Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 29 papers

Integrin alpha chains exhibit distinct temporal and spatial localization patterns in epithelial cells of the Drosophila ovary.

  • Michael B Dinkins‎ et al.
  • Developmental dynamics : an official publication of the American Association of Anatomists‎
  • 2008‎

Integrins are heterodimeric transmembrane receptors that modulate cell adhesion, migration, and signaling. Multiple integrin chains contribute to development and morphogenesis of a given tissue. Here, we analyze the expression of Drosophila integrin alpha chains in the ovarian follicular epithelium, a model for tissue morphogenesis and cell migration. We find expression throughout development of the beta chain, betaPS. Alpha chains, however, exhibit both spatial and temporal expression differences. alphaPS1 and alphaPS2 integrins are detected during early and mid-oogenesis on apical, lateral, and basal membranes with the betaPS chain, whereas alphaPS3-family integrins (alphaPS3, alphaPS4, alphaPS5) are expressed in anterior cells late in oogenesis. Surprisingly, we find that alphaPS3-family integrins are dispensable for dorsal appendage morphogenesis but play a role in the final length of the egg, suggesting redundant functions of integrins in a simple tissue. We also demonstrate roles for alphaPS3betaPS integrin in border cell migration and in stretch cells.


Analysis of the human integrin alpha11 gene (ITGA11) and its promoter.

  • Wan-Ming Zhang‎ et al.
  • Matrix biology : journal of the International Society for Matrix Biology‎
  • 2002‎

Integrin alpha11beta1 is a collagen receptor which is expressed in a subset of mesenchymally-derived tissues during embryogenesis. Based on available human chromosome 15-derived sequences and genomic PCR, the complete exon structure of ITGA11, including the proximal promoter, was assembled into 30 exons. The inserted region (encoding amino acids 804-826) distinguishing alpha11 from other integrin alpha chains, was placed in the very beginning of exon 20. PCR data failed to show alternative splicing of RNA transcribed from this region. Using the oligo-capping technique a major transcription start site was mapped 30 nucleotides upstream of the translation start and identified as an abbreviated initiator sequence. Promoter sequence analysis in silico suggested the presence of multiple binding sites for transcription factors in the region upstream of the transcription start. 3 kb of the 5' flanking sequence was isolated and used to generate luciferase promoter constructs. In the fibrosarcoma cell line HT1080 a core promoter [nt (-)127-(+)25], a potential silencer region [nt (-)400-(-)127] and a potential enhancer region [nt (-)1519-(-)400], were identified as being important for alpha11 transcription in mesenchymal cells. Furthermore, studies of the promoter region will provide valuable information regarding the molecular mechanisms underlying the cell- and tissue- specific expression pattern of ITGA11.


Key interactions in integrin ectodomain responsible for global conformational change detected by elastic network normal-mode analysis.

  • Atsushi Matsumoto‎ et al.
  • Biophysical journal‎
  • 2008‎

Integrin, a membrane protein with a huge extracellular domain, participates in cell-cell and cell-extracellular-matrix interactions for metazoan. A group of integrins is known to perform a large-scale structural change when the protein is activated, but the activation mechanism and generality of the conformational change remain to be elucidated. We performed normal-mode analysis of the elastic network model on integrin alpha(V)beta(3) ectodomain in the bent form and identified key residues that influenced molecular motions. Iterative normal-mode calculations demonstrated that the specific nonbonded interactions involving the key residues work as a snap to keep integrin in the bent form. The importance of the key residues for the conformational change was further verified by mutation experiments, in which integrin alpha(IIb)beta(3) was used. The conservation pattern of amino acid residues among the integrin family showed that the characteristic pattern of residues seen around these key residues is found in the limited groups of integrin beta-chains. This conservation pattern suggests that the molecular mechanism of the conformational change relying on the interactions found in integrin alpha(V)beta(3) is unique to the limited types of integrins.


The integrins of the urochordate Ciona intestinalis provide novel insights into the molecular evolution of the vertebrate integrin family.

  • Richard Ewan‎ et al.
  • BMC evolutionary biology‎
  • 2005‎

Integrins are a functionally significant family of metazoan cell surface adhesion receptors. The receptors are dimers composed of an alpha and a beta chain. Vertebrate genomes encode an expanded set of integrin alpha and beta chains in comparison with protostomes such as drosophila or the nematode worm. The publication of the genome of a basal chordate, Ciona intestinalis, provides a unique opportunity to gain further insight into how and when the expanded integrin supergene family found in vertebrates evolved.


α11β1 Integrin is Induced in a Subset of Cancer-Associated Fibroblasts in Desmoplastic Tumor Stroma and Mediates In Vitro Cell Migration.

  • Cédric Zeltz‎ et al.
  • Cancers‎
  • 2019‎

Integrin α11β1 is a collagen receptor that has been reported to be overexpressed in the stroma of non-small cell lung cancer (NSCLC) and of head and neck squamous cell carcinoma (HNSCC). In the current study, we further analyzed integrin α11 expression in 14 tumor types by screening a tumor tissue array while using mAb 203E3, a newly developed monoclonal antibody to human α11. Different degrees of expression of integrin α11 were observed in the stroma of breast, ovary, skin, lung, uterus, stomach, and pancreatic ductal adenocarcinoma (PDAC) tumors. Co-expression queries with the myofibroblastic cancer-associated fibroblast (myCAF) marker, alpha smooth muscle actin (αSMA), demonstrated a moderate level of α11+ in myCAFs associated with PDAC and HNSCC tumors, and a lack of α11 expression in additional stromal cells (i.e., cells positive for fibroblast-specific protein 1 (FSP1) and NG2). The new function-blocking α11 antibody, mAb 203E1, inhibited cell adhesion to collagen I, partially hindered fibroblast-mediated collagen remodeling and obstructed the three-dimensional (3D) migration rates of PDAC myCAFs. Our data demonstrate that integrin α11 is expressed in a subset of non-pericyte-derived CAFs in a range of cancers and suggest that α11β1 constitutes an important receptor for collagen remodeling and CAF migration in the tumor microenvironment (TME).


Laminin alpha 5 mediates ectopic adhesion of hepatocellular carcinoma through integrins and/or Lutheran/basal cell adhesion molecule.

  • Yamato Kikkawa‎ et al.
  • Experimental cell research‎
  • 2008‎

Laminins are a diverse group of alpha/beta/gamma heterotrimers formed from five alpha, three beta and three gamma chains; they are major components of all basal laminae (BLs). One laminin chain that has garnered particular interest due to its widespread expression pattern and importance during development is laminin alpha 5. Little is known, however, about the expression and function of laminins containing the alpha 5 chain in human hepatocellular carcinoma (HCC). Here, using a specific antibody, we examined the expression of laminin alpha 5 in normal liver and in HCCs. In normal liver, although laminin alpha 5 was observed in hepatic BLs underlying blood vessels and bile ducts, it was absent from the parenchyma, which may be the origin of HCC. On the other hand, laminin alpha 5 deposition was observed throughout all HCCs tested, regardless of tumor grade. In well-differentiated HCCs, it localized along the trabecules of the tumor. In poorly-differentiated HCCs, it was present in surrounding tumor nodules. In HCC cell lines, laminin alpha 5 heterotrimerized with beta and gamma chains and was secreted into the culture media. To attempt to understand the function of laminins containing alpha 5, the expression of its receptors in HCCs was also determined. In this regard, alpha 3 beta 1/alpha 6 beta 1 integrins and Lutheran/basal cell adhesion molecule (Lu/B-CAM) were expressed in HCC cells. In vitro studies showed that HCC cells readily attached to laminin containing the alpha 5 chain, more so than did primary hepatocytes. In addition to alpha 3 beta 1/alpha 6 beta 1 integrins and Lu/B-CAM, laminin alpha 5 was recognized by integrin alpha 1 beta 1, which also was expressed in HCC cells. These results suggest that laminins containing alpha 5 serve as functional substrates regulating progression of HCC.


Switching between individual and collective motility in B lymphocytes is controlled by cell-matrix adhesion and inter-cellular interactions.

  • Javier Rey-Barroso‎ et al.
  • Scientific reports‎
  • 2018‎

Lymphocytes alternate between phases of individual migration across tissues and phases of clustering during activation and function. The range of lymphocyte motility behaviors and the identity of the factors that govern them remain elusive. To explore this point, we here collected unprecedented statistics pertaining to cell displacements, cell:matrix and cell:cell interactions using a model B cell line as well as primary human B lymphocytes. At low cell density, individual B lymphocytes displayed a high heterogeneity in their speed and diffusivity. Beyond this intrinsic variability, B lymphocytes adapted their motility to the composition of extra-cellular matrix, adopting slow persistent walks over collagen IV and quick Brownian walks over fibronectin. At high cell density, collagen IV favored the self-assembly of B lymphocytes into clusters endowed with collective coordination, while fibronectin stimulated individual motility. We show that this behavioral plasticity is controlled by acto-myosin dependent adhesive and Arp2/3-dependent protrusive actin pools, respectively. Our study reveals the adaptive nature of B lymphocyte motility and group dynamics, which are shaped by an interplay between and cell:matrix and cell:cell interactions.


Crystal structure of the LG1-3 region of the laminin alpha2 chain.

  • Federico Carafoli‎ et al.
  • The Journal of biological chemistry‎
  • 2009‎

Laminins are large heterotrimeric glycoproteins with many essential functions in basement membrane assembly and function. Cell adhesion to laminins is mediated by a tandem of five laminin G-like (LG) domains at the C terminus of the alpha chain. Integrin binding requires an intact LG1-3 region, as well as contributions from the coiled coil formed by the alpha, beta, and gamma chains. We have determined the crystal structure at 2.8-A resolution of the LG1-3 region of the laminin alpha2 chain (alpha 2LG1-3). The three LG domains adopt typical beta-sandwich folds, with canonical calcium binding sites in LG1 and LG2. LG2 and LG3 interact through a substantial interface, but LG1 is completely dissociated from the LG2-3 pair. We suggest that the missing gamma chain tail may be required to stabilize the interaction between LG1 and LG2-3 in the biologically active conformation. A global analysis of N-linked glycosylation sites shows that the beta-sandwich faces of LG1 are free of carbohydrate modifications in all five laminin alpha chains, suggesting that these surfaces may harbor the integrin binding site. The alpha 2LG1-3 structure provides the first atomic view of the integrin binding region of laminins.


NAD+ biosynthesis ameliorates a zebrafish model of muscular dystrophy.

  • Michelle F Goody‎ et al.
  • PLoS biology‎
  • 2012‎

Muscular dystrophies are common, currently incurable diseases. A subset of dystrophies result from genetic disruptions in complexes that attach muscle fibers to their surrounding extracellular matrix microenvironment. Cell-matrix adhesions are exquisite sensors of physiological conditions and mediate responses that allow cells to adapt to changing conditions. Thus, one approach towards finding targets for future therapeutic applications is to identify cell adhesion pathways that mediate these dynamic, adaptive responses in vivo. We find that nicotinamide riboside kinase 2b-mediated NAD+ biosynthesis, which functions as a small molecule agonist of muscle fiber-extracellular matrix adhesion, corrects dystrophic phenotypes in zebrafish lacking either a primary component of the dystrophin-glycoprotein complex or integrin alpha7. Exogenous NAD+ or a vitamin precursor to NAD+ reduces muscle fiber degeneration and results in significantly faster escape responses in dystrophic embryos. Overexpression of paxillin, a cell adhesion protein downstream of NAD+ in this novel cell adhesion pathway, reduces muscle degeneration in zebrafish with intact integrin receptors but does not improve motility. Activation of this pathway significantly increases organization of laminin, a major component of the extracellular matrix basement membrane. Our results indicate that the primary protective effects of NAD+ result from changes to the basement membrane, as a wild-type basement membrane is sufficient to increase resilience of dystrophic muscle fibers to damage. The surprising result that NAD+ supplementation ameliorates dystrophy in dystrophin-glycoprotein complex- or integrin alpha7-deficient zebrafish suggests the existence of an additional laminin receptor complex that anchors muscle fibers to the basement membrane. We find that integrin alpha6 participates in this pathway, but either integrin alpha7 or the dystrophin-glycoprotein complex is required in conjunction with integrin alpha6 to reduce muscle degeneration. Taken together, these results define a novel cell adhesion pathway that may have future therapeutic relevance for a broad spectrum of muscular dystrophies.


Small GTPase Rab21 regulates cell adhesion and controls endosomal traffic of beta1-integrins.

  • Teijo Pellinen‎ et al.
  • The Journal of cell biology‎
  • 2006‎

Dynamic turnover of integrin cell adhesion molecules to and from the cell surface is central to cell migration. We report for the first time an association between integrins and Rab proteins, which are small GTPases involved in the traffic of endocytotic vesicles. Rab21 (and Rab5) associate with the cytoplasmic domains of alpha-integrin chains, and their expression influences the endo/exocytic traffic of integrins. This function of Rab21 is dependent on its GTP/GDP cycle and proper membrane targeting. Knock down of Rab21 impairs integrin-mediated cell adhesion and motility, whereas its overexpression stimulates cell migration and cancer cell adhesion to collagen and human bone. Finally, overexpression of Rab21 fails to induce cell adhesion via an integrin point mutant deficient in Rab21 association. These data provide mechanistic insight into how integrins are targeted to intracellular compartments and how their traffic regulates cell adhesion.


Developmentally regulated interactions of human thymocytes with different laminin isoforms.

  • Snjezana Kutlesa‎ et al.
  • Immunology‎
  • 2002‎

The gene family of heterotrimeric laminin molecules consists of at least 15 naturally occurring isoforms which are formed by five different alpha, three beta and three gamma subunits. The expression pattern of the individual laminin chains in the human thymus was comprehensively analysed in the present study. Whereas laminin isoforms containing the laminin alpha1 chain (e.g. LN-1) were not present in the human thymus, laminin isoforms containing the alpha2 chain (LN-2/4) or the alpha5 chain (LN-10/11) were expressed in the subcapsular epithelium and in thymic blood vessels. Expression of the laminin alpha4 chain seemed to be restricted to endothelial cells of the thymus, whereas the LN-5 isoform containing the alpha3 chain could be detected on medullary thymic epithelial cells and weakly in the subcapsular epithelium. As revealed by cell attachment assays, early CD4- CD8- thymocytes which are localized in the thymus beneath the subcapsular epithelium adhered strongly to LN-10/11, but not to LN-1, LN-2/4 or LN-5. Adhesion of these thymocytes to LN-10/11 was mediated by the integrin alpha6beta1. During further development, the cortically localized CD4+ CD8+ thymocytes have lost the capacity to adhere to laminin-10/11. Neither do these cells adhere to any other laminin isoform tested. However, the more differentiated single positive CD8+ thymocytes which were mainly found in the medulla were able to bind to LN-5 which is expressed by medullary epithelial cells. Interactions of CD8+ thymocytes with LN-5 were integrin alpha6beta4-dependent. These results show that interactions of developing human thymocytes with different laminin isoforms are spatially and developmentally regulated.


Matched rabbit monoclonal antibodies against αv-series integrins reveal a novel αvβ3-LIBS epitope, and permit routine staining of archival paraffin samples of human tumors.

  • Simon L Goodman‎ et al.
  • Biology open‎
  • 2012‎

The relationship between integrin expression and function in pathologies is often contentious as comparisons between human pathological expression and expression in cell lines is difficult. In addition, the expression of even integrins αvβ6 and αvβ8 in tumor cell lines is not comprehensively documented. Here, we describe rabbit monoclonal antibodies (RabMabs) against the extracellular domains of αv integrins that react with both native integrins and formalin fixed, paraffin embedded (FFPE) human tissues. These RabMabs, against αvβ3 (EM22703), αvβ5 (EM09902), αvβ6 (EM05201), αvβ8 (EM13309), and pan-αv (EM01309), recognize individual integrin chains in Western blots and in flow cytometry. EM22703 detected a ligand-induced binding site (LIBS), reporting an epitope enhanced by the binding of an RGD-peptide to αvβ3. αvβ8 was rarely expressed in human tumor specimens, and weakly expressed in non-small-cell lung carcinoma (NSCLC). However, ovarian carcinoma cell lines expressed αvβ8, as did some melanoma cells, whereas U87MG glioma lacked αvβ8 expression. We observed an unexpected strong expression of αvβ6 in tumor samples of invasive ductal breast adenoma, colorectal carcinoma (CRC), and NSCLC. αvβ3 was strongly expressed in some invasive NSCLC cohorts. Interestingly, PC3 prostate cell and human prostate tumors did not express αvβ3. The RabMabs stained plasma membranes in FFPE-immunohistochemistry (IHC) samples of tumor cell lines from lung, ovary, colon, prostate, squamous cell carcinoma of head and neck (SCCHN), breast, and pancreas carcinomas. The RabMabs are unique tools for probing αv integrin biology, and suggest that especially αvβ6 and αvβ8 biologies still have much to reveal.


Laminin alpha5 chain is required for intestinal smooth muscle development.

  • Anne Laure Bolcato-Bellemin‎ et al.
  • Developmental biology‎
  • 2003‎

Laminins (comprised of alpha, beta, and gamma chains) are heterotrimeric glycoproteins integral to all basement membranes. The function of the laminin alpha5 chain in the developing intestine was defined by analysing laminin alpha5(-/-) mutants and by grafting experiments. We show that laminin alpha5 plays a major role in smooth muscle organisation and differentiation, as excessive folding of intestinal loops and delay in the expression of specific markers are observed in laminin alpha5(-/-) mice. In the subepithelial basement membrane, loss of alpha5 expression was paralleled by ectopic or accelerated deposition of laminin alpha2 and alpha4 chains; this may explain why no obvious defects were observed in the villous form and enterocytic differentiation. This compensation process is attributable to mesenchyme-derived molecules as assessed by chick/mouse alpha5(-/-) grafted associations. Lack of the laminin alpha5 chain was accompanied by a decrease in epithelial alpha3beta1 integrin receptor expression adjacent to the epithelial basement membrane and of Lutheran blood group glycoprotein in the smooth muscle cells, indicating that these receptors are likely mediating interactions with laminin alpha5-containing molecules. Taken together, the data indicate that the laminin alpha5 chain is essential for normal development of the intestinal smooth muscle and point to possible mesenchyme-derived compensation to promote normal intestinal morphogenesis when laminin alpha5 is absent.


Protein-Protein Interaction Network Analysis of Salivary Proteomic Data in Oral Cancer Cases.

  • Nasrin Amiri Dash Atan‎ et al.
  • Asian Pacific journal of cancer prevention : APJCP‎
  • 2018‎

Background: Oral cancer is a frequently encountered neoplasm of the head and neck region, being the eight most common type of human malignancy worldwide. Despite improvement in its control, morbidity and mortality rates have improved little in the past decades. Therefore, prevention and/or early detection are a high priority. Proteomics with network analysis have emerged as a powerful tool to identify important proteins associated with cancer development and progression that can be potential targets for early diagnosis. In the present study, network- based protein- protein interactions (PPI) for oral cancer were identified and then analyzed for use as key proteins/potential biomarkers. Material and Methods: Gene expression data in articles which focused on saliva proteomics of oral cancer were collected and 74 candidate genes or proteins were extracted. Related protein networks of differentially expressed proteins were explored and visualized using cytoscape software. Further PPI analysis was performed by Molecular Complex Detection (MCODE) and BiNGO methods. Results: Network analysis of genes/proteins related to oral cancer identified kininogen-1, angiotensinogen, annexin A1, IL-8, IgG heavy variable and constant chains, CRP, collagen alpha-1 and fibronectin as 9 hub-bottleneck proteins. In addition, based on clustering with the MCODE tool, vitronectin, collagen alpha-2, IL-8 and integrin alpha-v were established as 5 distinct seed proteins. Conclusion: A hub-bottleneck protein panel may offer a potential /candidate biomarker pattern for diagnosis and treatment of oral cancer disease. Further investigation and validation of these proteins are warranted.


Loading IR820 Using Multifunctional Dendrimers with Enhanced Stability and Specificity.

  • Hui Liu‎ et al.
  • Pharmaceutics‎
  • 2018‎

Cyanine dyes are promising candidates in biomedical applications. Although various delivery systems have been developed to enhance their properties, their dendrimer-based delivery systems are seldom investigated. Herein, amine-terminated generation 5 poly(amidoamine) (G5.NH₂) dendrimers and new indocyanine green (IR820) dyes were chosen as models to study the loading ability of dendrimers for cyanine dynes. G5.NH₂ dendrimers were pre-modified with arginine-glycine-aspartic (RGD) peptides, poly(ethylene glycol) chains, and acetyl groups to be endowed with cancer cell specificity and biocompatibility. The formed Ac-PR dendrimers were used to load IR820, followed by thorough characterization. The loaded number of IR820 was estimated to be 6.7 per dendrimer. The stability of IR820 was improved through dendrimer loading, which was proved by their UV-vis spectra under different kinds of storage conditions. In addition, the formed Ac-PR dendrimers can retain the loaded IR820 effectively. Their cytocompatibility was desirable under the studied conditions. Their cellular uptake behaviors were demonstrated to be enhanced by RGD modification, showing concentration-, co-incubation time-, and αvβ₃ integrin receptor-dependent properties, displaying a cytoplasm-location. The findings from this work demonstrated the versatile loading and delivery capacity of dendrimers for near-infrared (NIR) dyes, providing fundamental data for the development of dendrimer/NIR dye systems for biomedical applications, especially for cancer theranostic applications.


Computational evaluation of anticipated PE_PGRS39 protein involvement in host-pathogen interplay and its integration into vaccine development.

  • Khyati Patni‎ et al.
  • 3 Biotech‎
  • 2021‎

Mycobacterium tuberculosis causes more than 1 million deaths every year, which is higher than any other bacterial pathogen. Its success depends on its interaction with the host and its ability to regulate the host's immune system for its own survival. Mycobacterium tuberculosis H37Rv (Mtb) proteome consists of unique PE_PGRS family proteins, which present a significant role in bacterial pathogenesis over the past years. Earlier evidence suggests that some PE_PGRS proteins display fibronectin-binding activity. In this manuscript, computational characterization of the PE_PGRS39 protein has indicated something peculiar about this protein. Investigation showed that PE_PGRS39 is an extracellular protein that, instead of acting as fibronectin-binding protein, might mimic fibronectin which binds to alpha-5 beta-1 (α5β1) integrin. PE_PGRS39 protein additionally turned into proven pieces of evidence to have motifs such as DXXG and GGXGXD and PXXP that bind with guanosine triphosphate (GTP), calcium, and host Src homology 3 (SH3) domains, respectively, in conjunction with RGD-integrin binding. These interactions designate the direct role of PE_PGRS39 in bacterial pathogenesis via cell adhesion and signaling. Additionally, the analysis showed that PE_PGRS39 is an antigenic protein and epitope prediction provided functional regions of the protein that trigger a cellular immune response facilitated by T or B cells. Further, an experimental analysis could also open up new avenues for developing novel drugs by targeting signaling motifs or novel vaccines using functional epitopes that could evoke an immune response in the host.


The Progression of Acute Myeloid Leukemia from First Diagnosis to Chemoresistant Relapse: A Comparison of Proteomic and Phosphoproteomic Profiles.

  • Elise Aasebø‎ et al.
  • Cancers‎
  • 2020‎

Acute myeloid leukemia (AML) is an aggressive hematological malignancy. Nearly 50% of the patients who receive the most intensive treatment develop chemoresistant leukemia relapse. Although the leukemogenic events leading to relapse seem to differ between patients (i.e., regrowth from a clone detected at first diagnosis, progression from the original leukemic or preleukemic stem cells), a common characteristic of relapsed AML is increased chemoresistance. The aim of the present study was to investigate at the proteomic level whether leukemic cells from relapsed patients present overlapping molecular mechanisms that contribute to this chemoresistance. We used liquid chromatography-tandem mass spectrometry (LC-MS/MS) to compare the proteomic and phosphoproteomic profiles of AML cells derived from seven patients at the time of first diagnosis and at first relapse. At the time of first relapse, AML cells were characterized by increased levels of proteins important for various mitochondrial functions, such as mitochondrial ribosomal subunit proteins (MRPL21, MRPS37) and proteins for RNA processing (DHX37, RNA helicase; RPP40, ribonuclease P component), DNA repair (ERCC3, DNA repair factor IIH helicase; GTF2F1, general transcription factor), and cyclin-dependent kinase (CDK) activity. The levels of several cytoskeletal proteins (MYH14/MYL6/MYL12A, myosin chains; VCL, vinculin) as well as of proteins involved in vesicular trafficking/secretion and cell adhesion (ITGAX, integrin alpha-X; CD36, platelet glycoprotein 4; SLC2A3, solute carrier family 2) were decreased in relapsed cells. Our study introduces new targetable proteins that might direct therapeutic strategies to decrease chemoresistance in relapsed AML.


"Ependymal-in" Gradient of Thalamic Damage in Progressive Multiple Sclerosis.

  • Roberta Magliozzi‎ et al.
  • Annals of neurology‎
  • 2022‎

Leptomeningeal and perivenular infiltrates are important contributors to cortical grey matter damage and disease progression in multiple sclerosis (MS). Whereas perivenular inflammation induces vasculocentric lesions, leptomeningeal involvement follows a subpial "surface-in" gradient. To determine whether similar gradient of damage occurs in deep grey matter nuclei, we examined the dorsomedial thalamic nuclei and cerebrospinal fluid (CSF) samples from 41 postmortem secondary progressive MS cases compared with 5 non-neurological controls and 12 controls with other neurological diseases. CSF/ependyma-oriented gradient of reduction in NeuN+ neuron density was present in MS thalamic lesions compared to controls, greatest (26%) in subventricular locations at the ependyma/CSF boundary and least with increasing distance (12% at 10 mm). Concomitant graded reduction in SMI31+ axon density was observed, greatest (38%) at 2 mm from the ependyma/CSF boundary and least at 10 mm (13%). Conversely, gradient of major histocompatibility complex (MHC)-II+ microglia density increased by over 50% at 2 mm at the ependyma/CSF boundary and only by 15% at 10 mm and this gradient inversely correlated with the neuronal (R = -0.91, p < 0.0001) and axonal (R = -0.79, p < 0.0001) thalamic changes. Observed gradients were also detected in normal-appearing thalamus and were associated with rapid/severe disease progression; presence of leptomeningeal tertiary lymphoid-like structures; large subependymal infiltrates, enriched in CD20+ B cells and occasionally containing CXCL13+ CD35+ follicular dendritic cells; and high CSF protein expression of a complex pattern of soluble inflammatory/neurodegeneration factors, including chitinase-3-like-1, TNFR1, parvalbumin, neurofilament-light-chains and TNF. Substantial "ependymal-in" gradient of pathological cell alterations, accompanied by presence of intrathecal inflammation, compartmentalized either in subependymal lymphoid perivascular infiltrates or in CSF, may play a key role in MS progression. SUMMARY FOR SOCIAL MEDIA: Imaging and neuropathological evidences demonstrated the unique feature of "surface-in" gradient of damage in multiple sclerosis (MS) since early pediatric stages, often associated with more severe brain atrophy and disease progression. In particular, increased inflammation in the cerebral meninges has been shown to be strictly associated with an MS-specific gradient of neuronal, astrocyte, and oligodendrocyte loss accompanied by microglial activation in subpial cortical layers, which is not directly related to demyelination. To determine whether a similar gradient of damage occurs in deep grey matter nuclei, we examined the potential neuronal and microglia alterations in the dorsomedial thalamic nuclei from postmortem secondary progressive MS cases in combination with detailed neuropathological characterization of the inflammatory features and protein profiling of paired CSF samples. We observed a substantial "subependymal-in" gradient of neuro-axonal loss and microglia activation in active thalamic lesions of progressive MS cases, in particular in the presence of increased leptomeningeal and cerebrospinal fluid (CSF) inflammation. This altered graded pathology was found associated with more severe and rapid progressive MS and increased inflammatory degree either in large perivascular subependymal infiltrates, enriched in B cells, or within the paired CSF, in particular with elevated levels of a complex pattern of soluble inflammatory and neurodegeneration factors, including chitinase 3-like-1, TNFR1, parvalbumin, neurofilament light-chains and TNF. These data support a key role for chronic, intrathecally compartmentalized inflammation in specific disease endophenotypes. CSF biomarkers, together with advance imaging tools, may therefore help to improve not only the disease diagnosis but also the early identification of specific MS subgroups that would benefit of more personalized treatments. ANN NEUROL 2022;92:670-685.


Bioinformatic prediction of WSSV-host protein-protein interaction.

  • Zheng Sun‎ et al.
  • BioMed research international‎
  • 2014‎

WSSV is one of the most dangerous pathogens in shrimp aquaculture. However, the molecular mechanism of how WSSV interacts with shrimp is still not very clear. In the present study, bioinformatic approaches were used to predict interactions between proteins from WSSV and shrimp. The genome data of WSSV (NC_003225.1) and the constructed transcriptome data of F. chinensis were used to screen potentially interacting proteins by searching in protein interaction databases, including STRING, Reactome, and DIP. Forty-four pairs of proteins were suggested to have interactions between WSSV and the shrimp. Gene ontology analysis revealed that 6 pairs of these interacting proteins were classified into "extracellular region" or "receptor complex" GO-terms. KEGG pathway analysis showed that they were involved in the "ECM-receptor interaction pathway." In the 6 pairs of interacting proteins, an envelope protein called "collagen-like protein" (WSSV-CLP) encoded by an early virus gene "wsv001" in WSSV interacted with 6 deduced proteins from the shrimp, including three integrin alpha (ITGA), two integrin beta (ITGB), and one syndecan (SDC). Sequence analysis on WSSV-CLP, ITGA, ITGB, and SDC revealed that they possessed the sequence features for protein-protein interactions. This study might provide new insights into the interaction mechanisms between WSSV and shrimp.


Transcriptional and Functional Analysis of CD1c+ Human Dendritic Cells Identifies a CD163+ Subset Priming CD8+CD103+ T Cells.

  • Pierre Bourdely‎ et al.
  • Immunity‎
  • 2020‎

Dendritic cells (DCs) are antigen-presenting cells controlling T cell activation. In humans, the diversity, ontogeny, and functional capabilities of DC subsets are not fully understood. Here, we identified circulating CD88-CD1c+CD163+ DCs (called DC3s) as immediate precursors of inflammatory CD88-CD14+CD1c+CD163+FcεRI+ DCs. DC3s develop via a specific pathway activated by GM-CSF, independent of cDC-restricted (CDP) and monocyte-restricted (cMoP) progenitors. Like classical DCs but unlike monocytes, DC3s drove activation of naive T cells. In vitro, DC3s displayed a distinctive ability to prime CD8+ T cells expressing a tissue homing signature and the epithelial homing alpha-E integrin (CD103) through transforming growth factor β (TGF-β) signaling. In vivo, DC3s infiltrated luminal breast cancer primary tumors, and DC3 infiltration correlated positively with CD8+CD103+CD69+ tissue-resident memory T cells. Together, these findings define DC3s as a lineage of inflammatory DCs endowed with a strong potential to regulate tumor immunity.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: