Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 426 papers

ICAP-1, a novel beta1 integrin cytoplasmic domain-associated protein, binds to a conserved and functionally important NPXY sequence motif of beta1 integrin.

  • D D Chang‎ et al.
  • The Journal of cell biology‎
  • 1997‎

The cytoplasmic domains of integrins are essential for cell adhesion. We report identification of a novel protein, ICAP-1 (integrin cytoplasmic domain- associated protein-1), which binds to the 1 integrin cytoplasmic domain. The interaction between ICAP-1 and beta1 integrins is highly specific, as demonstrated by the lack of interaction between ICAP-1 and the cytoplasmic domains of other beta integrins, and requires a conserved and functionally important NPXY sequence motif found in the COOH-terminal region of the beta1 integrin cytoplasmic domain. Mutational studies reveal that Asn and Tyr of the NPXY motif and a Val residue located NH2-terminal to this motif are critical for the ICAP-1 binding. Two isoforms of ICAP-1, a 200-amino acid protein (ICAP-1alpha) and a shorter 150-amino acid protein (ICAP-1beta), derived from alternatively spliced mRNA, are expressed in most cells. ICAP-1alpha is a phosphoprotein and the extent of its phosphorylation is regulated by the cell-matrix interaction. First, an enhancement of ICAP-1alpha phosphorylation is observed when cells were plated on fibronectin-coated but not on nonspecific poly-L-lysine-coated surface. Second, the expression of a constitutively activated RhoA protein that disrupts the cell-matrix interaction results in dephosphorylation of ICAP-1alpha. The regulation of ICAP-1alpha phosphorylation by the cell-matrix interaction suggests an important role of ICAP-1 during integrin-dependent cell adhesion.


beta1-integrin cytoplasmic subdomains involved in dominant negative function.

  • S F Retta‎ et al.
  • Molecular biology of the cell‎
  • 1998‎

The beta1-integrin cytoplasmic domain consists of a membrane proximal subdomain common to the four known isoforms ("common" region) and a distal subdomain specific for each isoform ("variable" region). To investigate in detail the role of these subdomains in integrin-dependent cellular functions, we used beta1A and beta1B isoforms as well as four mutants lacking the entire cytoplasmic domain (beta1TR), the variable region (beta1COM), or the common region (beta1 deltaCOM-B and beta1 deltaCOM-A). By expressing these constructs in Chinese hamster ovary and beta1 integrin-deficient GD25 cells (Wennerberg et al., J Cell Biol 132, 227-238, 1996), we show that beta1B, beta1COM, beta1 deltaCOM-B, and beta1 deltaCOM-A molecules are unable to support efficient cell adhesion to matrix proteins. On exposure to Mn++ ions, however, beta1B, but none of the mutants, can mediate cell adhesion, indicating specific functional properties of this isoform. Analysis of adhesive functions of transfected cells shows that beta1B interferes in a dominant negative manner with beta1A and beta3/beta5 integrins in cell spreading, focal adhesion formation, focal adhesion kinase tyrosine phosphorylation, and fibronectin matrix assembly. None of the beta1 mutants tested shows this property, indicating that the dominant negative effect depends on the specific combination of common and B subdomains, rather than from the absence of the A subdomain in the beta1B isoform.


PKCalpha regulates beta1 integrin-dependent cell motility through association and control of integrin traffic.

  • T Ng‎ et al.
  • The EMBO journal‎
  • 1999‎

Protein kinase C (PKC) has been implicated in integrin-mediated spreading and migration. In mammary epithelial cells there is a partial co-localization between beta1 integrin and PKCalpha. This reflects complexes between these proteins as demonstrated by fluorescense resonance energy transfer (FRET) monitored by fluorescence lifetime imaging microscopy and also by coprecipitation. Constitutive complexes are observed for the intact PKCalpha and also form with the regulatory domain in an activation-dependent manner. Expression of PKCalpha causes upregulation of beta1 integrin on the cell surface, whereas stimulation of PKC induces internalization of beta1 integrin. The integrin initially traffics to an endosomal compartment in a Ca(2+)/PI 3-kinase/dynamin I-dependent manner and subsequently enters an endocytic recycling pathway. This induction of endocytosis by PKCalpha is a function of activity and is not observed for the regulatory domain. PKCalpha, but not PKCalpha regulatory domain expression stimulates migration on beta1 integrin substrates. This PKCalpha-enhanced migratory response is inhibited by blockade of endocytosis.


Inactivation of beta1 integrin induces proteasomal degradation of Myc oncoproteins.

  • Manabu Sasada‎ et al.
  • Oncotarget‎
  • 2019‎

The MYC family oncogenes (MYC, MYCN, and MYCL) contribute to the genesis of many human cancers. Among them, amplification of the MYCN gene and over-expression of N-Myc protein are the most reliable risk factors in neuroblastoma patients. On the other hand, we previously found that a peptide derived from fibronectin, termed FNIII14, is capable of inducing functional inactivation in β1-integrins. Here, we demonstrate that inactivation of β1-integrin by FNIII14 induced proteasomal degradation in N-Myc of neuroblastoma cells with MYCN amplification. This N-Myc degradation by FNIII14 reduced the malignant properties, including the anchorage-independent proliferation and invasive migration, of neuroblastoma cells. An in vivo experiment using a mouse xenograft model showed that the administration of FNIII14 can inhibit tumor growth, and concomitantly a remarkable decrease in N-Myc levels in tumor tissues. Of note, the activation of proteasomal degradation based on β1-integrin inactivation is applicable to another Myc family oncoprotein, c-myc, which also reverses cancer-associated properties in pancreatic cancer cells. Collectively, β1-integrin inactivation could be a new chemotherapeutic strategy for cancers with highly expressed Myc. FNIII14, which is a unique pharmacological agent able to induce β1-integrin inactivation, may be a promising drug targeting Myc oncoproteins for cancer chemotherapy.


Identification of multiple integrin beta1 homologs in zebrafish (Danio rerio).

  • A Paul Mould‎ et al.
  • BMC cell biology‎
  • 2006‎

Integrins comprise a large family of alpha,beta heterodimeric, transmembrane cell adhesion receptors that mediate diverse essential biological functions. Higher vertebrates possess a single beta1 gene, and the beta1 subunit associates with a large number of alpha subunits to form the major class of extracellular matrix (ECM) receptors. Despite the fact that the zebrafish (Danio rerio) is a rapidly emerging model organism of choice for developmental biology and for models of human disease, little is currently known about beta1 integrin sequences and functions in this organism.


Integrin beta1 (ITGB1) as a prognostic marker in esophageal adenocarcinoma.

  • Alexander I Damanakis‎ et al.
  • Scientific reports‎
  • 2022‎

Today, individual prognosis in patients with adenocarcinoma of the esophagus (EAC) is based on post-surgical TNM staging and valid biomarkers are still not implemented. Integrin beta1 (ITGB1) is widely expressed in epithelial cells and promotes cell adhesion and growth. Its impact on tumor progression was described for different tumor entities before, data on its function as a potential biomarker in EAC is not available. Aim of the study is to evaluate the expression level of ITGB1 in a large collective of EAC and its impact on patients´ prognosis. 640 patients with esophageal adenocarcinoma were analyzed immunohistochemically for ITGB1. The data was correlated with long term outcome, clinical, pathological and molecular data (TP53, HER2/neu, c-myc, GATA6, PIK3CA and KRAS). Of 640 patients to be analyzed, 127 (19.8%) showed expression of ITGB1. ITGB1 expression was associated with lymph node metastasis, expression of integrin alphaV and KRAS mutation status. Patients with high ITGB1 expression showed impaired overall survival (22.5 months (95% CI 15.3-29.7 months), vs. 34.1 months (95% CI 25.3-42.4 months), P = 0.024). This effect was particularly evident in the group of patients undergoing primary surgery without prior neoadjuvant therapy (10.2 months (95% CI 1.9-41.7 months) vs. 31.4 months (95% CI 21.1-144.2 months, P = 0.008). ITGB1 was also an independent prognostic marker in multivariable analysis (HR 1.696 (95% CI 1.084-2.653, P = 0.021) in patients that underwent primary surgery. We demonstrate for the first time the prognostic significance of ITGB1 expression in a large EAC patient population.


Allosteric modulation of beta1 integrin function induces lung tissue repair.

  • Rehab Aljamal-Naylor‎ et al.
  • Advances in pharmacological sciences‎
  • 2012‎

The cellular cytoskeleton, adhesion receptors, extracellular matrix composition, and their spatial distribution are together fundamental in a cell's balanced mechanical sensing of its environment. We show that, in lung injury, extracellular matrix-integrin interactions are altered and this leads to signalling alteration and mechanical missensing. The missensing, secondary to matrix alteration and cell surface receptor alterations, leads to increased cellular stiffness, injury, and death. We have identified a monoclonal antibody against β1 integrin which caused matrix remodelling and enhancement of cell survival. The antibody acts as an allosteric dual agonist/antagonist modulator of β1 integrin. Intriguingly, this antibody reversed both functional and structural tissue injury in an animal model of degenerative disease in lung.


Osteoblast mineralization requires beta1 integrin/ICAP-1-dependent fibronectin deposition.

  • Molly Brunner‎ et al.
  • The Journal of cell biology‎
  • 2011‎

The morphogenetic and differentiation events required for bone formation are orchestrated by diffusible and insoluble factors that are localized within the extracellular matrix. In mice, the deletion of ICAP-1, a modulator of β1 integrin activation, leads to severe defects in osteoblast proliferation, differentiation, and mineralization and to a delay in bone formation. Deposition of fibronectin and maturation of fibrillar adhesions, adhesive structures that accompany fibronectin deposition, are impaired upon ICAP-1 loss, as are type I collagen deposition and mineralization. Expression of β1 integrin with a mutated binding site for ICAP-1 recapitulates the ICAP-1-null phenotype. Follow-up experiments demonstrated that ICAP-1 negatively regulates kindlin-2 recruitment onto the β1 integrin cytoplasmic domain, whereas an excess of kindlin-2 binding has a deleterious effect on fibrillar adhesion formation. These results suggest that ICAP-1 works in concert with kindlin-2 to control the dynamics of β1 integrin-containing fibrillar adhesions and, thereby, regulates fibronectin deposition and osteoblast mineralization.


The linkage between beta1 integrin and the actin cytoskeleton is differentially regulated by tyrosine and serine/threonine phosphorylation of beta1 integrin in normal and cancerous human breast cells.

  • K Takahashi‎
  • BMC cell biology‎
  • 2001‎

Structural requirements for the beta1 integrin functions in cell adhesion, spreading and signaling have been well documented mainly for fibroblasts. In this study, we examined the reason for the reduced surface expression of beta1 integrin in human breast cancer MCF-7 cells compared to normal human breast epithelial (HBE) cells, both of which adhered to collagen type IV.


beta1 integrin maintains integrity of the embryonic neocortical stem cell niche.

  • Karine Loulier‎ et al.
  • PLoS biology‎
  • 2009‎

During embryogenesis, the neural stem cells (NSC) of the developing cerebral cortex are located in the ventricular zone (VZ) lining the cerebral ventricles. They exhibit apical and basal processes that contact the ventricular surface and the pial basement membrane, respectively. This unique architecture is important for VZ physical integrity and fate determination of NSC daughter cells. In addition, the shorter apical process is critical for interkinetic nuclear migration (INM), which enables VZ cell mitoses at the ventricular surface. Despite their importance, the mechanisms required for NSC adhesion to the ventricle are poorly understood. We have shown previously that one class of candidate adhesion molecules, laminins, are present in the ventricular region and that their integrin receptors are expressed by NSC. However, prior studies only demonstrate a role for their interaction in the attachment of the basal process to the overlying pial basement membrane. Here we use antibody-blocking and genetic experiments to reveal an additional and novel requirement for laminin/integrin interactions in apical process adhesion and NSC regulation. Transient abrogation of integrin binding and signalling using blocking antibodies to specifically target the ventricular region in utero results in abnormal INM and alterations in the orientation of NSC divisions. We found that these defects were also observed in laminin alpha2 deficient mice. More detailed analyses using a multidisciplinary approach to analyse stem cell behaviour by expression of fluorescent transgenes and multiphoton time-lapse imaging revealed that the transient embryonic disruption of laminin/integrin signalling at the VZ surface resulted in apical process detachment from the ventricular surface, dystrophic radial glia fibers, and substantial layering defects in the postnatal neocortex. Collectively, these data reveal novel roles for the laminin/integrin interaction in anchoring embryonic NSCs to the ventricular surface and maintaining the physical integrity of the neocortical niche, with even transient perturbations resulting in long-lasting cortical defects.


beta1-integrin mediates myelin-associated glycoprotein signaling in neuronal growth cones.

  • Eyleen L K Goh‎ et al.
  • Molecular brain‎
  • 2008‎

Several myelin-associated factors that inhibit axon growth of mature neurons, including Nogo66, myelin-associated glycoprotein (MAG) and oligodendrocyte myelin glycoprotein (OMgp), can associate with a common GPI-linked protein Nogo-66 receptor (NgR). Accumulating evidence suggests that myelin inhibitors also signal through unknown NgR-independent mechanisms. Here we show that MAG, a RGD tri-peptide containing protein, forms a complex with β1-integrin to mediate axonal growth cone turning responses of several neuronal types. Mutations that alter the RGD motif in MAG or inhibition of β1-integrin function, but not removal of NgRs, abolish these MAG-dependent events. In contrast, OMgp-induced repulsion is not affected by inhibition of b1-integrin function. We further show that MAG stimulates tyrosine phosphorylation of focal adhesion kinase (FAK), which in turn is required for MAG-induced growth cone turning. These studies identify β1-integrin as a specific mediator for MAG in growth cone turning responses, acting through FAK activation.


Ablation of beta1 integrin in mammary epithelium reveals a key role for integrin in glandular morphogenesis and differentiation.

  • Matthew J Naylor‎ et al.
  • The Journal of cell biology‎
  • 2005‎

Integrin-mediated adhesion regulates the development and function of a range of tissues; however, little is known about its role in glandular epithelium. To assess the contribution of beta1 integrin, we conditionally deleted its gene in luminal epithelia during different stages of mouse mammary gland development and in cultured primary mammary epithelia. Loss of beta1 integrin in vivo resulted in impaired alveologenesis and lactation. Cultured beta1 integrin-null cells displayed abnormal focal adhesion function and signal transduction and could not form or maintain polarized acini. In vivo, epithelial cells became detached from the extracellular matrix but remained associated with each other and did not undergo overt apoptosis. beta1 integrin-null mammary epithelial cells did not differentiate in response to prolactin stimulation because of defective Stat5 activation. In mice where beta1 integrin was deleted after the initiation of differentiation, fewer defects in alveolar morphology occurred, yet major deficiencies were also observed in milk protein and milk fat production and Stat5 activation, indicating a permissive role for beta1 integrins in prolactin signaling. This study demonstrates that beta1 integrin is critical for the alveolar morphogenesis of a glandular epithelium and for maintenance of its differentiated function. Moreover, it provides genetic evidence for the cooperation between integrin and cytokine signaling pathways.


Beta1 integrin-mediated adhesion signalling is essential for epidermal progenitor cell expansion.

  • Aleksandra Piwko-Czuchra‎ et al.
  • PloS one‎
  • 2009‎

There is a major discrepancy between the in vitro and in vivo results regarding the role of beta1 integrins in the maintenance of epidermal stem/progenitor cells. Studies of mice with skin-specific ablation of beta1 integrins suggested that epidermis can form and be maintained in their absence, while in vitro data have shown a fundamental role for these adhesion receptors in stem/progenitor cell expansion and differentiation.


The behavior of osteoblast-like cells on various substrates with functional blocking of integrin-beta1 and integrin-beta3.

  • M C Siebers‎ et al.
  • Journal of materials science. Materials in medicine‎
  • 2008‎

This study was designed to examine the influence of integrin subunit-beta1 and subunit-beta3 on the behavior of primary osteoblast-like cells, cultured on calcium phosphate (CaP)-coated and non coated titanium (Ti). Osteoblast-like cells were incubated with specific monoclonal antibodies against integrin-beta1 and integrin-beta3 to block the integrin function. Subsequently, cells were seeded on Ti discs, either non coated or provided with a 2 microm carbonated hydroxyapatite coating using Electrostatic Spray Deposition. Results showed that on CaP coatings, cellular attachment was decreased after a pre-treatment with either anti-integrin-beta1 or anti-integrin-beta3 antibodies. On Ti, cell adhesion was only slightly affected after a pre-treatment with anti-integrin-beta3 antibodies. Scanning electron microscopy showed that on both types of substrate, cellular morphology was not changed after a pre-treatment with either antibody. With quantitative PCR, it was shown for both substrates that mRNA expression of integrin-beta1 was increased after a pre-treatment with either anti-integrin-beta1 or anti-integrin-beta3 antibodies. Furthermore, after a pre-treatment with either antibody, mRNA expression of integrin-beta3 and ALP was decreased, on both types of substrate. In conclusion, osteoblast-like cells have the ability to compensate to great extent for the blocking strategy as applied here. Still, integrin-beta1 and beta3 seem to play different roles in attachment, proliferation, and differentiation of osteoblast-like cells, and responses on CaP-coated substrates differ to non coated Ti. Furthermore, the influence on ALP expression suggests involvement of both integrin subunits in signal transduction for cellular differentiation.


The EphA4 receptor regulates dendritic spine remodeling by affecting beta1-integrin signaling pathways.

  • Caroline Bourgin‎ et al.
  • The Journal of cell biology‎
  • 2007‎

Remodeling of dendritic spines is believed to modulate the function of excitatory synapses. We previously reported that the EphA4 receptor tyrosine kinase regulates spine morphology in hippocampal pyramidal neurons, but the signaling pathways involved were not characterized (Murai, K.K., L.N. Nguyen, F. Irie, Y. Yamaguchi, and E.B. Pasquale. 2003. Nat. Neurosci. 6:153-160). In this study, we show that EphA4 activation by ephrin-A3 in hippocampal slices inhibits integrin downstream signaling pathways. EphA4 activation decreases tyrosine phosphorylation of the scaffolding protein Crk-associated substrate (Cas) and the tyrosine kinases focal adhesion kinase (FAK) and proline-rich tyrosine kinase 2 (Pyk2) and also reduces the association of Cas with the Src family kinase Fyn and the adaptor Crk. Consistent with this, EphA4 inhibits beta1-integrin activity in neuronal cells. Supporting a functional role for beta1 integrin and Cas inactivation downstream of EphA4, the inhibition of integrin or Cas function induces spine morphological changes similar to those associated with EphA4 activation. Furthermore, preventing beta1-integrin inactivation blocks the effects of EphA4 on spines. Our results support a model in which EphA4 interferes with integrin signaling pathways that stabilize dendritic spines, thus modulating synaptic interactions with the extracellular environment.


Beta1 integrin blockade overcomes doxorubicin resistance in human T-cell acute lymphoblastic leukemia.

  • Sofiane Berrazouane‎ et al.
  • Cell death & disease‎
  • 2019‎

Growing evidence indicates that cell adhesion to extracellular matrix (ECM) plays an important role in cancer chemoresistance. Leukemic T cells express several adhesion receptors of the β1 integrin subfamily with which they interact with ECM. However, the role of β1 integrins in chemoresistance of T-cell acute lymphoblastic leukemia (T-ALL) is still ill defined. In this study, we demonstrate that interactions of human T-ALL cell lines and primary blasts with three-dimensional matrices including Matrigel and collagen type I gel promote their resistance to doxorubicin via β1 integrin. The blockade of β1 integrin with a specific neutralizing antibody sensitized xenografted CEM leukemic cells to doxorubicin, diminished the leukemic burden in the bone marrow and resulted in the extension of animal survival. Mechanistically, Matrigel/β1 integrin interaction enhanced T-ALL chemoresistance by promoting doxorubicin efflux through the activation of the ABCC1 drug transporter. Finally, our findings showed that Matrigel/β1 interaction enhanced doxorubicin efflux and chemoresistance by activating the FAK-related proline-rich tyrosine kinase 2 (PYK2) as both PYK2 inhibitor and siRNA diminished the effect of Matrigel. Collectively, these results support the role of β1 integrin in T-ALL chemoresistance and suggest that the β1 integrin pathway can constitute a therapeutic target to avoid chemoresistance and relapsed-disease in human T-ALL.


Modulation of beta1A integrin functions by tyrosine residues in the beta1 cytoplasmic domain.

  • T Sakai‎ et al.
  • The Journal of cell biology‎
  • 1998‎

beta1A integrin subunits with point mutations of the cytoplasmic domain were expressed in fibroblasts derived from beta1-null stem cells. beta1A in which one or both of the tyrosines of the two NPXY motifs (Y783, Y795) were changed to phenylalanines formed active alpha5 beta1 and alpha6 beta1 integrins that mediated cell adhesion and supported assembly of fibronectin. Mutation of the proline in either motif (P781, P793) to an alanine or of a threonine in the inter-motif sequence (T788) to a proline resulted in poorly expressed, inactive beta1A. Y783,795F cells developed numerous fine focal contacts and exhibited motility on a surface. When compared with cells expressing wild-type beta1A or beta1A with the D759A activating mutation of a conserved membrane-proximal aspartate, Y783, 795F cells had impaired ability to transverse filters in chemotaxis assays. Analysis of cells expressing beta1A with single Tyr to Phe substitutions indicated that both Y783 and Y795 are important for directed migration. Actin-containing microfilaments of Y783,795F cells were shorter and more peripheral than microfilaments of cells expressing wild-type beta1A. These results indicate that change of the phenol side chains in the NPXY motifs to phenyl groups (which cannot be phosphorylated) has major effects on the organization of focal contacts and cytoskeleton and on directed cell motility.


R-Ras regulates beta1-integrin trafficking via effects on membrane ruffling and endocytosis.

  • Matthew W Conklin‎ et al.
  • BMC cell biology‎
  • 2010‎

Integrin-mediated cell adhesion and spreading is dramatically enhanced by activation of the small GTPase, R-Ras. Moreover, R-Ras localizes to the leading edge of migrating cells, and regulates membrane protrusion. The exact mechanisms by which R-Ras regulates integrin function are not fully known. Nor is much known about the spatiotemporal relationship between these two molecules, an understanding of which may provide insight into R-Ras regulation of integrins.


Distinct ErbB2 receptor populations differentially interact with beta1 integrin in breast cancer cell models.

  • Andrés Martín Toscani‎ et al.
  • PloS one‎
  • 2017‎

ErbB2 is a member of the ErbB family of tyrosine kinase receptors that plays a major role in breast cancer progression. Located at the plasma membrane, ErbB2 forms large clusters in spite of the presence of growth factors. Beta1 integrin, membrane receptor of extracellular matrix proteins, regulates adhesion, migration and invasiveness of breast cancer cells. Physical interaction between beta1 integrin and ErbB2 has been suggested although published data are contradictory. The aim of the present work was to study the interaction between ErbB2 and beta1 integrin in different scenarios of expression and activation. We determined that beta1 integrin and ErbB2 colocalization is dependent on the expression level of both receptors exclusively in adherent cells. In suspension cells, lack of focal adhesions leave integrins free to diffuse on the plasma membrane and interact with ErbB2 even at low expression levels of both receptors. In adherent cells, high expression of beta1 integrin leaves unbound receptors outside focal complexes that diffuse within the plasma membrane and interact with ErbB2 membrane domains. Superresolution imaging showed the existence of two distinct populations of ErbB2: a major population located in large clusters and a minor population outside these structures. Upon ErbB2 overexpression, receptors outside large clusters can freely diffuse at the membrane and interact with integrins. These results reveal how expression levels of beta1 integrin and ErbB2 determine their frequency of colocalization and show that extracellular matrix proteins shape membrane clusters distribution, regulating ErbB2 and beta1 integrin activity in breast cancer cells.


16 kDa vasoinhibin binds to integrin alpha5 beta1 on endothelial cells to induce apoptosis.

  • Kazunori Morohoshi‎ et al.
  • Endocrine connections‎
  • 2018‎

Many functions of vasoinhibins have been reported, but its receptor has not been clarified yet. Vasoinhibins, 11-18 kDa N-terminal fragments of prolactin, have anti-angiogenic activity and act on endothelial cells to induce apoptosis and to inhibit migration and proliferation, which are opposite to the effects of prolactin. Although vasoinhibins bind to the prolactin receptor, its binding activity is very weak compared to prolactin. Therefore, in this study, we evaluated the binding activity between 16 kDa vasoinhibin and integrin beta1, alpha5 beta1, alpha1 beta1 and alphaV beta3 to identify a specific receptor for vasoinhibins. Moreover, we examined whether 16 kDa vasoinhibin induced apoptosis through integrin beta1 and alpha5 beta1 in endothelial cells. In this study, binding assays and co-immunoprecipitation experiments demonstrated that 16 kDa vasoinhibin could bind strongly to integrin beta1 and alpha5 beta1. Moreover, neutralizing with integrin beta1 and alpha5 beta1 antibody could inhibit 16 kDa vasoinhibin-induced apoptosis in endothelial cells. These findings suggest that vasoinhibins can act on endothelial cells through integrin alpha5 beta1 to induce apoptosis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: