Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 32 papers

Reelin binds alpha3beta1 integrin and inhibits neuronal migration.

  • L Dulabon‎ et al.
  • Neuron‎
  • 2000‎

Mice that are mutant for Reelin or Dab1, or doubly mutant for the VLDL receptor (VLDLR) and ApoE receptor 2 (ApoER2), show disorders of cerebral cortical lamination. How Reelin and its receptors regulate laminar organization of cerebral cortex is unknown. We show that Reelin inhibits migration of cortical neurons and enables detachment of neurons from radial glia. Recombinant and native Reelin associate with alpha3beta1 integrin, which regulates neuron-glia interactions and is required to achieve proper laminar organization. The effect of Reelin on cortical neuronal migration in vitro and in vivo depends on interactions between Reelin and alpha3beta1 integrin. Absence of alpha3beta1 leads to a reduction of Dab1, a signaling protein acting downstream of Reelin. Thus, Reelin may arrest neuronal migration and promote normal cortical lamination by binding alpha3beta1 integrin and modulating integrin-mediated cellular adhesion.


EWI-2 regulates alpha3beta1 integrin-dependent cell functions on laminin-5.

  • Christopher S Stipp‎ et al.
  • The Journal of cell biology‎
  • 2003‎

EWI-2, a cell surface immunoglobulin SF protein of unknown function, associates with tetraspanins CD9 and CD81 with high stoichiometry. Overexpression of EWI-2 in A431 epidermoid carcinoma cells did not alter cell adhesion or spreading on laminin-5, and had no effect on reaggregation of cells plated on collagen I (alpha2beta1 integrin ligand). However, on laminin-5 (alpha3beta1 integrin ligand), A431 cell reaggregation and motility functions were markedly impaired. Immunodepletion and reexpression experiments revealed that tetraspanins CD9 and CD81 physically link EWI-2 to alpha3beta1 integrin, but not to other integrins. CD81 also controlled EWI-2 maturation and cell surface localization. EWI-2 overexpression not only suppressed cell migration, but also redirected CD81 to cell filopodia and enhanced alpha3beta1-CD81 complex formation. In contrast, an EWI-2 chimeric mutant failed to suppress cell migration, redirect CD81 to filopodia, or enhance alpha3beta1-CD81 complex formation. These results show how laterally associated EWI-2 might regulate alpha3beta1 function in disease and development, and demonstrate how tetraspanin proteins can assemble multiple nontetraspanin proteins into functional complexes.


Cross-talk of integrin alpha3beta1 and tissue factor in cell migration.

  • Andrea Dorfleutner‎ et al.
  • Molecular biology of the cell‎
  • 2004‎

In cancer and angiogenesis, coagulation-independent roles of tissue factor (TF) in cell migration are incompletely understood. Immobilized anti-TF extracellular domain antibodies induce cell spreading, but this phenomenon is epitope specific and is not induced by anti-TF 5G9. Spreading on anti-TF is beta1 integrin-dependent, indicating functional interactions of the TF extracellular domain 5G9 epitope (a presumed integrin-binding site) and integrins. Recombinant TF extracellular domain supports adhesion of cells expressing alphavbeta3 or certain beta1 integrin heterodimers (alpha3beta1, alpha4beta1, alpha5beta1, alpha6beta1, alpha9beta1) and adhesion is blocked by specific anti-integrin antibodies or mutations in the integrin ligand-binding site. Although several studies have linked TF to cell migration, we here demonstrate that TF specifically regulates alpha3beta1-dependent migration on laminin 5. Expression of TF suppresses alpha3beta1-dependent migration, but only when the TF cytoplasmic domain is not phosphorylated. Suppression of migration can be reversed by 5G9, presumably by disrupting integrin interaction, or by the protease ligand VIIa, known to induce PAR-2-dependent phosphorylation of TF. In both cases, release of alpha3beta1 inhibition is prevented by mutation of critical phosphorylation sites in the TF cytoplasmic domain. Thus, TF influences integrin-mediated migration through cooperative intra- and extracellular interactions and phosphorylation regulates TF's function in cell motility.


alpha3beta1 Integrin is required for normal development of the epidermal basement membrane.

  • C M DiPersio‎ et al.
  • The Journal of cell biology‎
  • 1997‎

Integrins alpha3beta1 and alpha6beta4 are abundant receptors on keratinocytes for laminin-5, a major component of the basement membrane between the epidermis and the dermis in skin. These integrins are recruited to distinct adhesion structures within keratinocytes; alpha6beta4 is present in hemidesmosomes, while alpha3beta1 is recruited into focal contacts in cultured cells. To determine whether differences in localization reflect distinct functions of these integrins in the epidermis, we studied skin development in alpha3beta1-deficient mice. Examination of extracellular matrix by immunofluorescence microscopy and electron microscopy revealed regions of disorganized basement membrane in alpha3beta1-deficient skin. Disorganized matrix was first detected by day 15.5 of embryonic development and became progressively more extensive as development proceeded. In neonatal skin, matrix disorganization was frequently accompanied by blistering at the dermal-epidermal junction. Laminin-5 and other matrix proteins remained associated with both the dermal and epidermal sides of blisters, suggesting rupture of the basement membrane itself, rather than detachment of the epidermis from the basement membrane as occurs in some blistering disorders such as epidermolysis bullosa. Consistent with this notion, primary keratinocytes from alpha3beta1-deficient skin adhered to laminin-5 through alpha6 integrins. However, alpha3beta1-deficient keratinocytes spread poorly compared with wild-type cells on laminin-5, demonstrating a postattachment requirement for alpha3beta1 and indicating distinct roles for alpha3beta1 and alpha6beta4. Our findings support a novel role for alpha3beta1 in establishment and/or maintenance of basement membrane integrity, while alpha6beta4 is required for stable adhesion of the epidermis to the basement membrane through hemidesmosomes.


Cellular interaction of integrin alpha3beta1 with laminin 5 promotes gap junctional communication.

  • P D Lampe‎ et al.
  • The Journal of cell biology‎
  • 1998‎

Wounding of skin activates epidermal cell migration over exposed dermal collagen and fibronectin and over laminin 5 secreted into the provisional basement membrane. Gap junctional intercellular communication (GJIC) has been proposed to integrate the individual motile cells into a synchronized colony. We found that outgrowths of human keratinocytes in wounds or epibole cultures display parallel changes in the expression of laminin 5, integrin alpha3beta1, E-cadherin, and the gap junctional protein connexin 43. Adhesion of keratinocytes on laminin 5, collagen, and fibronectin was found to differentially regulate GJIC. When keratinocytes were adhered on laminin 5, both structural (assembly of connexin 43 in gap junctions) and functional (dye transfer) assays showed a two- to threefold increase compared with collagen and five- to eightfold over fibronectin. Based on studies with immobilized integrin antibody and integrin-transfected Chinese hamster ovary cells, the interaction of integrin alpha3beta1 with laminin 5 was sufficient to promote GJIC. Mapping of intermediate steps in the pathway linking alpha3beta1-laminin 5 interactions to GJIC indicated that protein trafficking and Rho signaling were both required. We suggest that adhesion of epithelial cells to laminin 5 in the basement membrane via alpha3beta1 promotes GJIC that integrates individual cells into synchronized epiboles.


Tumor cell alpha3beta1 integrin and vascular laminin-5 mediate pulmonary arrest and metastasis.

  • Hui Wang‎ et al.
  • The Journal of cell biology‎
  • 2004‎

Arrest of circulating tumor cells in distant organs is required for hematogenous metastasis, but the tumor cell surface molecules responsible have not been identified. Here, we show that the tumor cell alpha3beta1 integrin makes an important contribution to arrest in the lung and to early colony formation. These analyses indicated that pulmonary arrest does not occur merely due to size restriction, and raised the question of how the tumor cell alpha3beta1 integrin contacts its best-defined ligand, laminin (LN)-5, a basement membrane (BM) component. Further analyses revealed that LN-5 is available to the tumor cell in preexisting patches of exposed BM in the pulmonary vasculature. The early arrest of tumor cells in the pulmonary vasculature through interaction of alpha3beta1 integrin with LN-5 in exposed BM provides both a molecular and a structural basis for cell arrest during pulmonary metastasis.


Integrin alpha3beta1-dependent beta-catenin phosphorylation links epithelial Smad signaling to cell contacts.

  • Young Kim‎ et al.
  • The Journal of cell biology‎
  • 2009‎

Injury-initiated epithelial to mesenchymal transition (EMT) depends on contextual signals from the extracellular matrix, suggesting a role for integrin signaling. Primary epithelial cells deficient in their prominent laminin receptor, alpha3beta1, were found to have a markedly blunted EMT response to TGF-beta1. A mechanism for this defect was explored in alpha3-null cells reconstituted with wild-type (wt) alpha3 or point mutants unable to engage laminin 5 (G163A) or epithelial cadherin (E-cadherin; H245A). After TGF-beta1 stimulation, wt epithelial cells but not cells expressing the H245A mutant internalize complexes of E-cadherin and TGF-beta1 receptors, generate phospho-Smad2 (p-Smad2)-pY654-beta-catenin complexes, and up-regulate mesenchymal target genes. Although Smad2 phosphorylation is normal, p-Smad2-pY654-beta-catenin complexes do not form in the absence of alpha3 or when alpha3beta1 is mainly engaged on laminin 5 or E-cadherin in adherens junctions, leading to attenuated EMT. These findings demonstrate that alpha3beta1 coordinates cross talk between beta-catenin and Smad signaling pathways as a function of extracellular contact cues and thereby regulates responses to TGF-beta1 activation.


Distinct ligand binding sites in integrin alpha3beta1 regulate matrix adhesion and cell-cell contact.

  • Feng Zhang‎ et al.
  • The Journal of cell biology‎
  • 2003‎

The integrin alpha3beta1 mediates cellular adhesion to the matrix ligand laminin-5. A second integrin ligand, the urokinase receptor (uPAR), associates with alpha3beta1 via a surface loop within the alpha3 beta-propeller (residues 242-246) but outside the laminin binding region, suggesting that uPAR-integrin interactions could signal differently from matrix engagement. To explore this, alpha3-/- epithelial cells were reconstituted with wild-type (wt) alpha3 or alpha3 with Ala mutations within the uPAR-interacting loop (H245A or R244A). Wt or mutant-bearing cells showed comparable expression and adhesion to laminin-5. Cells expressing wt alpha3 and uPAR dissociated in culture, with increased Src activity, up-regulation of SLUG, and down-regulation of E-cadherin and gamma-catenin. Src kinase inhibition or expression of Src 1-251 restored the epithelial phenotype. The H245A and R244A mutants were unaffected by coexpression of uPAR. We conclude that alpha3beta1 regulates both cell-cell contact and matrix adhesion, but through distinct protein interaction sites within its beta-propeller. These studies reveal an integrin- and Src-dependent pathway for SLUG expression and mesenchymal transition.


Novel roles for alpha3beta1 integrin as a regulator of cytoskeletal assembly and as a trans-dominant inhibitor of integrin receptor function in mouse keratinocytes.

  • K M Hodivala-Dilke‎ et al.
  • The Journal of cell biology‎
  • 1998‎

Previously we found that alpha3beta1 integrin-deficient neonatal mice develop micro-blisters at the epidermal-dermal junction. These micro-blisters were associated with poor basement membrane organization. In the present study we have investigated the effect of alpha3beta1-deficiency on other keratinocyte integrins, actin-associated proteins and F-actin organization. We show that the absence of alpha3beta1 results in an increase in stress fiber formation in keratinocytes grown in culture and at the basal face of the basal keratinocytes of alpha3-null epidermis. Moreover, we see a higher concentration of actin-associated proteins such as vinculin, talin, and alpha-actinin at focal contact sites in the alpha3-deficient keratinocytes. These changes in focal contact composition were not due to a change in steady-state levels of these proteins, but rather to reorganization due to alpha3beta1 deficiency. Apart from the loss of alpha3beta1 there is no change in expression of the other integrins expressed by the alpha3-null keratinocytes. However, in functional assays, alpha3beta1 deficiency allows an increase in fibronectin and collagen type IV receptor activities. Thus, our findings provide evidence for a role of alpha3beta1 in regulating stress fiber formation and as a trans-dominant inhibitor of the functions of the other integrins in mouse keratinocytes. These results have potential implications for the regulation of keratinocyte adhesion and migration during wound healing.


alpha3beta1 integrin-CD151, a component of the cadherin-catenin complex, regulates PTPmu expression and cell-cell adhesion.

  • Nibedita Chattopadhyay‎ et al.
  • The Journal of cell biology‎
  • 2003‎

The beta1 family of integrins has been primarily studied as a set of receptors for the extracellular matrix. In this paper, we define a novel role for alpha3beta1 integrin in association with the tetraspanin CD151 as a component of a cell-cell adhesion complex in epithelial cells that directly stimulates cadherin-mediated adhesion. The integrin-tetraspanin complex affects epithelial cell-cell adhesion at the level of gene expression both by regulating expression of PTPmu and by organizing a multimolecular complex containing PKCbetaII, RACK1, PTPmu, beta-catenin, and E-cadherin. These findings demonstrate how integrin-based signaling can regulate complex biological responses at multiple levels to determine cell morphology and behavior.


Characterization of integrin-tetraspanin adhesion complexes: role of tetraspanins in integrin signaling.

  • F Berditchevski‎ et al.
  • The Journal of cell biology‎
  • 1999‎

Tetraspanins (or proteins from the transmembrane 4 superfamily, TM4SF) form membrane complexes with integrin receptors and are implicated in integrin-mediated cell migration. Here we characterized cellular localization, structural composition, and signaling properties of alpha3beta1-TM4SF adhesion complexes. Double-immunofluorescence staining showed that various TM4SF proteins, including CD9, CD63, CD81, CD82, and CD151 are colocalized within dot-like structures that are particularly abundant at the cell periphery. Differential extraction in conjunction with chemical cross-linking indicated that the cell surface fraction of alpha3beta1-TM4SF protein complexes may not be directly linked to the cytoskeleton. However, in cells treated with cytochalasin B alpha3beta1-TM4SF protein complexes are relocated into intracellular vesicles suggesting that actin cytoskeleton plays an important role in the distribution of tetraspanins into adhesion structures. Talin and MARCKS are partially codistributed with TM4SF proteins, whereas vinculin is not detected within the tetraspanin-containing adhesion structures. Attachment of serum-starved cells to the immobilized anti-TM4SF mAbs induced dephosphorylation of focal adhesion kinase (FAK). On the other hand, clustering of tetraspanins in cells attached to collagen enhanced tyrosine phosphorylation of FAK. Furthermore, ectopic expression of CD9 in fibrosarcoma cells affected adhesion-induced tyrosine phosphorylation of FAK, that correlated with the reorganization of the cortical actin cytoskeleton. These results show that tetraspanins can modulate integrin signaling, and point to a mechanism by which TM4SF proteins regulate cell motility.


Function of alpha3beta1-tetraspanin protein complexes in tumor cell invasion. Evidence for the role of the complexes in production of matrix metalloproteinase 2 (MMP-2).

  • T Sugiura‎ et al.
  • The Journal of cell biology‎
  • 1999‎

Tumor cell migration through the three- dimensional extracellular matrix (ECM) environment is an important part of the metastatic process. We have analyzed a role played by the integrin-tetraspanin protein complexes in invasive migration by culturing MDA-MB-231 cells within Matrigel. Using time-lapse video recording, we demonstrated that the Matrigel-embedded cells remain round and exhibit only limited ability for migration by extending short, highly dynamic pseudopodia. The alpha3beta1-tetraspanin protein complexes were clustered on the thin microvilli-like protrusions extending from both the main cell body and pseudopodia. Ligation of the alpha3beta1-tetraspanin protein complexes with monoclonal antibodies specifically stimulates production of matrix metalloproteinase 2 (MMP-2) and induces formation of long invasive protrusions within Matrigel. Accordingly, treatment with the monoclonal antibodies to various tetraspanin proteins and to the alpha3 integrin subunit increases invasive potential of the MDA-MB-231 cells in the Matrigel-penetration assay. A specific inhibitor of phosphoinositide 3-kinase (PI3K), LY294002, negated the effect of the monoclonal antibodies on the morphology of the Matrigel-embedded cells and on production of MMP-2. Interestingly, broad-spectrum inhibitors of protein tyrosine kinases (genistein) and protein tyrosine phosphatases (orthovanadate), and actin filament stabilizing compound (jasplakinolide), also block protrusive activity of the Matrigel-embedded cells but have no effect on the production of MMP-2. These results indicate that alpha3beta1-tetraspanin protein complexes may control invasive migration of tumor cells by using at least two PI3K-dependent signaling mechanisms: through rearrangement of the actin cytoskeleton and by modulating the MMP-2 production.


Regulation of alpha5beta1 integrin conformation and function by urokinase receptor binding.

  • Ying Wei‎ et al.
  • The Journal of cell biology‎
  • 2005‎

Urokinase-type plasminogen activator receptors (uPARs), up-regulated during tumor progression, associate with beta1 integrins, localizing urokinase to sites of cell attachment. Binding of uPAR to the beta-propeller of alpha3beta1 empowers vitronectin adhesion by this integrin. How uPAR modifies other beta1 integrins remains unknown. Using recombinant proteins, we found uPAR directly binds alpha5beta1 and rather than blocking, renders fibronectin (Fn) binding by alpha5beta1 Arg-Gly-Asp (RGD) resistant. This resulted from RGD-independent binding of alpha5beta1-uPAR to Fn type III repeats 12-15 in addition to type III repeats 9-11 bound by alpha5beta1. Suppression of endogenous uPAR by small interfering RNA in tumor cells promoted weaker, RGD-sensitive Fn adhesion and altered overall alpha5beta1 conformation. A beta1 peptide (res 224NLDSPEGGF232) that models near the known alpha-chain uPAR-binding region, or a beta1-chain Ser227Ala point mutation, abrogated effects of uPAR on alpha5beta1. Direct binding and regulation of alpha5beta1 by uPAR implies a modified "bent" integrin conformation can function in an alternative activation state with this and possibly other cis-acting membrane ligands.


Vesicle-associated membrane protein 2 mediates trafficking of alpha5beta1 integrin to the plasma membrane.

  • Nazarul Hasan‎ et al.
  • Experimental cell research‎
  • 2010‎

Integrins are major receptors for cell adhesion to the extracellular matrix (ECM). As transmembrane proteins, the levels of integrins at the plasma membrane or the cell surface are ultimately determined by the balance between two vesicle trafficking events: endocytosis of integrins at the plasma membrane and exocytosis of the vesicles that transport integrins. Here, we report that vesicle-associated membrane protein 2 (VAMP2), a SNARE protein that mediates vesicle fusion with the plasma membrane, is involved in the trafficking of alpha5beta1 integrin. VAMP2 was present on vesicles containing endocytosed beta1 integrin. Small interfering RNA (siRNA) silencing of VAMP2 markedly reduced cell surface alpha5beta1 and inhibited cell adhesion and chemotactic migration to fibronectin, the ECM ligand of alpha5beta1, without altering cell surface expression of alpha2beta1 integrin or alpha3beta1 integrin. By contrast, silencing of VAMP8, another SNARE protein, had no effect on cell surface expression of the integrins or cell adhesion to fibronectin. In addition, VAMP2-mediated trafficking is involved in cell adhesion to collagen but not to laminin. Consistent with disruption of integrin functions in cell proliferation and survival, VAMP2 silencing diminished proliferation and triggered apoptosis. Collectively, these data indicate that VAMP2 mediates the trafficking of alpha5beta1 integrin to the plasma membrane and VAMP2-dependent integrin trafficking is critical in cell adhesion, migration and survival.


The coupling of alpha6beta4 integrin to Ras-MAP kinase pathways mediated by Shc controls keratinocyte proliferation.

  • F Mainiero‎ et al.
  • The EMBO journal‎
  • 1997‎

The signaling pathways linking integrins to nuclear events are incompletely understood. We have examined intracellular signaling by the alpha6beta4 integrin, a laminin receptor expressed in basal keratinocytes and other cells. Ligation of alpha6beta4 in primary human keratinocytes caused tyrosine phosphorylation of Shc, recruitment of Grb2, activation of Ras and stimulation of the MAP kinases Erk and Jnk. In contrast, ligation of the laminin- and collagen-binding integrins alpha3beta1 and alpha2beta1 did not cause these events. While the stimulation of Erk by alpha6beta4 was suppressed by dominant-negative Shc, Ras and RhoA, the activation of Jnk was inhibited by dominant-negative Ras and Rac1 and by the phosphoinositide 3-kinase inhibitor Wortmannin. Adhesion mediated by alpha6beta4 induced transcription from the Fos serum response element and promoted cell cycle progression in response to mitogens. In contrast, alpha3beta1- and alpha2beta1-dependent adhesion did not induce these events. These findings suggest that the coupling of alpha6beta4 integrin to the control of cell cycle progression mediated by Shc regulates the proliferation of basal keratinocytes and possibly other cells which are in contact with the basement membrane in vivo.


Epitope mapping of function-blocking monoclonal antibody CM6 suggests a "weak" integrin binding site on the laminin-332 LG2 domain.

  • Hironobu Yamashita‎ et al.
  • Journal of cellular physiology‎
  • 2010‎

Laminin-332 (Ln-332) is an extracellular matrix molecule that regulates cell adhesion, spreading, and migration by interaction with cell surface receptors such as alpha3beta1 and alpha6beta4. Previously, we developed a function-blocking monoclonal antibody against rat Ln-332, CM6, which blocks hemidesmosome assembly induced by Ln-332-alpha6beta4 interactions. However, the location of its epitope on Ln-332 has remained unclear. In this study, we show that the CM6 epitope is located on the laminin G-like (LG)2 module of the Ln-332 alpha3 chain. To specify the residues involved in this epitope, we produced a series of GST-fused alpha3 LG2 mutant proteins in which rat-specific acids were replaced with human acids by a site-directed mutagenesis strategy. CM6 reactivity against these proteins showed that CM6 binds to the (1089)NERSVR(1094) sequence of rat Ln-332 LG2 module. In a structural model, this sequence maps to an LG2 loop sequence that is exposed to solvent according to predictions, consistent with its accessibility to antibody. CM6 inhibits integrin-dependent cell adhesion on Ln-332 and inhibits cell spreading on both Ln-332 and recombinant LG2 (rLG2; but not rLG3), suggesting the presence of an alpha3beta1 binding site on LG2. However, we were unable to show that rLG2 supports adhesion in standard assays, suggesting that LG2 may contain a "weak" integrin binding site, only detectable in spreading assays that do not require washes. These results, together with our previous findings, indicate that binding sites for alpha3beta1 and alpha6beta4 are closely spaced in the Ln-332 LG domains where they regulate alternative cell functions, namely adhesion/migration or hemidesmosome anchoring.


The tetraspan molecule CD151, a novel constituent of hemidesmosomes, associates with the integrin alpha6beta4 and may regulate the spatial organization of hemidesmosomes.

  • L M Sterk‎ et al.
  • The Journal of cell biology‎
  • 2000‎

CD151 is a cell surface protein that belongs to the tetraspan superfamily. It associates with other tetraspan molecules and certain integrins to form large complexes at the cell surface. CD151 is expressed by a variety of epithelia and mesenchymal cells. We demonstrate here that in human skin CD151 is codistributed with alpha3beta1 and alpha6beta4 at the basolateral surface of basal keratinocytes. Immunoelectron microscopy showed that CD151 is concentrated in hemidesmosomes. By immunoprecipitation from transfected K562 cells, we established that CD151 associates with alpha3beta1 and alpha6beta4. In beta4-deficient pyloric atresia associated with junctional epidermolysis bullosa (PA-JEB) keratinocytes, CD151 and alpha3beta1 are clustered together at the basal cell surface in association with patches of laminin-5. Focal adhesions are present at the periphery of these clusters, connected with actin filaments, and they contain both CD151 and alpha3beta1. Transient transfection studies of PA-JEB cells with beta4 revealed that the integrin alpha6beta4 becomes incorporated into the alpha3beta1-CD151 clusters where it induces the formation of hemidesmosomes. As a result, the amount of alpha3beta1 in the clusters diminishes and the protein becomes restricted to the peripheral focal adhesions. Furthermore, CD151 becomes predominantly associated with alpha6beta4 in hemidesmosomes, whereas its codistribution with alpha3beta1 in focal adhesions becomes partial. The localization of alpha6beta4 in the pre-hemidesmosomal clusters is accompanied by a strong upregulation of CD151, which is at least partly due to increased cell surface expression. Using beta4 chimeras containing the extracellular and transmembrane domain of the IL-2 receptor and the cytoplasmic domain of beta4, we found that for recruitment of CD151 into hemidesmosomes, the beta4 subunit must be associated with alpha6, confirming that integrins associate with tetraspans via their alpha subunits. CD151 is the only tetraspan identified in hemidesmosomal structures. Others, such as CD9 and CD81, remain diffusely distributed at the cell surface. In conclusion, we show that CD151 is a major component of (pre)-hemidesmosomal structures and that its recruitment into hemidesmosomes is regulated by the integrin alpha6beta4. We suggest that CD151 plays a role in the formation and stability of hemidesmosomes by providing a framework for the spatial organization of the different hemidesmosomal components.


Expression and function of alphabeta1 integrins in pancretic beta (INS-1) cells.

  • Mansa Krishnamurthy‎ et al.
  • Journal of cell communication and signaling‎
  • 2008‎

Integrin-extracellular matrix interactions are important determinants of beta cell behaviours. The beta1 integrin is a well-known regulator of beta cell activities; however, little is known of its associated alpha subunits. In the present study, alphabeta1 integrin expression was examined in the rat insulinoma cell line (INS-1) to identify their role in beta cell survival and function. Seven alpha subunits associated with beta1 integrin were identified, including alpha1-6 and alphaV. Among these heterodimers, alpha3beta1 was most highly expressed. Common ligands for the alpha3beta1 integrin, including fibronectin, laminin, collagen I and collagen IV were tested to identify the most suitable matrix for INS-1 cell proliferation and function. Cells exposed to collagen I and IV demonstrated significant increases in adhesion, spreading, cell viability, proliferation, and FAK phosphorylation when compared to cells cultured on fibronectin, laminin and controls. Integrin-dependent attachment also had a beneficial effect on beta cell function, increasing Pdx-1 and insulin gene and protein expression on collagens I and IV, in parallel with increased basal insulin release and enhanced insulin secretion upon high glucose challenge. Furthermore, functional blockade of alpha3beta1 integrin decreased cell adhesion, spreading and viability on both collagens and reduced Pdx-1 and insulin expression, indicating that its interactions with collagen matrices are important for beta cell survival and function. These results demonstrate that specific alphabeta1 integrin-ECM interactions are critical regulators of INS-1 beta cell survival and function and will be important in designing optimal conditions for cell-based therapies for diabetes treatment.


Evidence for a role of tumor-derived laminin-511 in the metastatic progression of breast cancer.

  • Jenny Chia‎ et al.
  • The American journal of pathology‎
  • 2007‎

Most studies investigating laminins (LMs) in breast cancer have focused on LM-111 or LM-332. Little is known, however, about the expression and function of alpha5 chain-containing LM-511/521 during metastatic progression. Expression of LM-511/521 subunits was examined in genetically related breast tumor lines and corresponding primary tumors and metastases in a syngeneic mouse model using real-time quantitative polymerase chain reaction, in situ hybridization, and immunohistochemistry. The results from our investigation indicate that LM-511 rather than LM-111, -332, or -521 correlates with metastatic potential in mouse mammary tumors. LM-511 was a potent adhesive substrate for both murine and human breast carcinoma cells and promoted strong haptotactic responses in metastatic lines. Haptotaxis was mediated by alpha3 integrin in both MCF-7 and MDA-MB-231 cells and was strongly inhibited by blocking antibodies against this integrin subunit. However, whereas nonmetastatic MCF-7 cells migrated toward LM-511 primarily via alpha3beta1 integrin, results from antibody perturbation experiments and flow cytometry analysis suggest that this response is mediated by an as yet unidentified alpha3beta integrin heterodimer (other than alpha3beta1) in MDA-MB-231 cells. These results are consistent with earlier reports implicating alpha3 integrins in breast cancer progression and support the role of LM-511 as a functional substrate regulating breast cancer metastasis.


The Rac activator Tiam1 is required for (alpha)3(beta)1-mediated laminin-5 deposition, cell spreading, and cell migration.

  • Irene H L Hamelers‎ et al.
  • The Journal of cell biology‎
  • 2005‎

The Rho-like guanosine triphosphatase Rac1 regulates various signaling pathways, including integrin-mediated adhesion and migration of cells. However, the mechanisms by which integrins signal toward Rac are poorly understood. We show that the Rac-specific guanine nucleotide exchange factor Tiam1 (T-lymphoma invasion and metastasis 1) is required for the integrin-mediated laminin (LN)-5 deposition, spreading, and migration of keratinocytes. In contrast to wild-type keratinocytes, Tiam1-deficient (Tiam1-/-) keratinocytes are unable to adhere to and spread on a glass substrate because they are unable to deposit their own LN5 substrate. Both Tiam1 and V12Rac1 can rescue the defects of Tiam1-/- keratinocytes, indicating that these deficiencies are caused by impaired Tiam1-mediated Rac activation. Tiam1-/- cells are unable to activate Rac upon alpha3beta1-mediated adhesion to an exogenous LN5 substrate. Moreover, Tiam1 deficiency impairs keratinocyte migration in vitro and reepithelialization of excision wounds in mouse skin. Our studies indicate that Tiam1 is a key molecule in alpha3beta1-mediated activation of Rac, which is essential for proper production and secretion of LN5, a requirement for the spreading and migration of keratinocytes.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: