Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 41 papers

Does learning or instinct shape habitat selection?

  • Scott E Nielsen‎ et al.
  • PloS one‎
  • 2013‎

Habitat selection is an important behavioural process widely studied for its population-level effects. Models of habitat selection are, however, often fit without a mechanistic consideration. Here, we investigated whether patterns in habitat selection result from instinct or learning for a population of grizzly bears (Ursus arctos) in Alberta, Canada. We found that habitat selection and relatedness were positively correlated in female bears during the fall season, with a trend in the spring, but not during any season for males. This suggests that habitat selection is a learned behaviour because males do not participate in parental care: a genetically predetermined behaviour (instinct) would have resulted in habitat selection and relatedness correlations for both sexes. Geographic distance and home range overlap among animals did not alter correlations indicating that dispersal and spatial autocorrelation had little effect on the observed trends. These results suggest that habitat selection in grizzly bears are partly learned from their mothers, which could have implications for the translocation of wildlife to novel environments.


Basic instinct undressed: early spatiotemporal processing for primary sexual characteristics.

  • Lore B Legrand‎ et al.
  • PloS one‎
  • 2013‎

This study investigates the spatiotemporal dynamics associated with conscious and non-conscious processing of naked and dressed human bodies. To this effect, stimuli of naked men and women with visible primary sexual characteristics, as well as dressed bodies, were presented to 20 heterosexual male and female participants while acquiring high resolution EEG data. The stimuli were either consciously detectable (supraliminal presentations) or were rendered non-conscious through backward masking (subliminal presentations). The N1 event-related potential component was significantly enhanced in participants when they viewed naked compared to dressed bodies under supraliminal viewing conditions. More importantly, naked bodies of the opposite sex produced a significantly greater N1 component compared to dressed bodies during subliminal presentations, when participants were not aware of the stimulus presented. A source localization algorithm computed on the N1 showed that the response for naked bodies in the supraliminal viewing condition was stronger in body processing areas, primary visual areas and additional structures related to emotion processing. By contrast, in the subliminal viewing condition, only visual and body processing areas were found to be activated. These results suggest that naked bodies and primary sexual characteristics are processed early in time (i.e., <200 ms) and activate key brain structures even when they are not consciously detected. It appears that, similarly to what has been reported for emotional faces, sexual features benefit from automatic and rapid processing, most likely due to their high relevance for the individual and their importance for the species in terms of reproductive success.


Instinct to insight: Neural correlates of ethological strategy learning.

  • Kai Lu‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

In ethological behaviors like parenting, animals innately follow stereotyped patterns of choices to decide between uncertain outcomes but can learn to modify their strategies to incorporate new information. For example, female mice in a T-maze instinctively use spatial-memory to search for pups where they last found them but can learn more efficient strategies employing pup-associated acoustic cues. We uncovered neural correlates for transitioning between these innate and learned strategies. Auditory cortex (ACx) was required during learning. ACx firing at the nest increased with learning and correlated with subsequent search speed but not outcome. Surprisingly, ACx suppression rather than facilitation during search was more prognostic of correct sound-cued outcomes - even before adopting a sound-cued strategy. Meanwhile medial prefrontal cortex encoded the last pup location, but this decayed as the spatial-memory strategy declined. Our results suggest a neural competition between a weakening spatial-memory and strengthening sound-cued neural representation to mediate strategy switches.


Beyond Gut Instinct: Metabolic Short-Chain Fatty Acids Moderate the Pathogenesis of Alphaherpesviruses.

  • Katrien C K Poelaert‎ et al.
  • Frontiers in microbiology‎
  • 2019‎

Short-chain fatty acids (SCFA), such as sodium butyrate (SB), sodium propionate (SPr), and sodium acetate (SAc), are metabolic end-products of the fermentation of dietary fibers. They are linked with multiple beneficial effects on the general mammalian health, based on the sophisticated interplay with the host immune response. Equine herpesvirus 1 (EHV1) is a major pathogen, which primarily replicates in the respiratory epithelium, and disseminates through the body via a cell-associated viremia in leukocytes, even in the presence of neutralizing antibodies. Infected monocytic CD172a+ cells and T-lymphocytes transmit EHV1 to the endothelium of the endometrium or central nervous system (CNS), causing reproductive or neurological disorders. Here, we questioned whether SCFA have a potential role in shaping the pathogenesis of EHV1 during the primary replication in the URT, during the cell-associated viremia, or at the level of the endothelium of the pregnant uterus and/or CNS. First, we demonstrated the expression of SCFA receptors, FFA2 and FFA3, within the epithelium of the equine respiratory tract, at the cell surface of immune cells, and equine endothelium. Subsequently, EHV1 replication was evaluated in the URT, in the presence or absence of SB, SPr, or SAc. In general, we demonstrated that SCFA do not affect the number of viral plaques or virus titer upon primary viral replication. Only SB and SPr were able to reduce the plaque latitudes. Similarly, pretreatment of monocytic CD172a+ cells and T-lymphocytes with different concentrations of SCFA did not alter the number of infected cells. When endothelial cells were treated with SB, SPr, or SAc, prior to the co-cultivation with EHV1-inoculated mononuclear cells, we observed a reduced number of adherent immune cells to the target endothelium. This was associated with a downregulation of endothelial adhesion molecules ICAM-1 and VCAM-1 in the presence of SCFA, which ultimately lead to a significant reduction of the EHV1 endothelial plaques. These results indicate that physiological concentrations of SCFA may affect the pathogenesis of EHV1, mainly at the target endothelium, in favor of the fitness of the horse. Our findings may have significant implications to develop innovative therapies, to prevent the devastating clinical outcome of EHV1 infections.


Evidence for a Caregiving Instinct: Rapid Differentiation of Infant from Adult Vocalizations Using Magnetoencephalography.

  • Katherine S Young‎ et al.
  • Cerebral cortex (New York, N.Y. : 1991)‎
  • 2016‎

Crying is the most salient vocal signal of distress. The cries of a newborn infant alert adult listeners and often elicit caregiving behavior. For the parent, rapid responding to an infant in distress is an adaptive behavior, functioning to ensure offspring survival. The ability to react rapidly requires quick recognition and evaluation of stimuli followed by a co-ordinated motor response. Previous neuroimaging research has demonstrated early specialized activity in response to infant faces. Using magnetoencephalography, we found similarly early (100-200 ms) differences in neural responses to infant and adult cry vocalizations in auditory, emotional, and motor cortical brain regions. We propose that this early differential activity may help to rapidly identify infant cries and engage affective and motor neural circuitry to promote adaptive behavioral responding, before conscious awareness. These differences were observed in adults who were not parents, perhaps indicative of a universal brain-based "caregiving instinct."


Preclinical Efficacy and Safety Studies of Formulation SSV-003, a Potent Anti-Viral Herbal Formulation.

  • Yogesh Arun Dound‎ et al.
  • Journal of experimental pharmacology‎
  • 2021‎

Recent viral pandemics have challenged the global scientific community to immediately develop new therapies. The fastest approach to develop these is to explore natural products for their efficacies and repurposing of already approved molecules. Keeping global emergency in view, researchers at Shreepad Shree Vallabh SSV Phytopharmaceuticals developed the CurvicTM (SSV-003) formulation, comprising of curcumin, vitamin C, vitamin K2-7, selenomethionine and Zinc.


ROS Generative Black Phosphorus-Tamoxifen Nanosheets for Targeted Endocrine-Sonodynamic Synergistic Breast Cancer Therapy.

  • Jing Wang‎ et al.
  • International journal of nanomedicine‎
  • 2023‎

Tamoxifen (TAM) has proven to be a therapeutic breakthrough to reduce mortality and recurrence in estrogen receptor-positive (ER+) breast cancer patients. However, the application of TAM exhibits low bioavailability, off-target toxicity, instinct and acquired TAM resistance.


Gut feeling for the diagnosis of cancer in general practice: a diagnostic accuracy review.

  • Masahiro Yao‎ et al.
  • BMJ open‎
  • 2023‎

Diagnostic delay in cancer is a challenge in primary care. Although screening tests are effective in diagnosing some cancers such as breast, colorectal and cervical cancers, symptom-based cancer diagnosis is often difficult due to its low incidence in primary care and the influence of patient anxiety, doctor-patient relationship and psychosocial context. A general practitioner's gut feeling for cancer may play a role in the early diagnosis of cancer in primary care where diagnostic resources are limited. The aim of this study is to summarise existing evidence about the test accuracy of gut feeling (index test) in symptomatic adult patients presenting to general practice, compared with multidisciplinary team-confirmed diagnosis of cancer (reference standard).


Engineering of Neutrophil Membrane Camouflaging Nanoparticles Realizes Targeted Drug Delivery for Amplified Antitumor Therapy.

  • Jingshuai Wang‎ et al.
  • International journal of nanomedicine‎
  • 2021‎

Although the neutrophil membrane (NM)-based nanoparticulate delivery system has exhibited rapid advances in tumor targeting stemmed from the inherited instinct, the antitumor effect requires further improvement due to inefficient cellular internalization in the absence of specific interactions between NM-coated nanoparticles and tumor cells.


Chondroinduction of Mesenchymal Stem Cells on Cellulose-Silk Composite Nanofibrous Substrates: The Role of Substrate Elasticity.

  • Runa Begum‎ et al.
  • Frontiers in bioengineering and biotechnology‎
  • 2020‎

Smart biomaterials with an inherent capacity to elicit specific behaviors in lieu of biological prompts would be advantageous for regenerative medicine applications. In this work, we employ an electrospinning technique to model the in vivo nanofibrous extracellular matrix (ECM) of cartilage using a chondroinductive cellulose and silk polymer blend (75:25 ratio). This natural polymer composite is directly electrospun for the first time, into nanofibers without post-spun treatment, using a trifluoroacetic acid and acetic acid cosolvent system. Biocompatibility of the composite nanofibres with human mesenchymal stem cells (hMSCs) is demonstrated and its inherent capacity to direct chondrogenic stem cell differentiation, in the absence of stimulating growth factors, is confirmed. This chondrogenic stimulation could be countered biochemically using fibroblast growth factor-2, a growth factor used to enhance the proliferation of hMSCs. Furthermore, the potential mechanisms driving this chondroinduction at the cell-biomaterial interface is investigated. Composite substrates are fabricated as two-dimensional film surfaces and cultured with hMSCs in the presence of chemicals that interfere with their biochemical and mechanical signaling pathways. Preventing substrate surface elasticity transmission resulted in a significant downregulation of chondrogenic gene expression. Interference with the classical chondrogenic Smad2/3 phosphorylation pathway did not impact chondrogenesis. The results highlight the importance of substrate mechanical elasticity on hMSCs chondroinduction and its independence to known chondrogenic biochemical pathways. The newly fabricated scaffolds provide the foundation for designing a robust, self-inductive, and cost-effective biomimetic biomaterial for cartilage tissue engineering.


Salt appetite is reduced by a single experience of drinking hypertonic saline in the adult rat.

  • Michael P Greenwood‎ et al.
  • PloS one‎
  • 2014‎

Salt appetite, the primordial instinct to favorably ingest salty substances, represents a vital evolutionary important drive to successfully maintain body fluid and electrolyte homeostasis. This innate instinct was shown here in Sprague-Dawley rats by increased ingestion of isotonic saline (IS) over water in fluid intake tests. However, this appetitive stimulus was fundamentally transformed into a powerfully aversive one by increasing the salt content of drinking fluid from IS to hypertonic saline (2% w/v NaCl, HS) in intake tests. Rats ingested HS similar to IS when given no choice in one-bottle tests and previous studies have indicated that this may modify salt appetite. We thus investigated if a single 24 h experience of ingesting IS or HS, dehydration (DH) or 4% high salt food (HSD) altered salt preference. Here we show that 24 h of ingesting IS and HS solutions, but not DH or HSD, robustly transformed salt appetite in rats when tested 7 days and 35 days later. Using two-bottle tests rats previously exposed to IS preferred neither IS or water, whereas rats exposed to HS showed aversion to IS. Responses to sweet solutions (1% sucrose) were not different in two-bottle tests with water, suggesting that salt was the primary aversive taste pathway recruited in this model. Inducing thirst by subcutaneous administration of angiotensin II did not overcome this salt aversion. We hypothesised that this behavior results from altered gene expression in brain structures important in thirst and salt appetite. Thus we also report here lasting changes in mRNAs for markers of neuronal activity, peptide hormones and neuronal plasticity in supraoptic and paraventricular nuclei of the hypothalamus following rehydration after both DH and HS. These results indicate that a single experience of drinking HS is a memorable one, with long-term changes in gene expression accompanying this aversion to salty solutions.


Influence of environmental enrichment on an object recognition task in CF1 mice.

  • Giordano Gubert Viola‎ et al.
  • Physiology & behavior‎
  • 2010‎

Environmental enrichment (EE) is an experimental model for studying neuroplasticity. EE is used to investigate behavioral modifications associated with gene-environmental interaction. The object recognition task (ORT) evaluates animals' ability to learn about their environment, which depends on their innate instinct. By using young CF1 mice, the present study evaluated the effect of 8 weeks of EE on the ORT. Our results indicate that EE decreased the time the animals spent exploring familiar and unfamiliar objects and total time spent exploring both objects, without affecting the capacity of discrimination of objects. These findings indicate a more propitious behavior for species survival in animals subjected to EE, including rapid exploration and learning about the environment.


Fabrication of a metal free catalyst for chemical reactions through decoration of chitosan with ionic liquid terminated dendritic moiety.

  • Samahe Sadjadi‎ et al.
  • Scientific reports‎
  • 2020‎

In attempt to develop a biocompatible metal-free catalyst, a dendritic moiety was grown on chitosan through successive reactions with 2,4,6-trichloro-1,3,5-triazine and ethylenediamine. Subsequently, the terminal functional groups of the dendron were decorated with 1-methylimidazolium chloride. The catalyst was characterized with SEM, EDS, TGA, FTIR, XRD and mapping analysis. Then, the catalytic activity of the resultant composite was scrutinized for catalyzing Knoevenagel condensation and synthesis of xanthene derivatives in aqueous media under mild reaction condition. The results confirmed high activity of the catalyst, superior to ionic liquid free counterpart and bare chitosan. This observation was ascribed to the instinct catalytic activity of ionic liquid. Moreover, using control catalysts, it was confirmed that the presence of the dendritic moiety that could increase the content of ionic liquid on the backbone of the catalyst enhanced the catalytic activity.


Curbing the menace of antimicrobial resistance in developing countries.

  • Chidi Victor Nweneka‎ et al.
  • Harm reduction journal‎
  • 2009‎

Several reports suggest that antimicrobial resistance is an increasing global problem; but like most pandemics, the greatest toll is in the less developed countries. The dismally low rate of discovery of antimicrobials compared to the rate of development of antimicrobial resistance places humanity on a very dangerous precipice. Since antimicrobial resistance is part of an organism's natural survival instinct, total eradication might be unachievable; however, it can be reduced to a level that it no longer poses a threat to humanity. While inappropriate antimicrobial consumption contributes to the development of antimicrobial resistance, other complex political, social, economic and biomedical factors are equally important. Tackling the menace therefore should go beyond the conventional sensitization of members of the public and occasional press releases to include a multi-sectoral intervention involving the formation of various alliances and partnerships. Involving civil society organisations like the media could greatly enhance the success of the interventions.


Hippocampal-hypothalamic circuit controls context-dependent innate defensive responses.

  • Jee Yoon Bang‎ et al.
  • eLife‎
  • 2022‎

Preys use their memory - where they sensed a predatory threat and whether a safe shelter is nearby - to dynamically control their survival instinct to avoid harm and reach safety. However, it remains unknown which brain regions are involved, and how such top-down control of innate behavior is implemented at the circuit level. Here, using adult male mice, we show that the anterior hypothalamic nucleus (AHN) is best positioned to control this task as an exclusive target of the hippocampus (HPC) within the medial hypothalamic defense system. Selective optogenetic stimulation and inhibition of hippocampal inputs to the AHN revealed that the HPC→AHN pathway not only mediates the contextual memory of predator threats but also controls the goal-directed escape by transmitting information about the surrounding environment. These results reveal a new mechanism for experience-dependent, top-down control of innate defensive behaviors.


Synthesis and Inhibitory Activity of Machaeridiol-Based Novel Anti-MRSA and Anti-VRE Compounds and Their Profiling for Cancer-Related Signaling Pathways.

  • Mallika Kumarihamy‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2022‎

Three unique 5,6-seco-hexahydrodibenzopyrans (seco-HHDBP) machaeridiols A−C, reported previously from Machaerium Pers., have displayed potent activities against methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus faecium, and E. faecalis (VRE). In order to enrich the pipeline of natural product-derived antimicrobial compounds, a series of novel machaeridiol-based analogs (1−17) were prepared by coupling stemofuran, pinosylvin, and resveratrol legends with monoterpene units R-(−)-α-phellandrene, (−)-p-mentha-2,8-diene-1-ol, and geraniol, and their inhibitory activities were profiled against MRSA ATCC 1708, VRE ATCC 700221, and cancer signaling pathways. Compounds 5 and 11 showed strong in vitro activities with MIC values of 2.5 μg/mL and 1.25 μg/mL against MRSA, respectively, and 2.50 μg/mL against VRE, while geranyl analog 14 was found to be moderately active (MIC 5 μg/mL). The reduction of the double bonds of the monoterpene unit of compound 5 resulted in 17, which had the same antibacterial potency (MIC 1.25 μg/mL and 2.50 μg/mL) as its parent, 5. Furthermore, a combination study between seco-HHDBP 17 and HHDBP machaeriol C displayed a synergistic effect with a fractional inhibitory concentrations (FIC) value of 0.5 against MRSA, showing a four-fold decrease in the MIC values of both 17 and machaeriol C, while no such effect was observed between vancomycin and 17. Compounds 11 and 17 were further tested in vivo against nosocomial MRSA at a single intranasal dose of 30 mg/kg in a murine model, and both compounds were not efficacious under these conditions. Finally, compounds 1−17 were profiled against a panel of luciferase genes that assessed the activity of complex cancer-related signaling pathways (i.e., transcription factors) using T98G glioblastoma multiforme cells. Among the compounds tested, the geranyl-substituted analog 14 exhibited strong inhibition against several signaling pathways, notably Smad, Myc, and Notch, with IC50 values of 2.17 μM, 1.86 μM, and 2.15 μM, respectively. In contrast, the anti-MRSA actives 5 and 17 were found to be inactive (IC50 > 20 μM) across the panel of these cancer-signaling pathways.


Thirst driving and suppressing signals encoded by distinct neural populations in the brain.

  • Yuki Oka‎ et al.
  • Nature‎
  • 2015‎

Thirst is the basic instinct to drink water. Previously, it was shown that neurons in several circumventricular organs of the hypothalamus are activated by thirst-inducing conditions. Here we identify two distinct, genetically separable neural populations in the subfornical organ that trigger or suppress thirst. We show that optogenetic activation of subfornical organ excitatory neurons, marked by the expression of the transcription factor ETV-1, evokes intense drinking behaviour, and does so even in fully water-satiated animals. The light-induced response is highly specific for water, immediate and strictly locked to the laser stimulus. In contrast, activation of a second population of subfornical organ neurons, marked by expression of the vesicular GABA transporter VGAT, drastically suppresses drinking, even in water-craving thirsty animals. These results reveal an innate brain circuit that can turn an animal's water-drinking behaviour on and off, and probably functions as a centre for thirst control in the mammalian brain.


An Efficient Method for the Isolation and Cultivation of Hypothalamic Neural Stem/Progenitor Cells From Mouse Embryos.

  • Yichao Ou‎ et al.
  • Frontiers in neuroanatomy‎
  • 2022‎

The hypothalamus is the key region that regulates the neuroendocrine system as well as instinct behaviors, and hypothalamic dysfunction causes refractory clinical problems. Recent studies have indicated that neural stem/progenitor cell (NSPC) in the hypothalamus play a crucial role in hypothalamic function. However, specific hypothalamic NSPC culture methods have not been established, especially not detailed or efficient surgical procedures. The present study presented a convenient, detailed and efficient method for the isolation and cultivation of hypothalamic NSPCs from embryonic day 12.5 mice. The procedure includes embryo acquisition, brain microdissection to quickly obtain hypothalamic tissue and hypothalamic NSPC culture. Hypothalamic NSPCs can be quickly harvested and grow well in both neurosphere and adherent cultures through this method. Additionally, we confirmed the cell origin and evaluated the proliferation and differentiation properties of cultured cells. In conclusion, we present a convenient and practical method for the isolation and cultivation of hypothalamic NSPCs that can be used in extensive hypothalamic studies.


Brn3b regulates the formation of fear-related midbrain circuits and defensive responses to visual threat.

  • Hyoseo Lee‎ et al.
  • PLoS biology‎
  • 2023‎

Defensive responses to visually threatening stimuli represent an essential fear-related survival instinct, widely detected across species. The neural circuitry mediating visually triggered defensive responses has been delineated in the midbrain. However, the molecular mechanisms regulating the development and function of these circuits remain unresolved. Here, we show that midbrain-specific deletion of the transcription factor Brn3b causes a loss of neurons projecting to the lateral posterior nucleus of the thalamus. Brn3b deletion also down-regulates the expression of the neuropeptide tachykinin 2 (Tac2). Furthermore, Brn3b mutant mice display impaired defensive freezing responses to visual threat precipitated by social isolation. This behavioral phenotype could be ameliorated by overexpressing Tac2, suggesting that Tac2 acts downstream of Brn3b in regulating defensive responses to threat. Together, our experiments identify specific genetic components critical for the functional organization of midbrain fear-related visual circuits. Similar mechanisms may contribute to the development and function of additional long-range brain circuits underlying fear-associated behavior.


KF-1 Ubiquitin Ligase: An Anxiety Suppressor.

  • Tamotsu Hashimoto-Gotoh‎ et al.
  • Frontiers in neuroscience‎
  • 2009‎

Anxiety is an instinct that may have developed to promote adaptive survival by evading unnecessary danger. However, excessive anxiety is disruptive and can be a basic disorder of other psychiatric diseases such as depression. The KF-1, a ubiquitin ligase located on the endoplasmic reticulum (ER), may prevent excessive anxiety; kf-1(-/-) mice exhibit selectively elevated anxiety-like behavior against light or heights. It is surmised that KF-1 degrades some target proteins, responsible for promoting anxiety, through the ER-associated degradation pathway, similar to Parkin in Parkinson's disease (PD). Parkin, another ER-ubiquitin ligase, prevents the degeneration of dopaminergic neurons by degrading the target proteins responsible for PD. Molecular phylogenetic studies have revealed that the prototype of kf-1 appeared in the very early phase of animal evolution but was lost, unlike parkin, in the lineage leading up to Drosophila. Therefore, kf-1(-/-) mice may be a powerful tool for elucidating the molecular mechanisms involved in emotional regulation, and for screening novel anxiolytic/antidepressant compounds.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: