Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 39 papers

Motoneurone synchronization for intercostal and abdominal muscles: interneurone influences in two different species.

  • J D Road‎ et al.
  • Experimental brain research‎
  • 2021‎

The contribution of branched-axon monosynaptic inputs in the generation of short-term synchronization of motoneurones remains uncertain. Here, synchronization was measured for intercostal and abdominal motoneurones supplying the lower thorax and upper abdomen, mostly showing expiratory discharges. Synchronization in the anaesthetized cat, where the motoneurones receive a strong direct descending drive, is compared with that in anaesthetized or decerebrate rats, where the direct descending drive is much weaker. In the cat, some examples could be explained by branched-axon monosynaptic inputs, but many others could not, by virtue of peaks in cross-correlation histograms whose widths (relatively wide) and timing indicated common inputs with more complex linkages, e.g., disynaptic excitatory. In contrast, in the rat, correlations for pairs of internal intercostal nerves were dominated by very narrow peaks, indicative of branched-axon monosynaptic inputs. However, the presence of activity in both inspiration and expiration in many of the nerves allowed additional synchronization measurements between internal and external intercostal nerves. Time courses of synchronization for these often consisted of combinations of peaks and troughs, which have never been previously described for motoneurone synchronization and which we interpret as indicating combinations of inputs, excitation of one group of motoneurones being common with either excitation or inhibition of the other. Significant species differences in the circuits controlling the motoneurones are indicated, but in both cases, the roles of spinal interneurones are emphasised. The results demonstrate the potential of motoneurone synchronization for investigating inhibition and have important general implications for the interpretation of neural connectivity measurements by cross-correlation.


TMS-evoked silent periods in scalene and parasternal intercostal muscles during voluntary breathing.

  • Billy L Luu‎ et al.
  • Respiratory physiology & neurobiology‎
  • 2015‎

Transcranial magnetic stimulation (TMS) during voluntary muscle contraction causes a period of reduced electromyographic (EMG) activity (EMG). This is attributed to cortical inhibition and is known as the 'silent period'. Silent periods were compared in inspiratory muscles following TMS during voluntary inspiratory efforts during normocapnia, hypercapnia, and hypocapnia. TMS was delivered during isometric and dynamic contractions of scalenes and parasternal intercostals at 25% maximum inspiratory pressure. Changing end-tidal CO2 did not affect the duration of the silent period nor suppression of EMG activity during the silent period. In scalenes, silent periods were shorter for dynamic compared to isometric contractions (p<0.05); but contraction type did not alter the degree of suppression of EMG during the silent period. In parasternal intercostal, no significant differences in silent period parameters occurred for the different contraction types. The lack of effect of end-tidal CO2 suggests that descending drive from the medullary respiratory centres does not independently activate the inspiratory muscles during voluntary inspiratory efforts.


Analysis of the Molecular Signaling Signatures of Muscle Protein Wasting Between the Intercostal Muscles and the Gastrocnemius Muscles in db/db Mice.

  • Kun Woo Kim‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

Type 2 diabetes (T2D) patients suffer from dyspnea, which contributes to disease-related morbidity. Although T2D has been reported to induce a catabolic state in skeletal muscle, whether T2D induces muscle wasting in respiratory muscles has not yet been investigated. In this study, we examine the difference in the molecular signaling signature of muscle wasting between the intercostal and gastrocnemius muscles using db/db mice, a well-known diabetic mouse model. Akt phosphorylation was significantly decreased in both the intercostal and gastrocnemius muscles of db/db mice and was accompanied by a decrease in mTORC1 activity. In addition, FoxO phosphorylation was suppressed, and ubiquitin-proteasome degradation, characterized by the level of Atrogin-1 and MuRF1, was subsequently enhanced in both muscle types of db/db mice. An increase in LC3BII levels and a decrease in p62 levels marked the occurrence of substantial autophagy in the gastrocnemius muscle but not in the intercostal muscles of db/db mice. Therefore, we suggest that the signaling events of muscle wasting in the intercostal muscles of db/db mice are different from those in the gastrocnemius muscle of db/db mice.


Atypical behavior of NFATc1 in cultured intercostal myofibers.

  • Patrick Robison‎ et al.
  • Skeletal muscle‎
  • 2014‎

The NFATc transcription factor family is responsible for coupling cytoplasmic calcium signals to transcription programs in a wide variety of cell types. In skeletal muscle, these transcription factors control the fiber type in response to muscle activity. This excitation-transcription (E-T) coupling permits functional adaptation of muscle according to use. The activity dependence of these transcription programs is sensitive to the firing patterns of the muscle, not merely the period of activity, enabling a nuanced adaptation to various functional tasks.


Parasternal intercostal muscle ultrasound in chronic obstructive pulmonary disease correlates with spirometric severity.

  • Peter Wallbridge‎ et al.
  • Scientific reports‎
  • 2018‎

In chronic obstructive pulmonary disease (COPD), loss of computed tomography (CT)-measured intercostal mass correlates with spirometric severity. Intercostal muscle ultrasound offers a repeatable and radiation-free alternative, however requires validation. We aimed to determine the reliability of parasternal intercostal muscle ultrasound, and the concurrent validity of parasternal ultrasound with clinicometric parameters. Twenty stable COPD patients underwent ultrasound measurement of thickness and echogenicity of 2nd and 3rd parasternal intercostal muscles, dominant pectoralis major and quadriceps, and diaphragm thickness; spirometry; and chest CT. Intra-rater intraclass correlation (ICC) for ultrasound intercostal thickness was 0.87-0.97 depending on site, with echogenicity ICC 0.63-0.91. Inter-rater ICC was fair to excellent. Ultrasound intercostal thickness moderately correlated with FEV1% predicted (r = 0.33) and quadriceps thickness (r = 0.31). Echogenicity correlated negatively with FEV1% predicted (r = -0.32). CT-measured lateral intercostal mass correlate negatively with parasternal ultrasound intercostal thickness. These data confirm ultrasound of parasternal intercostal musculature is reproducible. Lower intercostal muscle quantity and quality reflects greater COPD spirometric severity. This novel tool may have biomarker potential for both the systemic effects of COPD on muscle as well as local disruption of respiratory mechanics. The negative correlation between CT and ultrasound measurements may reflect complex site-dependent interactions between respiratory muscles and the chest wall.


Adherent primary cultures of mouse intercostal muscle fibers for isolated fiber studies.

  • Patrick Robison‎ et al.
  • Journal of biomedicine & biotechnology‎
  • 2011‎

Primary culture models of single adult skeletal muscle fibers dissociated from locomotor muscles adhered to glass coverslips are routine and allow monitoring of functional processes in living cultured fibers. To date, such isolated fiber cultures have not been established for respiratory muscles, despite the fact that dysfunction of core respiratory muscles leading to respiratory arrest is the most common cause of death in many muscular diseases. Here we present the first description of an adherent culture system for single adult intercostal muscle fibers from the adult mouse. This system allows for monitoring functional properties of these living muscle fibers in culture with or without electrical field stimulation to drive muscle fiber contraction at physiological or pathological respiratory firing patterns. We also provide initial characterization of these fibers, demonstrating several common techniques in this new model system in the context of the established Flexor Digitorum Brevis muscle primary culture model.


Assessment of Intercostal Muscle Near-Infrared Spectroscopy for Estimating Respiratory Compensation Point in Trained Endurance Athletes.

  • Salvador Romero-Arenas‎ et al.
  • Sports (Basel, Switzerland)‎
  • 2023‎

This study aimed to assess the reliability and validity of estimating the respiratory compensation point (RCP) in trained endurance athletes by analyzing intercostal muscles' NIRS-derived tissue oxygenation dynamics. Seventeen experienced trail runners underwent an incremental treadmill protocol on two separate occasions, with a 7-day gap between assessments. Gas exchange and muscle oxygenation data were collected, and the oxygen saturation breakpoint (SmO2BP) measured in the intercostal muscles was compared to the RCP, which was identified by the increase in the VE/V.CO2 slope and the point at which the PetCO2 started to decrease. No statistically significant differences were observed between the two methods for any of the variables analyzed. Bland-Altman analysis showed significant agreement between the NIRS and gas analyzer methods for speed (r = 0.96, p < 0.05), HR (r = 0.98, p < 0.05), V.O2 relative to body mass (r = 0.99, p < 0.05), and %SmO2 (r = 0.98, p < 0.05). The interclass correlation coefficient values showed moderate to good reliability (0.60 to 0.86), and test-retest analysis revealed mean differences within the confidence intervals for all variables. These findings suggest that the SmO2BP measured using a portable NIRS device in the intercostal muscles is a reliable and valid tool for estimating the RCP for experienced trail runners and might be useful for coaches and athletes to monitor endurance training.


Intercostal and vastus lateralis microcirculatory response to a sympathoexcitatory manoeuvre in patients with chronic obstructive pulmonary disease.

  • Indyanara C Ribeiro‎ et al.
  • Respiratory physiology & neurobiology‎
  • 2021‎

Patients with COPD present with systemic vascular malfunctioning and their microcirculation is possibly more fragile to overcome an increase in the sympathetic vasoconstrictor outflow during sympathoexcitatory situations. To test the skeletal muscle microvascular responsiveness to sympathoexcitation, we asked patients with COPD and age- and sex-matched controls to immerse a hand in iced water [Cold Pressor Test (CPT)]. Near-infrared spectroscopy detection of the indocyanine green dye in the intercostal and vastus lateralis microcirculation provided a blood flow index (BFI). BFI divided by mean blood pressure (MBP) provided an index of microvascular conductance (BFI/MBP). The CPT decreased BFI and BFI/MBP in the intercostal (P = 0.01 and < 0.01, respectively) and vastus lateralis (P = 0.08 and 0.03, respectively) only in the COPD group, and the per cent BFI and BFI/MBP decrease was similar between muscles (P = 0.78 and 0.85, respectively). Thus, our findings support that sympathoexcitation similarly impairs intercostal and vastus lateralis microvascular regulation in patients with COPD.


Phrenic and intercostal nerves with rhythmic discharge can promote early nerve regeneration after brachial plexus repair in rats.

  • Jing Rui‎ et al.
  • Neural regeneration research‎
  • 2018‎

Exogenous discharge can positively promote nerve repair. We, therefore, hypothesized that endogenous discharges may have similar effects. The phrenic nerve and intercostal nerve, controlled by the respiratory center, can emit regular nerve impulses; therefore these endogenous automatically discharging nerves might promote nerve regeneration. Action potential discharge patterns were examined in the diaphragm, external intercostal and latissimus dorsi muscles of rats. The phrenic and intercostal nerves showed rhythmic clusters of discharge, which were consistent with breathing frequency. From the first to the third intercostal nerves, spontaneous discharge amplitude was gradually increased. There was no obvious rhythmic discharge in the thoracodorsal nerve. Four animal groups were performed in rats as the musculocutaneous nerve cut and repaired was bland control. The other three groups were followed by a side-to-side anastomosis with the phrenic nerve, intercostal nerve and thoracodorsal nerve. Compound muscle action potentials in the biceps muscle innervated by the musculocutaneous nerve were recorded with electrodes. The tetanic forces of ipsilateral and contralateral biceps muscles were detected by a force displacement transducer. Wet muscle weight recovery rate was measured and pathological changes were observed using hematoxylin-eosin staining. The number of nerve fibers was observed using toluidine blue staining and changes in nerve ultrastructure were observed using transmission electron microscopy. The compound muscle action potential amplitude was significantly higher at 1 month after surgery in phrenic and intercostal nerve groups compared with the thoracodorsal nerve and blank control groups. The recovery rate of tetanic tension and wet weight of the right biceps were significantly lower at 2 months after surgery in the phrenic nerve, intercostal nerve, and thoracodorsal nerve groups compared with the negative control group. The number of myelinated axons distal to the coaptation site of the musculocutaneous nerve at 1 month after surgery was significantly higher in phrenic and intercostal nerve groups than in thoracodorsal nerve and negative control groups. These results indicate that endogenous autonomic discharge from phrenic and intercostal nerves can promote nerve regeneration in early stages after brachial plexus injury.


Spinal inhibition of phrenic motoneurones by stimulation of afferents from peripheral muscles.

  • F L Eldridge‎ et al.
  • The Journal of physiology‎
  • 1981‎

1. Phrenic nerve responses to stimulation of calf muscle receptors or their afferents were studied in two groups of cats. One consisted of paralysed, vagotomized and functionally glomectomized animals with intact central nervous systems. The other included paralysed high (C1) spinal animals whose phrenic nerve activity was either spontaneously tonic or phasic, or evoked by activation of the intercostal-to-phrenic reflex. In both groups, end-tidal PCO2 was maintained at a constant level by means of a servo-controller. 2. Physical stimulation of calf muscles in animals with intact central respiratory controller and a generally facilitatory effect on frequency, with appropriate changes of both inspiratory and expiratory durations, and on peak magnitude of phrenic (neural tidal) activity. However, for the first few sec after onset of the stimulus, neural tidal activity was inhibited. 3. Physical stimulation of calf muscles or electrical stimulation of the tibial nerve in high spinal animals uniformly caused inhibition of spontaneous phrenic activity and that evoked by facilitatory conditioning stimuli. The degree of inhibition gradually decreased as muscle stimulation continued. Following offset of muscle stimulation, post-stimulus augmentation of phrenic activity occurred, with subsequent gradual return to control level over a period of 20-25 sec. 4. We conclude that stimulation of muscle afferents in the leg has a predominantly facilitatory respiratory effect when acting through brain stem controller mechanisms, but also has a purely inhibitory effect on phrenic motoneurones when acting via spinal mechanisms. 5. In addition, the findings are consistent with (1) progressive accommodation of phrenic motoneurones during continued inhibitory input, and (2) with a large and prolonged post-inhibitory rebound of excitability.


Comparative Analyses of mTOR/Akt and Muscle Atrophy-Related Signaling in Aged Respiratory and Gastrocnemius Muscles.

  • Kun Woo Kim‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Sarcopenia is the degenerative loss of skeletal muscle mass and function associated with aging and occurs in the absence of any underlying disease or condition. A comparison of the age-related molecular signaling signatures of different muscles has not previously been reported. In this study, we compared the age-related molecular signaling signatures of the intercostal muscles, the diaphragm, and the gastrocnemii using 6-month and 20-month-old rats. The phosphorylation of Akt, ribosomal S6, and Forkhead box protein O1 (FoxO1) in diaphragms significantly increased with age, but remained unchanged in the intercostal and gastrocnemius muscles. In addition, ubiquitin-proteasome degradation, characterized by the levels of MuRF1 and Atrogin-1, did not change with age in all rat muscles. Interestingly, an increase in LC3BII and p62 levels marked substantial blockage of autophagy in aged gastrocnemii but not in aged respiratory muscles. These changes in LC3BII and p62 levels were also associated with a decrease in markers of mitochondrial quality control. Therefore, our results suggest that the age-related signaling events in respiratory muscles differ from those in the gastrocnemii, most likely to preserve the vital functions played by the respiratory muscles.


Metabolomic Profiling of Respiratory Muscles and Lung in Response to Long-Term Controlled Mechanical Ventilation.

  • Ya Wen‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2022‎

Critical illness myopathy (CIM) and ventilator-induced diaphragm dysfunction (VIDD) are characterized by severe muscle wasting, muscle paresis, and extubation failure with subsequent increased medical costs and mortality/morbidity rates in intensive care unit (ICU) patients. These negative effects in response to modern critical care have received increasing attention, especially during the current COVID-19 pandemic. Based on experimental and clinical studies from our group, it has been hypothesized that the ventilator-induced lung injury (VILI) and the release of factors systemically play a significant role in the pathogenesis of CIM and VIDD. Our previous experimental/clinical studies have focused on gene/protein expression and the effects on muscle structure and regulation of muscle contraction at the cell and motor protein levels. In the present study, we have extended our interest to alterations at the metabolomic level. An untargeted metabolomics approach was undertaken to study two respiratory muscles (diaphragm and intercostal muscle) and lung tissue in rats exposed to five days controlled mechanical ventilation (CMV). Metabolomic profiles in diaphragm, intercostal muscles and lung tissue were dramatically altered in response to CMV, most metabolites of which belongs to lipids and amino acids. Some metabolites may possess important biofunctions and play essential roles in the metabolic alterations, such as pyruvate, citrate, S-adenosylhomocysteine, alpha-ketoglutarate, glycerol, and cysteine. Metabolic pathway enrichment analysis identified pathway signatures of each tissue, such as decreased metabolites of dipeptides in diaphragm, increased metabolites of branch-chain amino acid metabolism and purine metabolism in intercostals, and increased metabolites of fatty acid metabolism in lung tissue. These metabolite alterations may be associated with an accelerated myofibrillar protein degradation in the two respiratory muscles, an active inflammatory response in all tissues, an attenuated energy production in two respiratory muscles, and enhanced energy production in lung. These results will lay the basis for future clinical studies in ICU patients and hopefully the discovery of biomarkers in early diagnosis and monitoring, as well as the identification of future therapeutic targets.


The study of respiratory muscles activation during respiratory muscle strength effort in adult females with chronic neck pain.

  • Sudarat Borisut‎ et al.
  • Journal of physical therapy science‎
  • 2021‎

[Purpose] This study aimed to compare maximal inspiratory pressure (MIP), maximal expiratory pressure (MEP) values and muscle activity during MIP and MEP between chronic neck pain and healthy participants. [Participants and Methods] Twenty chronic neck pain and 20 non-symptomatic females participated in this study. Maximal airway pressure (MIP and MEP) and surface electromyography (sEMG) for both sides of the upper trapezius, anterior scalene, pectoralis major and 6th intercostal muscles were recorded simultaneously. [Results] Significant differences of MIP and MEP values were found between the groups. The muscle activities of both sides of upper trapezius and 6th intercostal muscles during MEP were significantly higher in the chronic neck pain group than the healthy group except both sides of anterior scalene and pectoralis major muscles. During MIP, the activities of upper trapezius, 6th intercostal muscles and anterior scalene were significantly different between the two studied groups. Higher activity of left pectoralis major was found in the chronic neck pain group. [Conclusion] Decreasing values of MEP and MIP as well as muscles activities elevation in chronic neck pain participants were clearly demonstrated. Besides the musculoskeletal treatment, we suggest breathing exercise training to be considered in treatment programs.


Neuregulin (NRG-1β) Is Pro-Myogenic and Anti-Cachectic in Respiratory Muscles of Post-Myocardial Infarcted Swine.

  • Cristi L Galindo‎ et al.
  • Biology‎
  • 2022‎

Neuregulin-1β (NRG-1β) is a growth and differentiation factor with pleiotropic systemic effects. Because NRG-1β has therapeutic potential for heart failure and has known growth effects in skeletal muscle, we hypothesized that it might affect heart failure-associated cachexia, a severe co-morbidity characterized by a loss of muscle mass. We therefore assessed NRG-1β's effect on intercostal skeletal muscle gene expression in a swine model of heart failure using recombinant glial growth factor 2 (USAN-cimaglermin alfa), a version of NRG-1β that has been tested in humans with systolic heart failure. Animals received one of two intravenous doses (0.67 or 2 mg/kg) of NRG-1β bi-weekly for 4 weeks, beginning one week after infarct. Based on paired-end RNA sequencing, NRG-1β treatment altered the intercostal muscle gene expression of 581 transcripts, including genes required for myofiber growth, maintenance and survival, such as MYH3, MYHC, MYL6B, KY and HES1. Importantly, NRG-1β altered the directionality of at least 85 genes associated with cachexia, including myostatin, which negatively regulates myoblast differentiation by down-regulating MyoD expression. Consistent with this, MyoD was increased in NRG-1β-treated animals. In vitro experiments with myoblast cell lines confirmed that NRG-1β induces ERBB-dependent differentiation. These findings suggest a NRG-1β-mediated anti-atrophic, anti-cachexia effect that may provide additional benefits to this potential therapy in heart failure.


Localization of the DMDL gene-encoded dystrophin-related protein using a panel of nineteen monoclonal antibodies: presence at neuromuscular junctions, in the sarcolemma of dystrophic skeletal muscle, in vascular and other smooth muscles, and in proliferating brain cell lines.

  • T M Nguyen‎ et al.
  • The Journal of cell biology‎
  • 1991‎

mAbs have been raised against different epitopes on the protein product of the DMDL gene, which is an autosomal homologue of the X-linked DMD gene for dystrophin. These antibodies provide direct evidence that DMDL protein is localized near acetylcholine receptors at neuromuscular junctions in normal and mdx mouse intercostal muscle. The primary location in tissues other than skeletal muscle is smooth muscle, especially in the vascular system, which may account for the wide tissue distribution previously demonstrated by Western blotting. The DMDL protein was undetectable in the nonjunctional sarcolemma of normal human muscle, but was observed in nonjunctional sarcolemma of Duchenne muscular dystrophy patients, where dystrophin itself is absent or greatly reduced. The expression of DMDL protein is not restricted to smooth and skeletal muscle, however, since relatively large amounts are present in transformed brain cell lines of both glial and Schwann cell origin. This contrasts with the low levels of DMDL protein in adult brain tissue.


Cough, sniff and maximal static pressure patterns in spinal muscular atrophy.

  • Sonia Khirani‎ et al.
  • Respiratory physiology & neurobiology‎
  • 2020‎

In spinal muscular atrophy (SMA), respiratory muscles are heterogeneously involved with a weakness of the intercostal muscles, possibly of the abdominal wall muscles, and a relatively spared diaphragm, resulting in cough impairment. An abnormal inspiratory cough phase pattern has been reported in SMA II and III. This short communication analyzed the esogastric pressures during voluntary cough in 49 SMA II and III patients. Four different patterns of coughing, reflecting an increasing degree of respiratory muscle weakness, were identified. The "mild weakness" profile was observed mainly in SMA III, while the "severe weakness" profile, which seems to correspond to the absence of abdominal muscle activity, was observed only in a few patients with SMA II. The cough profiles of 6 patients are presented together with their sniff and maximal static pressures measurements. Different esogastric pressure patterns were observed during these forceful maneuvers, suggesting variable involvement of the intercostal and abdominal muscles, and diaphragm during the evolution of SMA II and III.


Chest wall volume and asynchrony in stroke and Parkinson's disease subjects: A case-control study.

  • Rêncio Bento Florêncio‎ et al.
  • PloS one‎
  • 2019‎

The expansion of the rib cage and abdomen occurs in a synchronic way during a coordinated contraction of the diaphragm and the abdominal and intercostal muscles under normal conditions and healthy. The presence of restrictive respiratory disease may lead to uncoordinated action of the respiratory muscles which affects breathing pattern and chest wall volumes. The aim of this study was to evaluate chest wall volumes, chest wall asynchrony and inspiratory paradoxical movement of breathing, as well as the influence of the time of disease diagnosis in subjects with Parkinson's disease and post-Stroke in comparison to healthy individuals.


Sprouting of primary afferent fibers after spinal cord transection in the rat.

  • N R Krenz‎ et al.
  • Neuroscience‎
  • 1998‎

After spinal cord injury, hyper-reflexia can lead to episodic hypertension, muscle spasticity and urinary bladder dyssynergia. This condition may be caused by primary afferent fiber sprouting providing new input to partially denervated spinal interneurons, autonomic neurons and motor neurons. However, conflicting reports concerning afferent neurite sprouting after cord injury do not provide adequate information to associate sprouting with hyper-reflexia. Therefore, we studied the effect of mid-thoracic spinal cord transection on central projections of sensory neurons, quantified by area measurements. The area of myelinated afferent arbors, immunolabeled by cholera toxin B, was greater in laminae I-V in lumbar, but not thoracic cord, by one week after cord transection. Changes in small sensory neurons and their unmyelinated fibers, immunolabeled for calcitonin gene-related peptide, were assessed in the cord and in dorsal root ganglia. The area of calcitonin gene-related peptide-immunoreactive fibers in laminae III-V increased in all cord segments at two weeks after cord transection, but not at one week. Numbers of sensory neurons immunoreactive for calcitonin gene-related peptide were unchanged, suggesting that the increased area of immunoreactivity reflected sprouting rather than peptide up-regulation. Immunoreactive fibers in the lateral horn increased only above the lesion and in lumbar segments at two weeks after cord transection. They were not continuous with dorsal horn fibers, suggesting that they were not primary afferent fibers. Using the fluorescent tracer DiI to label afferent fibers, an increase in area could be seen in Clarke's nucleus caudal to the injury two weeks after transection. In conclusion, site- and time-dependent sprouting of myelinated and unmyelinated primary afferent fibers, and possibly interneurons, occurred after spinal cord transection. Afferent fiber sprouting did not reach autonomic or motor neurons directly, but may cause hyper-reflexia by increasing inputs to interneurons.


Abelson tyrosine-protein kinase 2 regulates myoblast proliferation and controls muscle fiber length.

  • Jennifer K Lee‎ et al.
  • eLife‎
  • 2017‎

Muscle fiber length is nearly uniform within a muscle but widely different among different muscles. We show that Abelson tyrosine-protein kinase 2 (Abl2) has a key role in regulating myofiber length, as a loss of Abl2 leads to excessively long myofibers in the diaphragm, intercostal and levator auris muscles but not limb muscles. Increased myofiber length is caused by enhanced myoblast proliferation, expanding the pool of myoblasts and leading to increased myoblast fusion. Abl2 acts in myoblasts, but as a consequence of expansion of the diaphragm muscle, the diaphragm central tendon is reduced in size, likely contributing to reduced stamina of Abl2 mutant mice. Ectopic muscle islands, each composed of myofibers of uniform length and orientation, form within the central tendon of Abl2+/- mice. Specialized tendon cells, resembling tendon cells at myotendinous junctions, form at the ends of these muscle islands, suggesting that myofibers induce differentiation of tendon cells, which reciprocally regulate myofiber length and orientation.


Identification and properties of parietal pleural afferents in rabbits.

  • Yves Jammes‎ et al.
  • The Journal of physiology‎
  • 2005‎

Although pain and dyspnoea are common symptoms in pleural diseases, there are few studies on the sensory innervation of the pleura. Using rabbits, after removal of all muscles in the intercostal space to be studied, we investigated the afferents of the internal intercostal nerve by applying to the internal thoracic wall pieces of gauze soaked in warmed (37 degrees C), buffered saline (mechanical stimulation) or solutions containing lactic acid, inflammatory mediators or capsaicin (chemical stimulation). The afferent conduction velocity ranged from 0.5 to 14 m s(-1). Most units (97%) were activated by mechanical stimulation of the pleura (local positive pressure range = 4.5-8.5 cmH2O) and we found a linear relationship between the discharge rate of afferents and the force applied to the thoracic wall. The majority of mechanosensitive units (70%) also responded to one or several chemical agents. Thus, the afferents were activated by lactic acid (49%) and/or a mixture of inflammatory mediators (50%). Local application of capsaicin elicited an initial increased or decreased background afferent activity in 57% of the afferents, a delayed decrease in firing rate being noted in some units initially activated by capsaicin. Capsaicin blocked the afferent response to a further application of inflammatory mediators but did not affect the mechanosensitive units. Thus, sensory endings connected with thin myelinated and unmyelinated fibres in the internal intercostal nerve detect the mechanical and chemical events of pleural diseases.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: