Factor 1 in Regulating Microglial Activation and Retinal Inflammation.

  • Xu Yang‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Microglia are resident immune cells in the central nervous system (CNS). Microglial activation plays a prominent role in neuroinflammation and CNS diseases. However, the underlying mechanisms of microglial activation are not well understood. Here, we report that the transcription factor interferon regulatory factor 1 (IRF1) plays critical roles in microglial activation and retinal inflammation by regulating pro- and anti-inflammatory gene expression. IRF1 expression was upregulated in activated retinal microglia compared to those at the steady state. IRF1 knockout (KO) in BV2 microglia cells (BV2ΔIRF1) created by CRISPR/Cas9 genome-editing technique causes decreased microglia proliferation, migration, and phagocytosis. IRF1-KO decreased pro-inflammatory M1 marker gene expression induced by lipopolysaccharides (LPS), such as IL-6, COX-2, and CCL5, but increased anti-inflammatory M2 marker gene expression by IL-4/13, such as Arg-1, CD206, and TGF-β. Compared to the wild-type cells, microglial-conditioned media (MCM) of activated BV2ΔIRF1 cell cultures reduced toxicity or death to several retinal cells, including mouse cone photoreceptor-like 661 W cells, rat retinal neuron precursor R28 cells, and human ARPE-19 cells. IRF1 knockdown by siRNA alleviated microglial activation and retinal inflammation induced by LPS in mice. Together, the findings suggest that IRF1 plays a vital role in regulating microglial activation and retinal inflammation and, therefore, may be targeted for treating inflammatory and degenerative retinal diseases.


MicroRNA-23a downregulates the expression of interferon regulatory factor-1 in hepatocellular carcinoma cells.

  • Yihe Yan‎ et al.
  • Oncology reports‎
  • 2016‎

Interferon regulatory factor-1 (IRF-1) is a tumor-suppressor gene induced by interferon-γ (IFNγ) and plays an important role in the cell death of hepatocellular carcinoma (HCC). HCC tumors evade death in part by downregulating IRF-1 expression, yet the molecular mechanisms accounting for IRF-1 suppression in HCC have not yet been characterized. Previous studies have shown that microRNA-23a (miR-23a) can suppress apoptosis by targeting IRF-1. Therefore, we hypothesized that miR-23a promotes HCC growth by downregulating IRF-1. For the in vivo studies, 7 cases of resected HCC and adjacent liver samples were analyzed. For the in vitro studies, IRF-1 mRNA and protein were examined in HepG2 and Huh-7 HCC cells after IFNγ stimulation by real-time PCR and western blotting, respectively. To determine the role of miR-23a in regulating IRF-1, HepG2 cells were transfected with an miR-23a mimic or inhibitor, and IRF-1 expression was examined. Binding of miR-23a was assessed by cloning the 528-bp human IRF-1 3'-untranslated region (3'UTR) into luciferase reporter plasmid pMIR-IRF-1-3'UTR. The results showed that IRF-1 mRNA expression was downregulated in the human HCC tumor tissues compared to that in the adjacent background liver tissues. IFNγ-induced IRF-1 protein was less in the HepG2 tumor cells compared to that in the primary human hepatocytes. miR-23a expression was inversely correlated with IRF-1, and addition of the miR-23a inhibitor increased basal IRF-1 mRNA and protein. Likewise, the miR-23a mimic downregulated IFNγ-induced IRF-1 protein expression, while the miR-23a inhibitor increased IRF-1. Furthermore, the miR-23a mimic repressed IRF-1-3'UTR reporter activity, while the miR-23a inhibitor increased the reporter activity. These results demonstrated that IRF-1 expression is downregulated in human HCC tumors compared to that noted in the background liver. miR-23a downregulates the expression of IRF-1 in HCC cells, and the IRF-1 3'UTR has an miR‑23a binding site that binds miR-23a and decreases reporter activity. These findings suggest that the targeting of IRF-1 by miR-23a may be the molecular basis for IRF-1 downregulation in HCC and provide new insight into the regulation of HCC by miRNAs.


Ataxin-10 Inhibits TNF-α-Induced Endothelial Inflammation via Suppressing Interferon Regulatory Factor-1.

  • Yong Li‎ et al.
  • Mediators of inflammation‎
  • 2021‎

Endothelial inflammation is a crucial event in the initiation of atherosclerosis. Here, we identify Ataxin-10 protein as a novel negative modulator of endothelial activation by suppressing IRF-1 transcription activity. The protein level of Ataxin-10 is relatively higher in human vascular endothelial cells, which can be significantly suppressed by TNF-α in both HUVECs and HLMECs. Overexpression of Ataxin-10 markedly inhibited the mRNA expressions of VCAM-1 and several cytokines including MCP-1, CXCL-1, CCL-5, and TNF-α; thus, it can also suppress monocyte adhesion to endothelial cells. Accordingly, Ataxin-10 silencing promoted endothelial inflammation. However, Ataxin-10 did not affect the MAPK/NF-κB signaling pathway stimulated by TNF-α in HUVECs. Using the yeast two-hybrid assay, we found that Ataxin-10 can directly bind to interferon regulatory factor-1 (IRF-1). Upon TNF-α stimulation, Ataxin-10 promoted the cytoplasmic localization of IRF-1, which inhibited the transcription of VCAM-1. Moreover, knockdown of IRF-1 can eliminate the effect of Ataxin-10 on the expression of VCAM-1 in HUVECs induced by TNF-α. Taken together, these results indicate that Ataxin-10 inhibits endothelial cell activation and may serve as a promising therapeutic target for some vascular inflammatory-related diseases such as atherosclerosis.


Molecular and functional characterization of interferon regulatory factor 1 (IRF1) in amphibian Xenopus tropicalis.

  • Zhen Gan‎ et al.
  • International journal of biological macromolecules‎
  • 2021‎

Interferon regulatory factor 1 (IRF1) is an important regulator in controlling the transcription of type I interferon genes, and its functions have been well-characterized in mammals, birds and fish. However, little information is available regarding the function of amphibian IRF1. In this study, an IRF1 gene homolog named as Xt-IRF1 was identified in the Western clawed frog (Xenopus tropicalis), an amphibian model specie widely used for comparative immunology research. Xt-IRF1 and IRF1 in other vertebrates possess similar genomic structure and flanking genes, and were grouped together to form a separate clade in phylogenetic tree. In addition, Xt-IRF1 gene was constitutively expressed in all tissues examined, with the highest expression level observed in spleen, and was inducible after poly(I:C) stimulation. Importantly, the expression of Xt-IRF1 was markedly induced by recombinant type I interferon, and Xt-IRF1 induced a strong activation of both IFNβ and ISRE promoters. The present study opens the door to investigate the roles of IRF1 in amphibians, and thus contributes to a better understanding of the functional evolution of IRFs in lower tetrapods.


5-Azacytidine modulates interferon regulatory factor 1 in macrophages to exert a cardioprotective effect.

  • Hye-Yun Jeong‎ et al.
  • Scientific reports‎
  • 2015‎

Macrophages are actively involved in inflammatory responses during the progression of cardiac injury, including myocardial infarction (MI). A previous study showed that 5-azacytidine (5AZ), a DNA methylation inhibitor, can ameliorate cardiac injury by shifting macrophages toward an anti-inflammatory phenotype via iNOS inhibition. Here, we show that the beneficial effect of 5AZ is associated with sumoylation of interferon regulatory factor-1 (IRF1) in macrophages. IRF1 is a critical transcription factor for iNOS induction and is antagonized by IRF2. In the stimulated macrophages, IRF1 accumulated in the nucleus without degradation by 5AZ treatment. In animal study, 5AZ administration resulted in significant improvements in cardiac function and fibrosis. IRF1-expressing macrophages were more abundant in the 5AZ-treated MI group than in the PBS-treated MI group. Because sumoylated IRF1 is known to mimic IRF2, we examined the IRF1 sumoylation. Sumoylated IRF1 was resistant to degradation and significantly increased in the 5AZ-treated MI group. Collectively, 5AZ had a protective effect after MI by potentiation of IRF1 sumoylation and is suggested as a novel therapeutic intervention for cardiac repair.


Antiviral Activity of Porcine Interferon Regulatory Factor 1 against Swine Viruses in Cell Culture.

  • Yongtao Li‎ et al.
  • Viruses‎
  • 2015‎

Interferon regulatory factor 1 (IRF1), as an important transcription factor, is abundantly induced upon virus infections and participates in host antiviral immune responses. However, the roles of porcine IRF1 (poIRF1) in host antiviral defense remain poorly understood. In this study, we determined that poIRF1 was upregulated upon infection with viruses and distributed in nucleus in porcine PK-15 cells. Subsequently, we tested the antiviral activities of poIRF1 against several swine viruses in cells. Overexpression of poIRF1 can efficiently suppress the replication of viruses, and knockdown of poIRF1 promotes moderately viral replication. Interestingly, overexpression of poIRF1 enhances dsRNA-induced IFN-β and IFN-stimulated response element (ISRE) promoter activation, whereas knockdown of poIRF1 cannot significantly affect the activation of IFN-β promoter induced by RNA viruses. This study suggests that poIRF1 plays a significant role in cellular antiviral response against swine viruses, but might be dispensable for IFN-β induction triggered by RNA viruses in PK-15 cells. Given these results, poIRF1 plays potential roles in cellular antiviral responses against swine viruses.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: